किसी फ़ंक्शन का व्युत्पन्न. द अल्टीमेट गाइड (2019)

घातांक (ई से एक्स की शक्ति) के व्युत्पन्न के लिए सूत्रों का प्रमाण और व्युत्पत्ति घातांक प्रकार्य(ए से एक्स पावर)। e^2x, e^3x और e^nx के व्युत्पन्नों की गणना के उदाहरण। उच्च ऑर्डर के डेरिवेटिव के लिए सूत्र।

एक घातांक का व्युत्पन्न स्वयं घातांक के बराबर होता है (e से x घात का व्युत्पन्न e से x घात के बराबर होता है):
(1) (ई एक्स )' = ई एक्स.

घातांक a के आधार वाले एक घातांकीय फलन का व्युत्पन्न उस फलन के गुणनफल के बराबर होता है प्राकृतिकएक से:
(2) .

घातांक, ई से एक्स घात के अवकलज के लिए सूत्र की व्युत्पत्ति

घातांक एक घातीय फलन है जिसका आधार संख्या e के बराबर है, जो निम्नलिखित सीमा है:
.
यहां यह या तो प्राकृतिक संख्या या वास्तविक संख्या हो सकती है। इसके बाद, हम घातांक के अवकलज के लिए सूत्र (1) प्राप्त करते हैं।

घातीय व्युत्पन्न सूत्र की व्युत्पत्ति

घातांक पर विचार करें, ई से एक्स घात:
आप = ई एक्स .
यह फ़ंक्शन सभी के लिए परिभाषित है.
(3) .

आइए चर x के संबंध में इसका व्युत्पन्न ज्ञात करें।
परिभाषा के अनुसार, व्युत्पन्न निम्नलिखित सीमा है:आइए इस अभिव्यक्ति को ज्ञात गणितीय गुणों और नियमों में परिवर्तित करें। ऐसा करने के लिए हमें निम्नलिखित तथ्यों की आवश्यकता है:
(4) ;
ए)घातांक संपत्ति:
(5) ;
बी)लघुगणक की संपत्ति:
(6) .
में)
लघुगणक की निरंतरता और एक सतत कार्य के लिए सीमा की संपत्ति:यहां एक फ़ंक्शन है जिसकी एक सीमा है और यह सीमा सकारात्मक है।
(7) .

जी)
;
.

दूसरी उल्लेखनीय सीमा का अर्थ:
आइए इन तथ्यों को अपनी सीमा (3) पर लागू करें। हम संपत्ति का उपयोग करते हैं (4):
.
आइए एक प्रतिस्थापन करें.
.

तब ; .
.

घातांक की निरंतरता के कारण,
इसलिए, जब , .
.

परिणामस्वरूप हमें मिलता है:
.
आइए एक प्रतिस्थापन करें. तब । पर , । और हमारे पास है:आइए लघुगणक गुण (5) लागू करें:
.

.

तब

आइए संपत्ति (6) लागू करें। चूँकि एक सकारात्मक सीमा है और लघुगणक निरंतर है, तो:
(8)
यहां हमने दूसरे का भी उपयोग किया

उल्लेखनीय सीमा (7). तबइस प्रकार, हमने घातांक के अवकलज के लिए सूत्र (1) प्राप्त किया।
;
.
एक घातांकीय फलन के अवकलज के लिए सूत्र की व्युत्पत्ति
.

अब हम घातांक a के आधार वाले घातांक फलन के अवकलज के लिए सूत्र (2) प्राप्त करते हैं।

हम ऐसा मानते हैं और.
(14) .
(1) .

हम देखते हैं कि फलन (14) का अवकलज फलन (14) के ही बराबर है। (1) को विभेदित करने पर, हम दूसरे और तीसरे क्रम के व्युत्पन्न प्राप्त करते हैं:
;
.

इससे पता चलता है कि nवें क्रम का व्युत्पन्न भी मूल फ़ंक्शन के बराबर है:
.

घातीय फलन के उच्च क्रम व्युत्पन्न

अब घातांक के आधार वाले एक घातांकीय फलन पर विचार करें:
.
हमने इसका प्रथम-क्रम व्युत्पन्न पाया:
(15) .

(15) को विभेदित करने पर, हमें दूसरे और तीसरे क्रम के व्युत्पन्न प्राप्त होते हैं:
;
.

हम देखते हैं कि प्रत्येक विभेदन से मूल फलन का गुणन होता है।
.

इसलिए, nवें क्रम व्युत्पन्न का निम्नलिखित रूप है:
जटिल व्युत्पन्न. लघुगणकीय व्युत्पन्न.

शक्ति-घातांकीय फलन का व्युत्पन्न

हम अपनी विभेदीकरण तकनीक में सुधार करना जारी रखते हैं। इस पाठ में, हम अपने द्वारा कवर की गई सामग्री को समेकित करेंगे, अधिक जटिल व्युत्पन्नों को देखेंगे, और व्युत्पन्न खोजने के लिए नई तकनीकों और युक्तियों से भी परिचित होंगे, विशेष रूप से, लघुगणकीय व्युत्पन्न के साथ। जिन पाठकों के पास तैयारी का स्तर कम है, उन्हें लेख का संदर्भ लेना चाहिएव्युत्पन्न कैसे खोजें? समाधान के उदाहरण , जो आपको अपने कौशल को लगभग शून्य से ऊपर उठाने की अनुमति देगा। इसके बाद, आपको पृष्ठ का सावधानीपूर्वक अध्ययन करने की आवश्यकता हैएक जटिल फ़ंक्शन का व्युत्पन्न , समझें और समाधान करेंसभी मैंने जो उदाहरण दिये.यह सबक तार्किक रूप से तीसरा, और इसमें महारत हासिल करने के बाद आप आत्मविश्वास से काफी जटिल कार्यों में अंतर कर पाएंगे। "और कहाँ?" की स्थिति लेना अवांछनीय है। हाँ, यह काफी है!'' क्योंकि सभी उदाहरण और समाधान वास्तविक से लिये गये हैंपरीक्षण

और अक्सर व्यवहार में सामने आते हैं। , जो आपको अपने कौशल को लगभग शून्य से ऊपर उठाने की अनुमति देगा। इसके बाद, आपको पृष्ठ का सावधानीपूर्वक अध्ययन करने की आवश्यकता हैआइए दोहराव से शुरू करें। कक्षा में हमने विस्तृत टिप्पणियों के साथ कई उदाहरण देखे। डिफरेंशियल कैलकुलस और अन्य अनुभागों के अध्ययन के दौरानगणितीय विश्लेषण

- आपको बहुत बार अंतर करना होगा, और उदाहरणों का विस्तृत विवरण देना हमेशा सुविधाजनक नहीं होता (और हमेशा आवश्यक भी नहीं)। इसलिए, हम मौखिक रूप से डेरिवेटिव खोजने का अभ्यास करेंगे। इसके लिए सबसे उपयुक्त "उम्मीदवार" सबसे सरल जटिल कार्यों के व्युत्पन्न हैं, उदाहरण के लिए: :

जटिल कार्यों के विभेदन के नियम के अनुसार भविष्य में अन्य मटन विषयों का अध्ययन करते समय, ऐसे विस्तृत रिकॉर्ड की अक्सर आवश्यकता नहीं होती है, यह माना जाता है कि छात्र जानता है कि ऑटोपायलट पर ऐसे डेरिवेटिव कैसे खोजें। आइए कल्पना करें कि सुबह 3 बजे फोन बजा औरसुखद आवाज .

पूछा: "दो एक्स की स्पर्शरेखा का व्युत्पन्न क्या है?" इसके बाद लगभग तुरंत और विनम्र प्रतिक्रिया दी जानी चाहिए:

पहला उदाहरण तुरंत स्वतंत्र समाधान के लिए अभिप्रेत होगा।

उदाहरण के लिए, एक क्रिया में निम्नलिखित व्युत्पन्नों को मौखिक रूप से खोजें:। कार्य को पूरा करने के लिए आपको केवल उपयोग करने की आवश्यकता है प्राथमिक कार्यों के व्युत्पन्न की तालिका(यदि आपने इसे अभी तक याद नहीं किया है)। यदि आपको कोई कठिनाई हो तो मैं पाठ को दोबारा पढ़ने की सलाह देता हूँ , जो आपको अपने कौशल को लगभग शून्य से ऊपर उठाने की अनुमति देगा। इसके बाद, आपको पृष्ठ का सावधानीपूर्वक अध्ययन करने की आवश्यकता है.

, , ,
, , ,
, , ,

, , ,

, , ,

, , ,

, ,

पाठ के अंत में उत्तर

जटिल व्युत्पन्न

प्रारंभिक तोपखाने की तैयारी के बाद, कार्यों के 3-4-5 नेस्टिंग वाले उदाहरण कम डरावने होंगे। निम्नलिखित दो उदाहरण कुछ लोगों को जटिल लग सकते हैं, लेकिन यदि आप उन्हें समझते हैं (किसी को कष्ट होगा), तो अंतर कलन में लगभग बाकी सब कुछ बच्चों के मजाक जैसा लगेगा।

उदाहरण 2

किसी फ़ंक्शन का व्युत्पन्न खोजें

जैसा कि पहले ही उल्लेख किया गया है, किसी जटिल फलन का व्युत्पन्न ज्ञात करते समय, सबसे पहले, यह आवश्यक है सहीअपने निवेश को समझें. ऐसे मामलों में जहां संदेह हो, मैं आपको याद दिलाता हूं उपयोगी युक्ति: उदाहरण के लिए, हम "x" का प्रयोगात्मक अर्थ लेते हैं, और इस अर्थ को "भयानक अभिव्यक्ति" में प्रतिस्थापित करने का प्रयास करते हैं (मानसिक रूप से या ड्राफ्ट में)।

1) सबसे पहले हमें अभिव्यक्ति की गणना करने की आवश्यकता है, जिसका अर्थ है कि योग सबसे गहरा एम्बेडिंग है।

2) फिर आपको लघुगणक की गणना करने की आवश्यकता है:

4) फिर कोज्या का घन करें:

5) पांचवें चरण में अंतर:

6) और अंत में, सबसे बाहरी कार्य है वर्गमूल:

किसी जटिल फ़ंक्शन को विभेदित करने का सूत्र बाहरीतम कार्य से लेकर अंतरतम तक उल्टे क्रम में लागू किया जाता है। हमने निर्णय किया:

ऐसा प्रतीत होता है कि कोई त्रुटि नहीं है...

(1) वर्गमूल का अवकलज लीजिए।

(2) हम नियम का उपयोग करके अंतर का व्युत्पन्न लेते हैं

(3) त्रिक का व्युत्पन्न शून्य है। दूसरे पद में हम घात (घन) का अवकलज लेते हैं।

(4) कोसाइन का व्युत्पन्न लें।

(5) लघुगणक का अवकलज लीजिए।

(6) और अंत में, हम सबसे गहरे एम्बेडिंग का व्युत्पन्न लेते हैं।

यह बहुत कठिन लग सकता है, लेकिन यह सबसे क्रूर उदाहरण नहीं है। उदाहरण के लिए, कुज़नेत्सोव के संग्रह को लें और आप विश्लेषण किए गए व्युत्पन्न की सभी सुंदरता और सादगी की सराहना करेंगे। मैंने देखा कि वे परीक्षा में इसी तरह की चीज़ देना पसंद करते हैं ताकि यह जांचा जा सके कि क्या कोई छात्र किसी जटिल फ़ंक्शन का व्युत्पन्न ढूंढना समझता है या नहीं समझता है।

निम्नलिखित उदाहरण आपके लिए स्वयं हल करने के लिए है।

उदाहरण 3

किसी फ़ंक्शन का व्युत्पन्न खोजें

संकेत: सबसे पहले हम रैखिकता नियम और उत्पाद विभेदन नियम लागू करते हैं

संपूर्ण समाधानऔर पाठ के अंत में उत्तर।

अब कुछ छोटी और अच्छी चीज़ की ओर बढ़ने का समय आ गया है।
किसी उदाहरण में दो नहीं, बल्कि तीन कार्यों का गुणनफल दिखाना कोई असामान्य बात नहीं है। तीन कारकों के उत्पाद का व्युत्पन्न कैसे खोजें?

उदाहरण 4

किसी फ़ंक्शन का व्युत्पन्न खोजें

सबसे पहले, आइए देखें कि क्या तीन कार्यों के उत्पाद को दो कार्यों के उत्पाद में बदलना संभव है? उदाहरण के लिए, यदि हमारे उत्पाद में दो बहुपद हैं, तो हम कोष्ठक खोल सकते हैं। लेकिन विचाराधीन उदाहरण में, सभी फ़ंक्शन अलग-अलग हैं: डिग्री, घातांक और लघुगणक।

ऐसे में यह जरूरी है क्रमिक रूप सेउत्पाद विभेदीकरण नियम लागू करें दो बार

चाल यह है कि "y" से हम दो कार्यों के उत्पाद को दर्शाते हैं:, और "ve" से हम लघुगणक को दर्शाते हैं:। ऐसा क्यों किया जा सकता है? क्या ऐसा संभव है – यह दो कारकों का उत्पाद नहीं है और नियम काम नहीं करता है?! इसमें कुछ भी जटिल नहीं है:

अब नियम को दूसरी बार लागू करना बाकी है ब्रैकेट में:

आप मोड़ भी सकते हैं और कोष्ठक से बाहर भी कुछ डाल सकते हैं, लेकिन इस मामले में उत्तर को ठीक इसी रूप में छोड़ना बेहतर है - इसे जांचना आसान होगा।

विचारित उदाहरण को दूसरे तरीके से हल किया जा सकता है:

दोनों समाधान बिल्कुल समतुल्य हैं.

उदाहरण 5

किसी फ़ंक्शन का व्युत्पन्न खोजें

यह एक स्वतंत्र समाधान के लिए एक उदाहरण है; नमूने में इसे पहली विधि का उपयोग करके हल किया गया है।

आइए भिन्नों वाले समान उदाहरण देखें।

उदाहरण 6

किसी फ़ंक्शन का व्युत्पन्न खोजें

आप यहां कई तरीकों से जा सकते हैं:

या इस तरह:

लेकिन यदि हम पहले भागफल के विभेदन के नियम का उपयोग करें तो समाधान अधिक सघनता से लिखा जाएगा , संपूर्ण अंश के लिए लेते हुए:

सिद्धांत रूप में, उदाहरण हल हो गया है, और यदि इसे वैसे ही छोड़ दिया जाए, तो कोई त्रुटि नहीं होगी। लेकिन अगर आपके पास समय हो, तो यह हमेशा सलाह दी जाती है कि ड्राफ्ट की जांच कर लें कि क्या उत्तर को सरल बनाया जा सकता है? आइए हम अंश के व्यंजक को एक सामान्य हर में घटाएँ और आइए तीन मंजिला अंश से छुटकारा पाएं:

अतिरिक्त सरलीकरण का नुकसान यह है कि व्युत्पन्न खोजते समय गलती करने का जोखिम नहीं होता है, बल्कि सामान्य स्कूल परिवर्तनों के दौरान गलती होने का जोखिम होता है। दूसरी ओर, शिक्षक अक्सर असाइनमेंट को अस्वीकार कर देते हैं और व्युत्पन्न को "दिमाग में लाने" के लिए कहते हैं।

स्वयं हल करने के लिए एक सरल उदाहरण:

उदाहरण 7

किसी फ़ंक्शन का व्युत्पन्न खोजें

हम व्युत्पन्न खोजने के तरीकों में महारत हासिल करना जारी रखते हैं, और अब हम एक विशिष्ट मामले पर विचार करेंगे जब विभेदन के लिए एक "भयानक" लघुगणक प्रस्तावित किया जाता है

उदाहरण 8

किसी फ़ंक्शन का व्युत्पन्न खोजें

यहां आप एक जटिल फ़ंक्शन को अलग करने के नियम का उपयोग करके लंबा रास्ता तय कर सकते हैं:

लेकिन पहला कदम ही आपको तुरंत निराशा में डुबो देता है - आपको इसका अप्रिय व्युत्पन्न लेना होगा आंशिक शक्ति, और फिर भिन्न से भी.

इसीलिए पहले"परिष्कृत" लघुगणक का व्युत्पन्न कैसे लें, इसे पहले प्रसिद्ध स्कूल गुणों का उपयोग करके सरल बनाया गया है:



! यदि आपके पास अभ्यास नोटबुक है, तो इन सूत्रों को सीधे वहां कॉपी करें। यदि आपके पास नोटबुक नहीं है, तो उन्हें कागज के एक टुकड़े पर कॉपी करें, क्योंकि पाठ के शेष उदाहरण इन सूत्रों के इर्द-गिर्द घूमेंगे।

समाधान स्वयं कुछ इस प्रकार लिखा जा सकता है:

आइए फ़ंक्शन को रूपांतरित करें:

व्युत्पन्न ढूँढना:

फ़ंक्शन को पूर्व-रूपांतरित करने से समाधान बहुत सरल हो गया। इस प्रकार, जब विभेदन के लिए एक समान लघुगणक प्रस्तावित किया जाता है, तो हमेशा "इसे तोड़ने" की सलाह दी जाती है।

और अब आपके लिए स्वयं हल करने के लिए कुछ सरल उदाहरण:

उदाहरण 9

किसी फ़ंक्शन का व्युत्पन्न खोजें

उदाहरण 10

किसी फ़ंक्शन का व्युत्पन्न खोजें

सभी परिवर्तन और उत्तर पाठ के अंत में हैं।

लघुगणकीय व्युत्पन्न

यदि लघुगणक का व्युत्पन्न इतना मधुर संगीत है, तो प्रश्न उठता है: क्या कुछ मामलों में लघुगणक को कृत्रिम रूप से व्यवस्थित करना संभव है? कर सकना! और आवश्यक भी.

उदाहरण 11

किसी फ़ंक्शन का व्युत्पन्न खोजें

हमने हाल ही में ऐसे ही उदाहरण देखे। क्या करें? आप क्रमिक रूप से भागफल के विभेदन के नियम को लागू कर सकते हैं, और फिर उत्पाद के विभेदन के नियम को लागू कर सकते हैं। इस पद्धति का नुकसान यह है कि आपके पास एक विशाल तीन-मंजिला अंश रह जाता है, जिससे आप बिल्कुल भी निपटना नहीं चाहते हैं।

लेकिन सिद्धांत और व्यवहार में लघुगणकीय व्युत्पन्न जैसी एक अद्भुत चीज़ है। लघुगणक को दोनों तरफ "लटकाकर" कृत्रिम रूप से व्यवस्थित किया जा सकता है:

अब आपको यथासंभव दाईं ओर के लघुगणक को "विघटित" करने की आवश्यकता है (आपकी आंखों के सामने सूत्र?)। मैं इस प्रक्रिया का विस्तार से वर्णन करूंगा:

आइए भेदभाव से शुरू करें।
हम दोनों भागों को अभाज्य के अंतर्गत समाप्त करते हैं:

दायीं ओर की व्युत्पत्ति काफी सरल है; मैं इस पर टिप्पणी नहीं करूंगा, क्योंकि यदि आप इस पाठ को पढ़ रहे हैं, तो आपको इसे आत्मविश्वास से संभालने में सक्षम होना चाहिए।

बाईं ओर के बारे में क्या?

बाईं ओर हमारे पास है जटिल कार्य. मुझे इस प्रश्न का पूर्वाभास है: "क्यों, क्या लघुगणक के अंतर्गत एक अक्षर "Y" है?"

तथ्य यह है कि यह "एक अक्षर का खेल" - यह स्वयं एक कार्य है(यदि यह बहुत स्पष्ट नहीं है, तो अंतर्निहित रूप से निर्दिष्ट फ़ंक्शन के व्युत्पन्न लेख को देखें)। इसलिए, लघुगणक एक बाहरी फ़ंक्शन है, और "y" एक आंतरिक फ़ंक्शन है। और हम किसी जटिल फ़ंक्शन को विभेदित करने के लिए नियम का उपयोग करते हैं :

बाईं ओर, मानो जादू से, हमारे पास एक व्युत्पन्न है। अगला, अनुपात के नियम के अनुसार, हम "y" को बाईं ओर के हर से दाईं ओर के शीर्ष पर स्थानांतरित करते हैं:

और अब आइए याद करें कि विभेदीकरण के दौरान हमने किस प्रकार के "खिलाड़ी"-कार्य के बारे में बात की थी? आइए स्थिति पर नजर डालें:

अंतिम उत्तर:

उदाहरण 12

किसी फ़ंक्शन का व्युत्पन्न खोजें

यह आपके लिए स्वयं हल करने का एक उदाहरण है। इस प्रकार के उदाहरण का एक नमूना डिज़ाइन पाठ के अंत में है।

लघुगणकीय व्युत्पन्न का उपयोग करके किसी भी उदाहरण संख्या 4-7 को हल करना संभव था, दूसरी बात यह है कि वहां के कार्य सरल हैं, और, शायद, लघुगणकीय व्युत्पन्न का उपयोग बहुत उचित नहीं है।

शक्ति-घातांकीय फलन का व्युत्पन्न

यह फ़ंक्शनहमने अभी तक इस पर गौर नहीं किया है। एक घात-घातांकीय फलन एक ऐसा फलन है जिसके लिए डिग्री और आधार दोनों "x" पर निर्भर करते हैं. एक उत्कृष्ट उदाहरण जो आपको किसी भी पाठ्यपुस्तक या व्याख्यान में दिया जाएगा:

पावर-एक्सपोनेंशियल फ़ंक्शन का व्युत्पन्न कैसे खोजें?

अभी चर्चा की गई तकनीक का उपयोग करना आवश्यक है - लघुगणकीय व्युत्पन्न। हम दोनों तरफ लघुगणक लटकाते हैं:

एक नियम के रूप में, दाहिनी ओर से डिग्री लघुगणक के नीचे से निकाली जाती है:

परिणामस्वरूप, दाईं ओर हमारे पास दो कार्यों का गुणनफल है, जिन्हें मानक सूत्र के अनुसार विभेदित किया जाएगा .

हम व्युत्पन्न पाते हैं; ऐसा करने के लिए, हम दोनों भागों को स्ट्रोक के नीचे संलग्न करते हैं:

आगे की कार्रवाइयां सरल हैं:

अंत में:

यदि कोई रूपांतरण पूरी तरह से स्पष्ट नहीं है, तो कृपया उदाहरण #11 के स्पष्टीकरण को ध्यान से दोबारा पढ़ें।

व्यावहारिक कार्यों में, पावर-एक्सपोनेंशियल फ़ंक्शन हमेशा चर्चा किए गए व्याख्यान उदाहरण से अधिक जटिल होगा।

उदाहरण 13

किसी फ़ंक्शन का व्युत्पन्न खोजें

हम लघुगणकीय व्युत्पन्न का उपयोग करते हैं।

दाईं ओर हमारे पास एक स्थिरांक और दो कारकों का गुणनफल है - "x" और "लघुगणक x का लघुगणक" (लघुगणक के नीचे एक और लघुगणक निहित है)। विभेदन करते समय, जैसा कि हमें याद है, स्थिरांक को तुरंत व्युत्पन्न चिह्न से बाहर ले जाना बेहतर होता है ताकि यह रास्ते में न आए; और, निःसंदेह, हम परिचित नियम लागू करते हैं :


जैसा कि आप देख सकते हैं, लॉगरिदमिक व्युत्पन्न का उपयोग करने के लिए एल्गोरिदम में कोई विशेष तरकीबें या तरकीबें नहीं होती हैं, और पावर-एक्सपोनेंशियल फ़ंक्शन का व्युत्पन्न ढूंढना आमतौर पर "पीड़ा" से जुड़ा नहीं होता है।

व्युत्पन्न गणना- डिफरेंशियल कैलकुलस में सबसे महत्वपूर्ण ऑपरेशनों में से एक। डेरिवेटिव खोजने के लिए नीचे एक तालिका दी गई है सरल कार्य. अधिक जटिल नियमभेदभाव, अन्य पाठ देखें:
  • घातांकीय और लघुगणकीय फलनों के व्युत्पन्नों की तालिका
दिए गए सूत्रों को संदर्भ मान के रूप में उपयोग करें। वे विभेदक समीकरणों और समस्याओं को हल करने में मदद करेंगे। चित्र में, सरल कार्यों के व्युत्पन्न की तालिका में, उपयोग के लिए समझने योग्य रूप में व्युत्पन्न खोजने के मुख्य मामलों की एक "चीट शीट" है, इसके आगे प्रत्येक मामले के लिए स्पष्टीकरण हैं।

सरल कार्यों के व्युत्पन्न

1. किसी संख्या का व्युत्पन्न शून्य है
с´ = 0
उदाहरण:
5´ = 0

स्पष्टीकरण:
व्युत्पन्न उस दर को दर्शाता है जिस पर किसी फ़ंक्शन का तर्क बदलने पर उसका मान बदलता है। चूँकि संख्या किसी भी परिस्थिति में किसी भी तरह से नहीं बदलती है, इसलिए इसके परिवर्तन की दर हमेशा शून्य होती है।

2. एक चर का व्युत्पन्नएक के बराबर
x´ = 1

स्पष्टीकरण:
तर्क (x) में प्रत्येक वृद्धि के साथ, फ़ंक्शन का मान (गणना का परिणाम) उसी राशि से बढ़ता है। इस प्रकार, फ़ंक्शन y = x के मान में परिवर्तन की दर तर्क के मान में परिवर्तन की दर के बिल्कुल बराबर है।

3. एक चर और एक गुणनखंड का व्युत्पन्न इस गुणनखंड के बराबर होता है
сx´ = с
उदाहरण:
(3x)´ = 3
(2x)´ = 2
स्पष्टीकरण:
इस मामले में, हर बार फ़ंक्शन तर्क बदलता है ( एक्स) इसका मान (y) बढ़ जाता है साथएक बार। इस प्रकार, तर्क के परिवर्तन की दर के संबंध में फ़ंक्शन मान के परिवर्तन की दर बिल्कुल मान के बराबर है साथ.

यह कहां से इसका अनुसरण करता है
(सीएक्स + बी)" = सी
अर्थात्, रैखिक फलन y=kx+b का अंतर बराबर है ढलानसीधी रेखा का ढलान (k)।


4. एक चर का मॉड्यूलो व्युत्पन्नइस चर के भागफल के बराबर इसके मापांक के बराबर
|x|"= एक्स / |एक्स| बशर्ते कि x ≠ 0
स्पष्टीकरण:
चूंकि एक चर का व्युत्पन्न (सूत्र 2 देखें) एकता के बराबर है, मॉड्यूल का व्युत्पन्न केवल इसमें भिन्न होता है कि मूल बिंदु को पार करने पर फ़ंक्शन के परिवर्तन की दर का मान विपरीत में बदल जाता है (ग्राफ खींचने का प्रयास करें) फ़ंक्शन y = |x| का और स्वयं देखें कि यह वास्तव में क्या मान है और अभिव्यक्ति x / |x| लौटाता है< 0 оно равно (-1), а когда x >0 - एक. यानी जब नकारात्मक मानचर x, तर्क में प्रत्येक वृद्धि के साथ, फ़ंक्शन का मान बिल्कुल उसी मान से घटता है, और सकारात्मक लोगों के लिए, इसके विपरीत, यह बढ़ता है, लेकिन बिल्कुल उसी मान से।

5. एक चर से एक घात का व्युत्पन्नइस शक्ति की एक संख्या के उत्पाद के बराबर और एक से कम की गई शक्ति के लिए एक चर
(x c)"= cx c-1, बशर्ते कि x c और cx c-1 परिभाषित हों और c ≠ 0
उदाहरण:
(x 2)" = 2x
(x 3)" = 3x 2
फार्मूला याद रखना:
चर की डिग्री को एक कारक के रूप में नीचे ले जाएँ, और फिर डिग्री को एक से कम कर दें। उदाहरण के लिए, x 2 के लिए - दोनों x से आगे थे, और फिर कम हुई शक्ति (2-1 = 1) ने हमें बस 2x दिया। x 3 के लिए भी यही हुआ - हम त्रिक को "नीचे ले जाते हैं", इसे एक से कम करते हैं और एक घन के बजाय हमारे पास एक वर्ग होता है, यानी 3x 2। थोड़ा "अवैज्ञानिक" लेकिन याद रखना बहुत आसान है।

6.भिन्न का व्युत्पन्न 1/x
(1/x)" = - 1/x 2
उदाहरण:
चूँकि भिन्न को बढ़ाकर दर्शाया जा सकता है नकारात्मक डिग्री
(1/x)" = (x -1)", तो आप डेरिवेटिव की तालिका के नियम 5 से सूत्र लागू कर सकते हैं
(x -1)" = -1x -2 = - 1 / x 2

7. भिन्न का व्युत्पन्न मनमानी डिग्री के एक चर के साथहर में
(1 / x सी)"= - सी/एक्स सी+1
उदाहरण:
(1 / x 2)" = - 2 / x 3

8. जड़ का व्युत्पन्न(वर्गमूल के अंतर्गत चर का व्युत्पन्न)
(√x)" = 1 / (2√x)या 1/2 x -1/2
उदाहरण:
(√x)" = (x 1/2)" का अर्थ है कि आप नियम 5 से सूत्र लागू कर सकते हैं
(x 1/2)" = 1/2 x -1/2 = 1 / (2√x)

9. एक मनमानी डिग्री की जड़ के तहत एक चर का व्युत्पन्न
(n √x)" = 1 / (n n √x n-1)

शक्ति-घातांकीय फलन की परिभाषा. इसके व्युत्पन्न की गणना के लिए एक सूत्र प्राप्त करना। शक्ति-घातीय कार्यों के डेरिवेटिव की गणना के उदाहरणों का विस्तार से विश्लेषण किया गया है।

पावर-एक्सपोनेंशियल फ़ंक्शन एक फ़ंक्शन है जिसका स्वरूप पावर फ़ंक्शन जैसा है
वाई = यू वी ,
जिसमें आधार u और घातांक v चर x के कुछ कार्य हैं:
तुम = तुम (एक्स); (एक्स).
वी = वी इस फ़ंक्शन को भी कहा जाता हैघातीय

या ।
.
ध्यान दें कि पावर-एक्सपोनेंशियल फ़ंक्शन को एक्सपोनेंशियल रूप में दर्शाया जा सकता है: इसलिए इसे भी कहा जाता है.

जटिल घातीय कार्य

लघुगणकीय व्युत्पन्न का उपयोग करके गणना
(2) ,
आइए शक्ति-घातांकीय फलन का व्युत्पन्न ज्ञात करें
चर के कार्य कहाँ और हैं।
.
ऐसा करने के लिए, हम लघुगणक के गुण का उपयोग करके समीकरण (2) का लघुगणक करते हैं:
(3) .
चर x के संबंध में अंतर करें: हम आवेदन करते हैंजटिल कार्यों को विभेदित करने के नियम
;
.

और काम करता है:
.
हम (3) में स्थानापन्न करते हैं:
.

यहाँ से
(1) .
तो, हमने पावर-एक्सपोनेंशियल फ़ंक्शन का व्युत्पन्न पाया:
.
यदि घातांक स्थिर है, तो।
.
तब व्युत्पन्न एक जटिल शक्ति फ़ंक्शन के व्युत्पन्न के बराबर है:

यदि डिग्री का आधार स्थिर है, तो।

तब व्युत्पन्न एक जटिल घातांकीय फलन के व्युत्पन्न के बराबर होता है:
(2) ,
जब और x के फलन हों, तो घात-घातांकीय फलन का व्युत्पन्न जटिल घात और घातीय फलन के व्युत्पन्नों के योग के बराबर होता है।
(4) .

एक जटिल घातीय फलन में कमी करके व्युत्पन्न की गणना
.
आइए अब शक्ति-घातांक फलन का व्युत्पन्न ज्ञात करें

.
इसे एक जटिल घातीय फलन के रूप में प्रस्तुत करना:

आइए उत्पाद को अलग करें:

हम किसी जटिल फलन का अवकलज ज्ञात करने के लिए नियम लागू करते हैं:
.

और हमें फिर से सूत्र (1) मिल गया।

उदाहरण 1
निम्नलिखित फ़ंक्शन का व्युत्पन्न खोजें: .

समाधान
;
.
हम लघुगणकीय व्युत्पन्न का उपयोग करके गणना करते हैं। आइए मूल फ़ंक्शन का लघुगणक करें:
.
(ए1.1)
.
डेरिवेटिव की तालिका से हम पाते हैं:
,
उत्पाद व्युत्पन्न सूत्र का उपयोग करते हुए, हमारे पास है:
.

हम अंतर करते हैं (ए1.1):

क्योंकि

वह
.

और हमें फिर से सूत्र (1) मिल गया।

उत्तर
उदाहरण 2 .

फ़ंक्शन का व्युत्पन्न खोजें

आइए मूल फ़ंक्शन का लघुगणक करें: (ए2.1) (2019)

प्रवेश के स्तर पर

धुरी शून्य ऊंचाई का एक निश्चित स्तर है; जीवन में हम समुद्र तल का उपयोग इसके रूप में करते हैं।

जैसे-जैसे हम ऐसी सड़क पर आगे बढ़ते हैं, हम ऊपर या नीचे भी बढ़ते हैं। हम यह भी कह सकते हैं: जब तर्क बदलता है (एब्सिस्सा अक्ष के साथ गति), तो फ़ंक्शन का मान बदल जाता है (ऑर्डिनेट अक्ष के साथ गति)। आइए अब सोचें कि हमारी सड़क की "खड़ीपन" का निर्धारण कैसे किया जाए? यह किस प्रकार का मूल्य हो सकता है? यह बहुत सरल है: एक निश्चित दूरी तक आगे बढ़ने पर ऊँचाई कितनी बदल जाएगी। दरअसल, सड़क के विभिन्न हिस्सों पर, (एक्स-अक्ष के साथ) एक किलोमीटर आगे बढ़ते हुए, हम ऊपर उठेंगे या गिरेंगे अलग-अलग मात्रासमुद्र तल के सापेक्ष मीटर (ऑर्डिनेट अक्ष के साथ)।

आइए प्रगति को निरूपित करें ("डेल्टा x" पढ़ें)।

ग्रीक अक्षर (डेल्टा) का प्रयोग आमतौर पर गणित में उपसर्ग के रूप में किया जाता है, जिसका अर्थ है "परिवर्तन"। अर्थात्, यह मात्रा में परिवर्तन है, - परिवर्तन; ओर भला क्या? यह सही है, परिमाण में परिवर्तन।

महत्वपूर्ण: एक अभिव्यक्ति एक संपूर्ण, एक चर है। कभी भी "डेल्टा" को "x" या किसी अन्य अक्षर से अलग न करें!

यानी, उदाहरण के लिए, .

तो, हम क्षैतिज रूप से, आगे बढ़ गए हैं। यदि हम सड़क की रेखा की तुलना फ़ंक्शन के ग्राफ़ से करते हैं, तो हम वृद्धि को कैसे दर्शाते हैं? निश्चित रूप से, । अर्थात जैसे-जैसे हम आगे बढ़ते हैं, हम ऊंचे उठते जाते हैं।

मूल्य की गणना करना आसान है: यदि शुरुआत में हम ऊंचाई पर थे, और आगे बढ़ने के बाद हमने खुद को ऊंचाई पर पाया, तो। यदि अंतिम बिंदु शुरुआती बिंदु से कम है, तो यह नकारात्मक होगा - इसका मतलब है कि हम आरोही नहीं हैं, बल्कि अवरोही हैं।

आइए "खड़ीपन" पर लौटें: यह एक मान है जो दर्शाता है कि दूरी की एक इकाई आगे बढ़ने पर ऊंचाई कितनी (तेज) बढ़ जाती है:

मान लीजिए कि सड़क के किसी हिस्से पर एक किलोमीटर आगे बढ़ने पर सड़क एक किलोमीटर ऊपर उठ जाती है। तब इस स्थान पर ढलान बराबर होती है। और यदि सड़क मी से आगे बढ़ते समय किमी से नीचे चली जाए तो? तब ढलान बराबर है.

अर्थात् हमारे तर्क के अनुसार यह पता चलता है कि यहाँ ढलान लगभग शून्य के बराबर है, जो स्पष्ट रूप से सत्य नहीं है। कुछ ही किलोमीटर की दूरी पर बहुत कुछ बदल सकता है। ढलान के अधिक पर्याप्त और सटीक आकलन के लिए छोटे क्षेत्रों पर विचार करना आवश्यक है। उदाहरण के लिए, यदि आप एक मीटर आगे बढ़ने पर ऊंचाई में परिवर्तन को मापते हैं, तो परिणाम अधिक सटीक होगा। लेकिन यह सटीकता भी हमारे लिए पर्याप्त नहीं हो सकती है - आखिरकार, अगर सड़क के बीच में कोई खंभा है, तो हम आसानी से उसे पार कर सकते हैं। तो फिर हमें कौन सी दूरी चुननी चाहिए? सेंटीमीटर? मिलीमीटर? थोड़ा ही काफी है!

में वास्तविक जीवननिकटतम मिलीमीटर तक दूरियाँ मापना पर्याप्त से अधिक है। लेकिन गणितज्ञ हमेशा पूर्णता के लिए प्रयास करते हैं। इसलिए, इस अवधारणा का आविष्कार किया गया था बहुत छोता, अर्थात, निरपेक्ष मान किसी भी संख्या से कम है जिसे हम नाम दे सकते हैं। उदाहरण के लिए, आप कहते हैं: एक खरबवां! कितना कम? और आप इस संख्या को विभाजित करें - और यह और भी कम होगी। और इसी तरह। यदि हम यह लिखना चाहते हैं कि कोई मात्रा अतिसूक्ष्म है, तो हम इस प्रकार लिखते हैं: (हम पढ़ते हैं "x शून्य की ओर प्रवृत्त होता है")। इसे समझना बहुत जरूरी है कि यह संख्या शून्य के बराबर नहीं है!लेकिन इसके बहुत करीब. इसका मतलब है कि आप इससे भाग दे सकते हैं.

इनफिनिटिमल के विपरीत अवधारणा अपरिमित रूप से बड़ी है ()। जब आप असमानताओं पर काम कर रहे थे तो संभवत: आपको इसका सामना पहले ही हो चुका होगा: यह संख्या आपके द्वारा सोची जा सकने वाली किसी भी संख्या से कहीं अधिक है। यदि आपको सबसे बड़ी संख्या मिलती है, तो बस उसे दो से गुणा करें और आपको और भी बड़ी संख्या प्राप्त होगी। और अनंत जो घटित होता है उससे भी बड़ा है। वास्तव में, असीम रूप से बड़े और असीम रूप से छोटे एक दूसरे के विपरीत हैं, यानी, और इसके विपरीत: पर।

अब चलिए अपनी सड़क पर वापस आते हैं। आदर्श रूप से गणना की गई ढलान पथ के एक अत्यंत छोटे खंड के लिए गणना की गई ढलान है, जो है:

मैं ध्यान देता हूं कि अतिसूक्ष्म विस्थापन के साथ, ऊंचाई में परिवर्तन भी अतिसूक्ष्म होगा। लेकिन मैं आपको याद दिला दूं कि अतिसूक्ष्म का मतलब शून्य के बराबर नहीं है। यदि आप अनंत संख्याओं को एक-दूसरे से विभाजित करते हैं, तो आप एक पूरी तरह से सामान्य संख्या प्राप्त कर सकते हैं, उदाहरण के लिए,। अर्थात्, एक छोटा मान दूसरे से बिल्कुल गुना बड़ा हो सकता है।

यह सब किस लिए है? सड़क, ढलान... हम कार रैली में नहीं जा रहे हैं, बल्कि हम गणित पढ़ा रहे हैं। और गणित में सब कुछ बिल्कुल वैसा ही है, केवल अलग-अलग कहा जाता है।

व्युत्पन्न की अवधारणा

किसी फ़ंक्शन का व्युत्पन्न तर्क की अनंत वृद्धि के लिए फ़ंक्शन की वृद्धि और तर्क की वृद्धि का अनुपात है।

संवर्द्धितगणित में वे परिवर्तन कहते हैं। धुरी के साथ चलते समय तर्क () जिस सीमा तक बदलता है, उसे कहा जाता है तर्क वृद्धिऔर निर्दिष्ट किया जाता है कि अक्ष के अनुदिश दूरी तक आगे बढ़ने पर फ़ंक्शन (ऊंचाई) में कितना बदलाव आया है कार्य वृद्धिऔर नामित किया गया है.

तो, किसी फ़ंक्शन का व्युत्पन्न कब का अनुपात है। हम व्युत्पन्न को फ़ंक्शन के समान अक्षर से निरूपित करते हैं, केवल शीर्ष दाईं ओर एक अभाज्य के साथ: या बस। तो, आइए इन नोटेशनों का उपयोग करके व्युत्पन्न सूत्र लिखें:

जैसा कि सड़क के अनुरूप है, यहां जब फ़ंक्शन बढ़ता है, तो व्युत्पन्न सकारात्मक होता है, और जब यह घटता है, तो यह नकारात्मक होता है।

क्या व्युत्पन्न शून्य के बराबर हो सकता है? निश्चित रूप से। उदाहरण के लिए, यदि हम समतल क्षैतिज सड़क पर गाड़ी चला रहे हैं, तो ढलान शून्य है। और यह सच है, ऊँचाई बिल्कुल नहीं बदलती। तो यह व्युत्पन्न के साथ है: एक स्थिर फ़ंक्शन (स्थिर) का व्युत्पन्न शून्य के बराबर है:

चूँकि ऐसे फ़ंक्शन की वृद्धि किसी के लिए शून्य के बराबर है।

आइए पहाड़ी की चोटी का उदाहरण याद रखें। यह पता चला कि खंड के सिरों को साथ में व्यवस्थित करना संभव था अलग-अलग पक्षऊपर से, ताकि सिरों पर ऊंचाई समान हो, यानी खंड अक्ष के समानांतर हो:

लेकिन बड़े खंड गलत माप का संकेत हैं। हम अपने खण्ड को समानान्तर ऊपर उठायेंगे तो उसकी लम्बाई कम हो जायेगी।

अंततः, जब हम शीर्ष के असीम रूप से करीब होंगे, तो खंड की लंबाई अनंत हो जाएगी। लेकिन साथ ही, यह अक्ष के समानांतर रहा, यानी इसके सिरों पर ऊंचाई का अंतर शून्य के बराबर है (यह झुकता नहीं है, लेकिन बराबर होता है)। तो व्युत्पन्न

इसे इस तरह समझा जा सकता है: जब हम सबसे ऊपर खड़े होते हैं, तो बाईं या दाईं ओर एक छोटा सा बदलाव हमारी ऊंचाई को नगण्य रूप से बदल देता है।

एक विशुद्ध रूप से बीजगणितीय व्याख्या भी है: शीर्ष के बाईं ओर फ़ंक्शन बढ़ता है, और दाईं ओर यह घटता है। जैसा कि हमने पहले पाया, जब कोई फ़ंक्शन बढ़ता है, तो व्युत्पन्न सकारात्मक होता है, और जब यह घटता है, तो यह नकारात्मक होता है। लेकिन यह बिना किसी छलांग के आसानी से बदलता है (क्योंकि सड़क कहीं भी अपनी ढलान को तेजी से नहीं बदलती है)। इसलिए, नकारात्मक और के बीच सकारात्मक मूल्यजरूर होना चाहिए. यह वह जगह होगी जहां फ़ंक्शन न तो बढ़ता है और न ही घटता है - शीर्ष बिंदु पर।

गर्त के लिए भी यही सच है (वह क्षेत्र जहां बाईं ओर का कार्य घटता है और दाईं ओर बढ़ता है):

वेतन वृद्धि के बारे में थोड़ा और।

इसलिए हम तर्क को परिमाण में बदलते हैं। हम किस मूल्य से बदलते हैं? अब यह (तर्क) क्या हो गया है? हम कोई भी बिंदु चुन सकते हैं और अब हम उससे नृत्य करेंगे।

एक निर्देशांक के साथ एक बिंदु पर विचार करें. इसमें फ़ंक्शन का मान बराबर होता है. फिर हम वही वृद्धि करते हैं: हम समन्वय को बढ़ाते हैं। अब क्या है तर्क? बहुत आसान: . अब फ़ंक्शन का मूल्य क्या है? जहां तर्क जाता है, वहां फ़ंक्शन भी जाता है:। फ़ंक्शन वृद्धि के बारे में क्या? कुछ भी नया नहीं: यह अभी भी वह राशि है जिससे फ़ंक्शन बदल गया है:

वेतन वृद्धि खोजने का अभ्यास करें:

  1. उस बिंदु पर फ़ंक्शन की वृद्धि ज्ञात करें जब तर्क की वृद्धि बराबर हो।
  2. यही बात एक बिंदु पर फ़ंक्शन के लिए भी लागू होती है।

समाधान:

समान तर्क वृद्धि के साथ विभिन्न बिंदुओं पर, फ़ंक्शन वृद्धि भिन्न होगी। इसका मतलब यह है कि प्रत्येक बिंदु पर व्युत्पन्न अलग है (हमने शुरुआत में ही इस पर चर्चा की थी - विभिन्न बिंदुओं पर सड़क की ढलान अलग है)। इसलिए, जब हम व्युत्पन्न लिखते हैं, तो हमें यह अवश्य बताना चाहिए कि किस बिंदु पर:

शक्ति समारोह.

पावर फ़ंक्शन एक ऐसा फ़ंक्शन है जहां तर्क कुछ हद तक (तार्किक, सही?) होता है।

इसके अलावा - किसी भी हद तक: .

सबसे सरल मामला तब होता है जब घातांक है:

आइए एक बिंदु पर इसका व्युत्पन्न खोजें। आइए व्युत्पन्न की परिभाषा को याद करें:

तो तर्क से बदल जाता है. फ़ंक्शन की वृद्धि क्या है?

वेतन वृद्धि यह है. लेकिन किसी भी बिंदु पर एक फ़ंक्शन अपने तर्क के बराबर होता है। इसीलिए:

व्युत्पन्न इसके बराबर है:

का व्युत्पन्न इसके बराबर है:

ख) अब विचार करें द्विघात कार्य (): .

अब आइए इसे याद करें. इसका मतलब यह है कि वेतन वृद्धि के मूल्य को नजरअंदाज किया जा सकता है, क्योंकि यह असीम है, और इसलिए अन्य पद की पृष्ठभूमि के मुकाबले महत्वहीन है:

तो, हम एक और नियम लेकर आए:

ग) हम तार्किक श्रृंखला जारी रखते हैं:।

इस अभिव्यक्ति को विभिन्न तरीकों से सरल बनाया जा सकता है: योग के घन के संक्षिप्त गुणन के लिए सूत्र का उपयोग करके पहला ब्रैकेट खोलें, या क्यूब्स के अंतर सूत्र का उपयोग करके संपूर्ण अभिव्यक्ति का गुणनखंड करें। सुझाए गए किसी भी तरीके का उपयोग करके इसे स्वयं करने का प्रयास करें।

तो, मुझे निम्नलिखित मिला:

और फिर से उसे याद करते हैं. इसका मतलब यह है कि हम इसमें शामिल सभी शर्तों की उपेक्षा कर सकते हैं:

हम पाते हैं: ।

घ) बड़ी शक्तियों के लिए समान नियम प्राप्त किए जा सकते हैं:

ई) यह पता चला है कि इस नियम को एक मनमाना घातांक के साथ एक शक्ति फ़ंक्शन के लिए सामान्यीकृत किया जा सकता है, यहां तक ​​कि एक पूर्णांक भी नहीं:

(2)

नियम को इन शब्दों में तैयार किया जा सकता है: "डिग्री को गुणांक के रूप में आगे लाया जाता है, और फिर कम किया जाता है।"

हम इस नियम को बाद में (लगभग बिल्कुल अंत में) सिद्ध करेंगे। अब आइए कुछ उदाहरण देखें. कार्यों का व्युत्पन्न खोजें:

  1. (दो तरीकों से: सूत्र द्वारा और व्युत्पन्न की परिभाषा का उपयोग करके - फ़ंक्शन की वृद्धि की गणना करके);
  1. . मानो या न मानो, यह एक शक्ति कार्य है। यदि आपके पास "यह कैसा है?" जैसे प्रश्न हैं। डिग्री कहाँ है?”, विषय “” याद रखें!
    हाँ, हाँ, मूल भी एक डिग्री है, केवल भिन्नात्मक:।
    इसका मतलब यह है कि हमारा वर्गमूल एक घातांक वाली एक घात मात्र है:
    .
    हम हाल ही में सीखे गए सूत्र का उपयोग करके व्युत्पन्न की तलाश करते हैं:

    यदि इस बिंदु पर यह फिर से अस्पष्ट हो जाता है, तो विषय को दोहराएं ""!!! (एक नकारात्मक घातांक वाली डिग्री के बारे में)

  2. . अब प्रतिपादक:

    और अब परिभाषा के माध्यम से (क्या आप अभी तक भूल गए हैं?):
    ;
    .
    अब, हमेशा की तरह, हम इस शब्द की उपेक्षा करते हैं:
    .

  3. . पिछले मामलों का संयोजन: .

त्रिकोणमितीय कार्य।

यहां हम उच्च गणित से एक तथ्य का उपयोग करेंगे:

अभिव्यक्ति के साथ.

आप संस्थान के पहले वर्ष में प्रमाण सीखेंगे (और वहां पहुंचने के लिए, आपको एकीकृत राज्य परीक्षा अच्छी तरह से उत्तीर्ण करनी होगी)। अब मैं इसे ग्राफ़िक रूप से दिखाऊंगा:

हम देखते हैं कि जब फ़ंक्शन मौजूद नहीं होता है - तो ग्राफ़ पर बिंदु काट दिया जाता है। लेकिन मूल्य के जितना करीब होगा, फ़ंक्शन उतना ही करीब होगा। यही "लक्ष्य" है।

इसके अतिरिक्त, आप कैलकुलेटर का उपयोग करके इस नियम की जांच कर सकते हैं। हाँ, हाँ, शरमाओ मत, कैलकुलेटर ले लो, हम अभी तक एकीकृत राज्य परीक्षा में नहीं हैं।

तो, आइए कोशिश करें: ;

अपने कैलकुलेटर को रेडियंस मोड पर स्विच करना न भूलें!

वगैरह। हम देखते हैं कि अनुपात का मान जितना छोटा होगा, अनुपात का मान उतना ही करीब होगा।

ए) फ़ंक्शन पर विचार करें. हमेशा की तरह, आइए इसकी वृद्धि ज्ञात करें:

आइए साइन के अंतर को एक उत्पाद में बदल दें। ऐसा करने के लिए, हम सूत्र का उपयोग करते हैं (विषय "" याद रखें): .

अब व्युत्पन्न:

आइए एक प्रतिस्थापन करें: . फिर अतिसूक्ष्म के लिए यह अतिसूक्ष्म भी है: . के लिए अभिव्यक्ति रूप लेती है:

और अब हम उसे अभिव्यक्ति के साथ याद करते हैं। और साथ ही, क्या होगा यदि योग में एक अतिसूक्ष्म मात्रा की उपेक्षा की जा सकती है (अर्थात, पर)।

तो, हमें निम्नलिखित नियम मिलता है: ज्या का व्युत्पन्न कोज्या के बराबर है:

ये बुनियादी ("सारणीबद्ध") व्युत्पन्न हैं। यहां वे एक सूची में हैं:

बाद में हम उनमें कुछ और जोड़ेंगे, लेकिन ये सबसे महत्वपूर्ण हैं, क्योंकि इनका उपयोग सबसे अधिक बार किया जाता है।

अभ्यास:

  1. किसी बिंदु पर फ़ंक्शन का व्युत्पन्न खोजें;
  2. फ़ंक्शन का व्युत्पन्न खोजें।

समाधान:

  1. सबसे पहले, आइए व्युत्पन्न खोजें सामान्य रूप से देखें, और फिर उसका मान प्रतिस्थापित करें:
    ;
    .
  2. यहां हमारे पास कुछ ऐसा ही है शक्ति समारोह. आइए उसे लाने का प्रयास करें
    सामान्य दृश्य:
    .
    बढ़िया, अब आप सूत्र का उपयोग कर सकते हैं:
    .
    .
  3. . ईईईईईई…..यह क्या है????

ठीक है, आप सही हैं, हम अभी तक नहीं जानते कि ऐसे डेरिवेटिव कैसे खोजें। यहां हमारे पास कई प्रकार के कार्यों का संयोजन है। उनके साथ काम करने के लिए, आपको कुछ और नियम सीखने होंगे:

घातांक और प्राकृतिक लघुगणक.

गणित में एक फ़ंक्शन होता है जिसका किसी भी मान का व्युत्पन्न उसी समय फ़ंक्शन के मान के बराबर होता है। इसे "घातांक" कहा जाता है, और यह एक घातांकीय फलन है

इस फ़ंक्शन का आधार एक स्थिरांक है - यह अनंत है दशमलव, यानी एक अपरिमेय संख्या (जैसे)। इसे "यूलर संख्या" कहा जाता है, यही कारण है कि इसे एक अक्षर द्वारा दर्शाया जाता है।

तो, नियम:

याद रखना बहुत आसान है.

ठीक है, आइए ज्यादा दूर न जाएं, आइए तुरंत व्युत्क्रम फलन पर विचार करें। कौन सा फलन घातांकीय फलन का व्युत्क्रम है? लघुगणक:

हमारे मामले में, आधार संख्या है:

ऐसे लघुगणक (अर्थात, आधार वाला लघुगणक) को "प्राकृतिक" कहा जाता है, और हम इसके लिए एक विशेष संकेतन का उपयोग करते हैं: हम इसके बजाय लिखते हैं।

यह किसके बराबर है? बिल्कुल।

प्राकृतिक लघुगणक का व्युत्पन्न भी बहुत सरल है:

उदाहरण:

  1. फ़ंक्शन का व्युत्पन्न खोजें।
  2. फ़ंक्शन का व्युत्पन्न क्या है?

उत्तर: व्युत्पन्न परिप्रेक्ष्य से घातांकीय और प्राकृतिक लघुगणक विशिष्ट रूप से सरल कार्य हैं। किसी भी अन्य आधार के साथ घातांकीय और लघुगणकीय कार्यों का एक अलग व्युत्पन्न होगा, जिसका विश्लेषण हम विभेदन के नियमों से गुजरने के बाद बाद में करेंगे।

विभेदीकरण के नियम

किस चीज़ के नियम? फिर से एक नया शब्द, फिर?!...

भेदभावव्युत्पन्न खोजने की प्रक्रिया है.

बस इतना ही। इस प्रक्रिया को एक शब्द में आप और क्या कह सकते हैं? व्युत्पन्न नहीं... गणितज्ञ अंतर को किसी फ़ंक्शन की समान वृद्धि कहते हैं। यह शब्द लैटिन डिफ़रेंशिया - अंतर से आया है। यहाँ।

इन सभी नियमों को प्राप्त करते समय, हम दो फ़ंक्शन का उपयोग करेंगे, उदाहरण के लिए, और। हमें उनकी वेतन वृद्धि के लिए सूत्रों की भी आवश्यकता होगी:

कुल मिलाकर 5 नियम हैं.

स्थिरांक को व्युत्पन्न चिन्ह से हटा दिया जाता है।

यदि कुछ स्थिर संख्या(स्थिर), फिर।

जाहिर है, यह नियम अंतर के लिए भी काम करता है:।

आइए इसे साबित करें. इसे रहने दो, या सरल।

उदाहरण.

फ़ंक्शंस के व्युत्पन्न खोजें:

  1. एक बिंदु पर;
  2. एक बिंदु पर;
  3. एक बिंदु पर;
  4. बिंदु पर.

समाधान:

  1. (व्युत्पन्न सभी बिंदुओं पर समान है, क्योंकि यह एक रैखिक कार्य है, याद रखें?);

उत्पाद का व्युत्पन्न

यहां सब कुछ वैसा ही है: आइए प्रवेश करें नई सुविधाऔर इसकी वृद्धि ज्ञात कीजिए:

व्युत्पन्न:

उदाहरण:

  1. कार्यों के व्युत्पन्न खोजें और;
  2. किसी बिंदु पर फ़ंक्शन का व्युत्पन्न खोजें।

समाधान:

एक घातीय फलन का व्युत्पन्न

अब आपका ज्ञान यह सीखने के लिए पर्याप्त है कि केवल घातांक ही नहीं, बल्कि किसी भी घातीय फलन का व्युत्पन्न कैसे खोजा जाए (क्या आप अभी तक भूल गए हैं कि वह क्या है?)।

तो, कुछ संख्या कहां है.

हम पहले से ही फ़ंक्शन के व्युत्पन्न को जानते हैं, तो आइए अपने फ़ंक्शन को एक नए आधार पर कम करने का प्रयास करें:

इसके लिए हम प्रयोग करेंगे सरल नियम: . तब:

ख़ैर, यह काम कर गया। अब व्युत्पन्न खोजने का प्रयास करें, और यह न भूलें कि यह फ़ंक्शन जटिल है।

काम किया?

यहां, स्वयं जांचें:

सूत्र एक घातांक के व्युत्पन्न के समान निकला: जैसा था, वैसा ही रहा, केवल एक कारक दिखाई दिया, जो सिर्फ एक संख्या है, लेकिन चर नहीं।

उदाहरण:
फ़ंक्शंस के व्युत्पन्न खोजें:

उत्तर:

यह मात्र एक संख्या है जिसकी गणना बिना कैलकुलेटर के नहीं की जा सकती अर्थात इसे और अधिक लिखा नहीं जा सकता सरल रूप में. इसलिए, हम इसे उत्तर में इसी रूप में छोड़ते हैं।

लघुगणकीय फलन का व्युत्पन्न

यह यहाँ समान है: आप पहले से ही प्राकृतिक लघुगणक के व्युत्पन्न को जानते हैं:

इसलिए, एक अलग आधार के साथ एक मनमाना लघुगणक खोजने के लिए, उदाहरण के लिए:

हमें इस लघुगणक को आधार तक कम करने की आवश्यकता है। आप लघुगणक का आधार कैसे बदलते हैं? मुझे आशा है कि आपको यह सूत्र याद होगा:

केवल अब हम इसके बजाय लिखेंगे:

हर केवल एक अचर है (एक अचर संख्या, बिना किसी चर के)। व्युत्पन्न बहुत सरलता से प्राप्त किया जाता है:

यूनिफाइड स्टेट परीक्षा में घातीय और लघुगणकीय कार्यों के व्युत्पन्न लगभग कभी नहीं पाए जाते हैं, लेकिन उन्हें जानना अतिश्योक्तिपूर्ण नहीं होगा।

एक जटिल फ़ंक्शन का व्युत्पन्न.

"जटिल कार्य" क्या है? नहीं, यह लघुगणक नहीं है, और चापस्पर्शज्या भी नहीं है। इन फ़ंक्शंस को समझना मुश्किल हो सकता है (हालाँकि यदि आपको लघुगणक कठिन लगता है, तो "लघुगणक" विषय पढ़ें और आप ठीक हो जाएंगे), लेकिन गणितीय दृष्टिकोण से, "जटिल" शब्द का अर्थ "कठिन" नहीं है।

एक छोटे कन्वेयर बेल्ट की कल्पना करें: दो लोग बैठे हैं और कुछ वस्तुओं के साथ कुछ क्रियाएं कर रहे हैं। उदाहरण के लिए, पहला चॉकलेट बार को रैपर में लपेटता है, और दूसरा उसे रिबन से बांधता है। परिणाम एक मिश्रित वस्तु है: एक चॉकलेट बार लपेटा हुआ और रिबन से बंधा हुआ। चॉकलेट बार खाने के लिए, आपको उल्टे क्रम में उल्टे कदम उठाने होंगे।

आइए एक समान गणितीय पाइपलाइन बनाएं: पहले हम किसी संख्या की कोज्या ज्ञात करेंगे, और फिर परिणामी संख्या का वर्ग करेंगे। तो, हमें एक नंबर (चॉकलेट) दिया जाता है, मैं उसका कोसाइन (रैपर) ढूंढता हूं, और फिर जो मुझे मिला उसका आप वर्ग कर देते हैं (इसे रिबन से बांध देते हैं)। क्या हुआ? समारोह। यह एक जटिल फ़ंक्शन का एक उदाहरण है: जब, इसका मान ज्ञात करने के लिए, हम पहली क्रिया सीधे वेरिएबल के साथ करते हैं, और फिर दूसरी क्रिया पहली क्रिया के परिणाम के साथ करते हैं।

हम समान चरणों को उल्टे क्रम में आसानी से कर सकते हैं: पहले आप इसका वर्ग करें, और फिर मैं परिणामी संख्या की कोज्या ढूंढता हूं:। यह अनुमान लगाना आसान है कि परिणाम लगभग हमेशा अलग होगा। महत्वपूर्ण विशेषताजटिल कार्य: जब क्रियाओं का क्रम बदलता है, तो कार्य बदल जाता है।

दूसरे शब्दों में, एक जटिल फ़ंक्शन एक ऐसा फ़ंक्शन है जिसका तर्क एक अन्य फ़ंक्शन है: .

पहले उदाहरण के लिए, .

दूसरा उदाहरण: (वही बात)। .

जो क्रिया हम अंतिम बार करेंगे वही कहलाएगी "बाहरी" फ़ंक्शन, और कार्रवाई पहले की गई - तदनुसार "आंतरिक" फ़ंक्शन(ये अनौपचारिक नाम हैं, मैं इनका उपयोग केवल सामग्री को सरल भाषा में समझाने के लिए करता हूँ)।

स्वयं यह निर्धारित करने का प्रयास करें कि कौन सा कार्य बाहरी है और कौन सा आंतरिक:

उत्तर:आंतरिक और बाहरी कार्यों को अलग करना चर बदलने के समान है: उदाहरण के लिए, किसी फ़ंक्शन में

  1. हम पहले कौन सा कार्य करेंगे? सबसे पहले, आइए साइन की गणना करें, और उसके बाद ही इसे घन करें। इसका मतलब यह है कि यह एक आंतरिक कार्य है, लेकिन एक बाहरी कार्य है।
    और मूल कार्य उनकी रचना है: .
  2. आंतरिक: ; बाहरी: ।
    परीक्षा: .
  3. आंतरिक: ; बाहरी: ।
    परीक्षा: .
  4. आंतरिक: ; बाहरी: ।
    परीक्षा: .
  5. आंतरिक: ; बाहरी: ।
    परीक्षा: .

हम वेरिएबल बदलते हैं और एक फ़ंक्शन प्राप्त करते हैं।

खैर, अब हम अपना चॉकलेट बार निकालेंगे - व्युत्पन्न की तलाश करें। प्रक्रिया हमेशा उलटी होती है: पहले हम बाहरी फ़ंक्शन के व्युत्पन्न की तलाश करते हैं, फिर हम परिणाम को आंतरिक फ़ंक्शन के व्युत्पन्न से गुणा करते हैं। मूल उदाहरण के संबंध में, यह इस तरह दिखता है:

एक और उदाहरण:

तो, आइए अंततः आधिकारिक नियम बनाएं:

किसी जटिल फ़ंक्शन का व्युत्पन्न खोजने के लिए एल्गोरिदम:

यह सरल लगता है, है ना?

आइए उदाहरणों से जांचें:

समाधान:

1) आंतरिक: ;

बाहरी: ;

2) आंतरिक: ;

(अभी तक इसे काटने की कोशिश मत करो! कोसाइन के नीचे से कुछ भी नहीं निकलता है, याद है?)

3) आंतरिक: ;

बाहरी: ;

यह तुरंत स्पष्ट है कि यह एक तीन-स्तरीय जटिल कार्य है: आखिरकार, यह पहले से ही अपने आप में एक जटिल कार्य है, और हम इसमें से जड़ भी निकालते हैं, यानी हम तीसरी क्रिया करते हैं (हम चॉकलेट को एक में डालते हैं) रैपर और ब्रीफकेस में एक रिबन के साथ)। लेकिन डरने का कोई कारण नहीं है: हम अभी भी इस फ़ंक्शन को हमेशा की तरह उसी क्रम में "अनपैक" करेंगे: अंत से।

अर्थात्, पहले हम मूल में अंतर करते हैं, फिर कोज्या में, और उसके बाद ही कोष्ठक में व्यंजक में। और फिर हम इसे सब गुणा करते हैं।

ऐसे मामलों में, कार्यों को क्रमांकित करना सुविधाजनक होता है। अर्थात्, आइए कल्पना करें कि हम क्या जानते हैं। इस अभिव्यक्ति के मूल्य की गणना करने के लिए हम किस क्रम में क्रियाएं करेंगे? आइए एक उदाहरण देखें:

कार्रवाई जितनी देर से की जाएगी, संबंधित कार्य उतना ही अधिक "बाहरी" होगा। क्रियाओं का क्रम पहले जैसा ही है:

यहां घोंसला बनाना आम तौर पर 4-स्तरीय होता है। आइये कार्रवाई की दिशा तय करें.

1. उग्र अभिव्यक्ति. .

2. जड़. .

3. ज्या. .

4. चौकोर. .

5. यह सब एक साथ रखना:

व्युत्पन्न. संक्षेप में मुख्य बातों के बारे में

किसी फ़ंक्शन का व्युत्पन्न- तर्क की अतिसूक्ष्म वृद्धि के लिए फ़ंक्शन की वृद्धि और तर्क की वृद्धि का अनुपात:

मूल व्युत्पन्न:

विभेदीकरण के नियम:

स्थिरांक को व्युत्पन्न चिन्ह से हटा दिया जाता है:

योग का व्युत्पन्न:

उत्पाद का व्युत्पन्न:

भागफल का व्युत्पन्न:

एक जटिल फ़ंक्शन का व्युत्पन्न:

किसी जटिल फ़ंक्शन का व्युत्पन्न खोजने के लिए एल्गोरिदम:

  1. हम "आंतरिक" फ़ंक्शन को परिभाषित करते हैं और इसका व्युत्पन्न ढूंढते हैं।
  2. हम "बाहरी" फ़ंक्शन को परिभाषित करते हैं और इसका व्युत्पन्न ढूंढते हैं।
  3. हम पहले और दूसरे बिंदु के परिणामों को गुणा करते हैं।