History of the atomic bomb. Russian nuclear weapons: design, principle of operation, first tests

American Robert Oppenheimer and Soviet scientist Igor Kurchatov are officially recognized as the fathers of the atomic bomb. But in parallel, deadly weapons were also being developed in other countries (Italy, Denmark, Hungary), so the discovery rightfully belongs to everyone.

The first to tackle this issue were German physicists Fritz Strassmann and Otto Hahn, who in December 1938 were the first to artificially split the atomic nucleus of uranium. And six months later, the first reactor was already being built at the Kummersdorf test site near Berlin and uranium ore was urgently purchased from the Congo.

“Uranium Project” - the Germans start and lose

In September 1939, the “Uranium Project” was classified. 22 reputable research centers were invited to participate in the program, and the research was supervised by Minister of Armaments Albert Speer. The construction of an installation for separating isotopes and the production of uranium to extract the isotope from it that supports the chain reaction was entrusted to the IG Farbenindustry concern.

For two years, a group of the venerable scientist Heisenberg studied the possibility of creating a reactor with and heavy water. A potential explosive (uranium-235 isotope) could be isolated from uranium ore.

But an inhibitor is needed to slow down the reaction - graphite or heavy water. Choosing the latter option created an insurmountable problem.

The only plant for the production of heavy water, which was located in Norway, was disabled by local resistance fighters after the occupation, and small reserves of valuable raw materials were exported to France.

The rapid implementation of the nuclear program was also hindered by the explosion of an experimental nuclear reactor in Leipzig.

Hitler supported the uranium project as long as he hoped to obtain a super-powerful weapon that could influence the outcome of the war he started. After government funding was cut, the work programs continued for some time.

In 1944, Heisenberg managed to create cast uranium plates, and a special bunker was built for the reactor plant in Berlin.

It was planned to complete the experiment to achieve a chain reaction in January 1945, but a month later the equipment was urgently transported to the Swiss border, where it was deployed only a month later. The nuclear reactor contained 664 cubes of uranium weighing 1525 kg. It was surrounded by a graphite neutron reflector weighing 10 tons, and one and a half tons of heavy water were additionally loaded into the core.

On March 23, the reactor finally started working, but the report to Berlin was premature: the reactor did not reach a critical point, and the chain reaction did not occur. Additional calculations showed that the mass of uranium must be increased by at least 750 kg, proportionally adding the amount of heavy water.

But supplies of strategic raw materials were at their limit, as was the fate of the Third Reich. On April 23, the Americans entered the village of Haigerloch, where the tests were carried out. The military dismantled the reactor and transported it to the United States.

The first atomic bombs in the USA

A little later, the Germans began developing the atomic bomb in the USA and Great Britain. It all started with a letter from Albert Einstein and his co-authors, emigrant physicists, sent in September 1939 to US President Franklin Roosevelt.

The appeal emphasized that Nazi Germany was close to creating an atomic bomb.

Stalin first learned about work on nuclear weapons (both allied and adversary) from intelligence officers in 1943. They immediately decided to create a similar project in the USSR. Instructions were issued not only to scientists, but also to intelligence services, for which obtaining any information about nuclear secrets became a major task.

The invaluable information about the developments of American scientists that Soviet intelligence officers managed to obtain significantly advanced the domestic nuclear project. It helped our scientists avoid ineffective search paths and significantly speed up the time frame for achieving the final goal.

Serov Ivan Aleksandrovich - head of the bomb creation operation

Of course, the Soviet government could not ignore the successes of German nuclear physicists. After the war, a group of Soviet physicists, future academicians, were sent to Germany in the uniform of colonels of the Soviet army.

Ivan Serov, the first deputy people's commissar of internal affairs, was appointed head of the operation, this allowed scientists to open any doors.

In addition to their German colleagues, they found reserves of uranium metal. This, according to Kurchatov, shortened the development time of the Soviet bomb by at least a year. More than one ton of uranium and leading nuclear specialists were taken out of Germany by the American military.

Not only chemists and physicists were sent to the USSR, but also qualified labor– mechanics, electricians, glassblowers. Some of the employees were found in prison camps. In total, about 1,000 German specialists worked on the Soviet atomic project.

German scientists and laboratories on the territory of the USSR in the post-war years

A uranium centrifuge and other equipment, as well as documents and reagents from the von Ardenne laboratory and the Kaiser Institute of Physics, were transported from Berlin. As part of the program, laboratories “A”, “B”, “C”, “D” were created, headed by German scientists.

The head of Laboratory “A” was Baron Manfred von Ardenne, who developed a method for gas diffusion purification and separation of uranium isotopes in a centrifuge.

For the creation of such a centrifuge (only in industrial scale) in 1947 he received the Stalin Prize. At that time, the laboratory was located in Moscow, on the site of the famous Kurchatov Institute. Each German scientist’s team included 5-6 Soviet specialists.

Later, laboratory “A” was taken to Sukhumi, where a physical and technical institute was created on its basis. In 1953, Baron von Ardenne became a Stalin laureate for the second time.

Laboratory B, which conducted experiments in the field of radiation chemistry in the Urals, was headed by Nikolaus Riehl, a key figure in the project. There, in Snezhinsk, the talented Russian geneticist Timofeev-Resovsky, with whom he had been friends back in Germany, worked with him. The successful test of the atomic bomb brought Riehl the star of Hero of Socialist Labor and the Stalin Prize.

Research at Laboratory “B” in Obninsk was led by Professor Rudolf Pose, a pioneer in the field nuclear tests. His team managed to create fast neutron reactors, the first nuclear power plant in the USSR, and projects for reactors for submarines.

On the basis of the laboratory, the Physics and Energy Institute named after A.I. was later created. Leypunsky. Until 1957, the professor worked in Sukhumi, then in Dubna, at the Joint Institute of Nuclear Technologies.

Laboratory “G”, located in the Sukhumi sanatorium “Agudzery”, was headed by Gustav Hertz. The nephew of the famous 19th century scientist gained fame after a series of experiments that confirmed the ideas of quantum mechanics and the theory of Niels Bohr.

The results of his productive work in Sukhumi were used to create an industrial installation in Novouralsk, where in 1949 the first Soviet bomb RDS-1 was filled.

The uranium bomb that the Americans dropped on Hiroshima was a cannon type. When creating the RDS-1, domestic nuclear physicists were guided by the Fat Boy - the “Nagasaki bomb”, made of plutonium according to the implosive principle.

In 1951, Hertz was awarded the Stalin Prize for his fruitful work.

German engineers and scientists lived in comfortable houses; they brought their families, furniture, paintings from Germany, they were provided with decent salaries and special food. Did they have the status of prisoners? According to Academician A.P. Aleksandrov, an active participant in the project, they were all prisoners in such conditions.

Having received permission to return to their homeland, the German specialists signed a non-disclosure agreement about their participation in the Soviet nuclear project for 25 years. In the GDR they continued to work in their specialty. Baron von Ardenne was a two-time winner of the German National Prize.

The professor headed the Physics Institute in Dresden, which was created under the auspices of the Scientific Council for the Peaceful Applications of Atomic Energy. The Scientific Council was headed by Gustav Hertz, who received the National Prize of the GDR for his three-volume textbook on atomic physics. Here in Dresden, in Technical University, Professor Rudolf Pose also worked.

Participation of German specialists in the Soviet atomic project, as well as achievements Soviet intelligence, do not diminish the merits of Soviet scientists who, with their heroic work, created domestic atomic weapons. And yet, without the contribution of each participant in the project, the creation of the nuclear industry and nuclear bomb would stretch on indefinitely

Nuclear weapons- weapons of mass destruction with explosive action, based on the use of fission energy of heavy nuclei of some isotopes of uranium and plutonium, or in thermonuclear reactions of synthesis of light nuclei of hydrogen isotopes of deuterium and tritium into heavier ones, for example, nuclei of helium isotopes.

Warheads of missiles and torpedoes, aircraft and depth charges, artillery shells and mines can be equipped with nuclear charges. Based on their power, nuclear weapons are divided into ultra-small (less than 1 kt), small (1-10 kt), medium (10-100 kt), large (100-1000 kt) and super-large (more than 1000 kt). Depending on the tasks being solved, it is possible to use nuclear weapons in the form of underground, ground, air, underwater and surface explosions. The characteristics of the destructive effect of nuclear weapons on the population are determined not only by the power of the ammunition and the type of explosion, but also by the type of nuclear device. Depending on the charge, they are distinguished: atomic weapons, which are based on the fission reaction; thermonuclear weapon- when using a synthesis reaction; combined charges; neutron weapons.

The only fissile substance found in nature in appreciable quantities is the isotope of uranium with a nuclear mass of 235 atomic mass units (uranium-235). The content of this isotope in natural uranium is only 0.7%. The remainder is uranium-238. Since the chemical properties of the isotopes are exactly the same, separating uranium-235 from natural uranium requires a rather complex process of isotope separation. The result can be highly enriched uranium containing about 94% uranium-235, which is suitable for use in nuclear weapons.

Fissile substances can be produced artificially, and the least difficult from a practical point of view is the production of plutonium-239, which is formed as a result of the capture of a neutron by a uranium-238 nucleus (and the subsequent chain of radioactive decays of intermediate nuclei). A similar process can be carried out in a nuclear reactor operating on natural or slightly enriched uranium. In the future, plutonium can be separated from spent reactor fuel in the process of chemical reprocessing of the fuel, which is noticeably simpler than the isotope separation process carried out when producing weapons-grade uranium.

To create nuclear explosive devices, other fissile substances can be used, for example, uranium-233, obtained by irradiation of thorium-232 in a nuclear reactor. However, only uranium-235 and plutonium-239 have found practical use, primarily due to the relative ease of obtaining these materials.

The possibility of practical use of the energy released during nuclear fission is due to the fact that the fission reaction can have a chain, self-sustaining nature. Each fission event produces approximately two secondary neutrons, which, when captured by the nuclei of the fissile material, can cause them to fission, which in turn leads to the formation of even more neutrons. When special conditions are created, the number of neutrons, and therefore fission events, increases from generation to generation.

The first nuclear explosive device was detonated by the United States on July 16, 1945 in Alamogordo, New Mexico. The device was a plutonium bomb that used a directed explosion to create criticality. The power of the explosion was about 20 kt. In the USSR, the first nuclear explosive device similar to the American one exploded on August 29, 1949.

The history of the creation of nuclear weapons.

In early 1939, the French physicist Frédéric Joliot-Curie concluded that a chain reaction was possible that would lead to an explosion of monstrous destructive force and that uranium could become a source of energy like a conventional explosive. This conclusion became the impetus for developments in the creation of nuclear weapons. Europe was on the eve of the Second World War, and the potential possession of such powerful weapons gave any owner enormous advantages. Physicists from Germany, England, the USA, and Japan worked on the creation of atomic weapons.

By the summer of 1945, the Americans managed to assemble two atomic bombs, called “Baby” and “Fat Man”. The first bomb weighed 2,722 kg and was filled with enriched Uranium-235.

The "Fat Man" bomb with a charge of Plutonium-239 with a power of more than 20 kt had a mass of 3175 kg.

US President G. Truman became the first political leader to decide to use nuclear bombs. The first goals for nuclear strikes Japanese cities were chosen (Hiroshima, Nagasaki, Kokura, Niigata). From a military point of view, there was no need for such bombing of densely populated Japanese cities.

On the morning of August 6, 1945, there was a clear, cloudless sky over Hiroshima. As before, the approach of two American planes from the east (one of them was called Enola Gay) at an altitude of 10-13 km did not cause alarm (since they appeared in the sky of Hiroshima every day). One of the planes dived and dropped something, and then both planes turned and flew away. The dropped object slowly descended by parachute and suddenly exploded at an altitude of 600 m above the ground. It was the Baby bomb. On August 9, another bomb was dropped over the city of Nagasaki.

The total loss of life and the scale of destruction from these bombings are characterized by the following figures: 300 thousand people died instantly from thermal radiation (temperature about 5000 degrees C) and the shock wave, another 200 thousand were injured, burned, and radiation sickness. On an area of ​​12 sq. km, all buildings were completely destroyed. In Hiroshima alone, out of 90 thousand buildings, 62 thousand were destroyed.

After the American atomic bombings, on August 20, 1945, by order of Stalin, a special committee on atomic energy was formed under the leadership of L. Beria. The committee included prominent scientists A.F. Ioffe, P.L. Kapitsa and I.V. Kurchatov. A communist by conviction, scientist Klaus Fuchs, a prominent employee of the American nuclear center in Los Alamos, provided a great service to Soviet nuclear scientists. During 1945-1947, he transmitted information on practical and theoretical issues of creating atomic and hydrogen bombs four times, which accelerated their appearance in the USSR.

In 1946 - 1948, the nuclear industry was created in the USSR. A test site was built in the area of ​​Semipalatinsk. In August 1949, the first Soviet nuclear device was detonated there. Before this, US President Henry Truman was informed that the Soviet Union had mastered the secret of nuclear weapons, but the Soviet Union would not create a nuclear bomb until 1953. This message caused the US ruling circles to want to start a preventive war as quickly as possible. The Troyan plan was developed, which envisaged the start of hostilities at the beginning of 1950. At that time, the United States had 840 strategic bombers and over 300 atomic bombs.

Damaging factors nuclear explosion are: shock wave, light radiation, penetrating radiation, radioactive contamination and electromagnetic pulse.

Shock wave. The main damaging factor of a nuclear explosion. About 60% of the energy of a nuclear explosion is spent on it. It is an area of ​​​​sharp compression of air, spreading in all directions from the explosion site. The damaging effect of a shock wave is characterized by the amount of excess pressure. Excess pressure is the difference between the maximum pressure at the shock wave front and the normal atmospheric pressure ahead of it. It is measured in kilopascals - 1 kPa = 0.01 kgf/cm2.

With excess pressure of 20-40 kPa, unprotected people can get mild injuries. Exposure to a shock wave with an excess pressure of 40-60 kPa leads to moderate damage. Severe injuries occur when excess pressure exceeds 60 kPa and are characterized by severe contusions of the entire body, fractures of the limbs, and ruptures of internal parenchymal organs. Extremely severe injuries, often fatal, are observed at excess pressure above 100 kPa.

Light radiation is a stream of radiant energy, including visible ultraviolet and infrared rays.

Its source is a luminous area formed by the hot products of the explosion. Light radiation spreads almost instantly and lasts, depending on the power of the nuclear explosion, up to 20 s. Its strength is such that, despite its short duration, it can cause fires, deep skin burns and damage to the organs of vision in people.

Light radiation does not penetrate through opaque materials, so any barrier that can create a shadow protects against the direct action of light radiation and prevents burns.

Light radiation is significantly weakened in dusty (smoky) air, fog, and rain.

Penetrating radiation.

This is a stream of gamma radiation and neutrons. The impact lasts 10-15 s. The primary effect of radiation is realized in physical, physicochemical and chemical processes with the formation of chemically active free radicals (H, OH, HO2) with high oxidizing and reducing properties. Subsequently, various peroxide compounds are formed, inhibiting the activity of some enzymes and increasing others, which play an important role in the processes of autolysis (self-dissolution) of body tissues. The appearance in the blood of decay products of radiosensitive tissues and pathological metabolism when exposed to high doses of ionizing radiation is the basis for the formation of toxemia - poisoning of the body associated with the circulation of toxins in the blood. Of primary importance in the development of radiation injuries are disturbances in the physiological regeneration of cells and tissues, as well as changes in the functions of regulatory systems.

Radioactive contamination of the area

Its main sources are nuclear fission products and radioactive isotopes formed as a result of the acquisition of radioactive properties by the elements from which nuclear weapons are made and those that make up the soil. From them is formed radioactive cloud. It rises to a height of many kilometers and is transported with air masses over considerable distances. Radioactive particles falling from the cloud to the ground form a zone of radioactive contamination (trace), the length of which can reach several hundred kilometers. Radioactive substances pose the greatest danger in the first hours after deposition, since their activity is highest during this period.

Electromagnetic pulse .

This is a short-term electromagnetic field that occurs during the explosion of a nuclear weapon as a result of the interaction of gamma radiation and neutrons emitted during a nuclear explosion with atoms of the environment. The consequence of its impact is burnout or breakdown of individual elements of radio-electronic and electrical equipment. People can only be harmed if they come into contact with wire lines at the time of the explosion.

A type of nuclear weapon is neutron and thermonuclear weapons.

Neutron weapons are small-sized thermonuclear ammunition with a power of up to 10 kt, designed primarily to destroy enemy personnel through the action of neutron radiation. Neutron weapons are classified as tactical nuclear weapons.

The world of the atom is so fantastic that understanding it requires a radical break in the usual concepts of space and time. Atoms are so small that if a drop of water could be enlarged to the size of the Earth, each atom in that drop would be smaller than an orange. In fact, one drop of water consists of 6000 billion billion (6000000000000000000000) hydrogen and oxygen atoms. And yet, despite its microscopic dimensions, the atom has a structure to some extent similar to the structure of ours. solar system. In its incomprehensibly small center, the radius of which is less than one trillionth of a centimeter, there is a relatively huge “sun” - the nucleus of an atom.

Tiny “planets” - electrons - revolve around this atomic “sun”. The nucleus consists of the two main building blocks of the Universe - protons and neutrons (they have a unifying name - nucleons). An electron and a proton are charged particles, and the amount of charge in each of them is exactly the same, but the charges differ in sign: the proton is always positively charged, and the electron is negatively charged. The neutron does not carry electric charge and as a result has very high permeability.

In the atomic scale of measurements, the mass of a proton and a neutron is taken as unity. The atomic weight of any chemical element therefore depends on the number of protons and neutrons contained in its nucleus. For example, a hydrogen atom, whose nucleus consists of only one proton, has atomic mass equal to 1. An atom of helium, with a nucleus of two protons and two neutrons, has an atomic mass equal to 4.

The nuclei of atoms of the same element always contain the same number of protons, but the number of neutrons may vary. Atoms that have nuclei with the same number of protons, but differ in the number of neutrons and are varieties of the same element are called isotopes. To distinguish them from each other, a number is assigned to the element symbol, equal to the sum all particles in the nucleus of a given isotope.

The question may arise: why does the nucleus of an atom not fall apart? After all, the protons included in it are electrically charged particles with the same charge, which must repel each other with great strength. This is explained by the fact that inside the nucleus there are also so-called intranuclear forces that attract nuclear particles to each other. These forces compensate for the repulsive forces of protons and prevent the nucleus from spontaneously flying apart.

Intranuclear forces are very strong, but act only at very close distances. Therefore, the nuclei of heavy elements, consisting of hundreds of nucleons, turn out to be unstable. The particles of the nucleus are in continuous motion here (within the volume of the nucleus), and if you add some additional amount of energy to them, they can overcome the internal forces - the nucleus will split into parts. The amount of this excess energy is called excitation energy. Among the isotopes of heavy elements, there are those that seem to be on the very verge of self-disintegration. Just a small “push” is enough, for example, a simple neutron hitting the nucleus (and it doesn’t even have to accelerate to high speed) for the nuclear fission reaction to occur. Some of these “fissile” isotopes were later learned to be produced artificially. In nature, there is only one such isotope - uranium-235.

Uranus was discovered in 1783 by Klaproth, who isolated it from uranium tar and named it after the recently discovered planet Uranus. As it turned out later, it was, in fact, not uranium itself, but its oxide. Pure uranium, a silvery-white metal, was obtained
only in 1842 Peligo. The new element did not have any remarkable properties and did not attract attention until 1896, when Becquerel discovered the phenomenon of radioactivity in uranium salts. After this, uranium became an object scientific research and experiments, but practical application still didn't have it.

When in the first third of the 20th century the structure of the atomic nucleus became more or less clear to physicists, they first of all tried to fulfill the long-standing dream of alchemists - they tried to transform one chemical element to another. In 1934, French researchers, the spouses Frederic and Irene Joliot-Curie, reported to the French Academy of Sciences about the following experience: when bombarding aluminum plates with alpha particles (nuclei of a helium atom), aluminum atoms turned into phosphorus atoms, but not ordinary ones, but radioactive ones, which in turn became into a stable isotope of silicon. Thus, an aluminum atom, having added one proton and two neutrons, turned into a heavier silicon atom.

This experience suggested that if you “bombard” the nuclei of the heaviest element existing in nature - uranium - with neutrons, you can obtain an element that does not exist in natural conditions. In 1938 German chemists Otto Hahn and Fritz Strassmann repeated in general outline the experience of the Joliot-Curie spouses, taking uranium instead of aluminum. The results of the experiment were not at all what they expected - instead of a new superheavy element with a mass number greater than that of uranium, Hahn and Strassmann obtained light elements from the middle part periodic table: barium, krypton, bromine and some others. The experimenters themselves were unable to explain the observed phenomenon. Only the following year, physicist Lise Meitner, to whom Hahn reported his difficulties, found the correct explanation for the observed phenomenon, suggesting that when uranium is bombarded with neutrons, its nucleus splits (fissions). In this case, nuclei of lighter elements should have been formed (that’s where barium, krypton and other substances came from), as well as 2-3 free neutrons should have been released. Further research made it possible to clarify in detail the picture of what was happening.

Natural uranium consists of a mixture of three isotopes with masses 238, 234 and 235. The main amount of uranium is isotope-238, the nucleus of which includes 92 protons and 146 neutrons. Uranium-235 is only 1/140 of natural uranium (0.7% (it has 92 protons and 143 neutrons in its nucleus), and uranium-234 (92 protons, 142 neutrons) is only 1/17500 of total mass uranium (0.006%. The least stable of these isotopes is uranium-235.

From time to time, the nuclei of its atoms spontaneously divide into parts, as a result of which lighter elements of the periodic table are formed. The process is accompanied by the release of two or three free neutrons, which rush at enormous speed - about 10 thousand km/s (they are called fast neutrons). These neutrons can hit other uranium nuclei, causing nuclear reactions. Each isotope behaves differently in this case. Uranium-238 nuclei in most cases simply capture these neutrons without any further transformations. But in approximately one case out of five, when a fast neutron collides with the nucleus of the isotope-238, a curious nuclear reaction occurs: one of the neutrons of uranium-238 emits an electron, turning into a proton, that is, the uranium isotope turns into a more
heavy element - neptunium-239 (93 protons + 146 neutrons). But neptunium is unstable - after a few minutes, one of its neutrons emits an electron, turning into a proton, after which the neptunium isotope turns into the next element in the periodic table - plutonium-239 (94 protons + 145 neutrons). If a neutron hits the nucleus of unstable uranium-235, then fission immediately occurs - the atoms disintegrate with the emission of two or three neutrons. It is clear that in natural uranium, most of the atoms of which belong to the 238 isotope, this reaction has no visible consequences - all free neutrons will eventually be absorbed by this isotope.

Well, what if we imagine a fairly massive piece of uranium consisting entirely of isotope-235?

Here the process will go differently: neutrons released during the fission of several nuclei, in turn, hitting neighboring nuclei, cause their fission. As a result, a new portion of neutrons is released, which splits the next nuclei. At favorable conditions This reaction proceeds like an avalanche and is called a chain reaction. To start it, a few bombarding particles may be enough.

Indeed, let uranium-235 be bombarded by only 100 neutrons. They will separate 100 uranium nuclei. In this case, 250 new neutrons of the second generation will be released (on average 2.5 per fission). Second generation neutrons will produce 250 fissions, which will release 625 neutrons. In the next generation it will become 1562, then 3906, then 9670, etc. The number of divisions will increase indefinitely if the process is not stopped.

However, in reality only a small fraction of neutrons reach the nuclei of atoms. The rest, quickly rushing between them, are carried away into the surrounding space. A self-sustaining chain reaction can only occur in a sufficiently large array of uranium-235, which is said to have a critical mass. (This mass under normal conditions is 50 kg.) It is important to note that the fission of each nucleus is accompanied by the release of a huge amount of energy, which turns out to be approximately 300 million times more than the energy spent on fission! (It is estimated that the complete fission of 1 kg of uranium-235 releases the same amount of heat as the combustion of 3 thousand tons of coal.)

This colossal burst of energy, released in a matter of moments, manifests itself as an explosion of monstrous force and underlies the action of nuclear weapons. But in order for this weapon to become a reality, it is necessary that the charge consist not of natural uranium, but of a rare isotope - 235 (such uranium is called enriched). It was later discovered that pure plutonium is also a fissile material and could be used in an atomic charge instead of uranium-235.

All these important discoveries were made on the eve of World War II. Soon, secret work on creating an atomic bomb began in Germany and other countries. In the USA, this problem was addressed in 1941. The entire complex of works was given the name “Manhattan Project”.

Administrative management of the project was carried out by General Groves, and scientific management was carried out by University of California professor Robert Oppenheimer. Both were well aware of the enormous complexity of the task facing them. Therefore, Oppenheimer's first concern was recruiting a highly intelligent scientific team. In the USA at that time there were many physicists who emigrated from Nazi Germany. It was not easy to attract them to create weapons directed against their former homeland. Oppenheimer spoke personally to everyone, using all the power of his charm. Soon he managed to gather a small group of theorists, whom he jokingly called “luminaries.” And in fact, it included the greatest specialists of that time in the field of physics and chemistry. (Among them are 13 laureates Nobel Prize, including Bohr, Fermi, Frank, Chadwick, Lawrence.) Besides them, there were many other specialists of various profiles.

The US government did not skimp on expenses, and the work took on a grand scale from the very beginning. In 1942, the world's largest research laboratory was founded at Los Alamos. The population of this scientific city soon reached 9 thousand people. According to the composition of scientists, scope scientific experiments, the number of specialists and workers involved in the work, the Los Alamos Laboratory had no equal in world history. The Manhattan Project had its own police, counterintelligence, communications system, warehouses, villages, factories, laboratories, and its own colossal budget.

The main goal of the project was to obtain enough fissile material from which several atomic bombs could be created. In addition to uranium-235, the charge for the bomb, as already mentioned, could be the artificial element plutonium-239, that is, the bomb could be either uranium or plutonium.

Groves and Oppenheimer agreed that work should be carried out simultaneously in two directions, since it was impossible to decide in advance which of them would be more promising. Both methods were fundamentally different from each other: the accumulation of uranium-235 had to be carried out by separating it from the bulk of natural uranium, and plutonium could only be obtained as a result of controlled nuclear reaction during neutron irradiation of uranium-238. Both paths seemed unusually difficult and did not promise easy solutions.

In fact, how can one separate two isotopes that differ only slightly in weight and chemically behave in exactly the same way? Neither science nor technology has ever faced such a problem. The production of plutonium also seemed very problematic at first. Before this, the entire experience of nuclear transformations was reduced to a few laboratory experiments. Now it was necessary to master the production of kilograms of plutonium on an industrial scale, to develop and create a special installation for this - nuclear reactor, and learn to control the course of a nuclear reaction.

Both here and here a whole complex of complex problems had to be solved. Therefore, the Manhattan Project consisted of several subprojects, headed by prominent scientists. Oppenheimer himself was the head of the Los Alamos Scientific Laboratory. Lawrence was in charge of the Radiation Laboratory at the University of California. Fermi conducted research at the University of Chicago to create a nuclear reactor.

At first the most important problem was the production of uranium. Before the war, this metal had virtually no use. Now that it was needed immediately in huge quantities, it turned out that there was no industrial method of producing it.

The Westinghouse company took up its development and quickly achieved success. After purifying the uranium resin (uranium occurs in nature in this form) and obtaining uranium oxide, it was converted into tetrafluoride (UF4), from which uranium metal was separated by electrolysis. If at the end of 1941 American scientists had only a few grams of uranium metal at their disposal, then already in November 1942 its industrial production at Westinghouse factories reached 6,000 pounds per month.

At the same time, work was underway to create a nuclear reactor. The plutonium production process actually boiled down to irradiating uranium rods with neutrons, as a result of which part of the uranium-238 would turn into plutonium. The sources of neutrons in this case could be fissile atoms of uranium-235, scattered in sufficient quantities among atoms of uranium-238. But in order to maintain the constant production of neutrons, a chain reaction of fission of uranium-235 atoms had to begin. Meanwhile, as already mentioned, for every atom of uranium-235 there were 140 atoms of uranium-238. It is clear that neutrons scattering in all directions had a much higher probability of meeting them on their way. That is, a huge number of released neutrons turned out to be absorbed by the main isotope without any benefit. Obviously, under such conditions a chain reaction could not take place. How can this be?

At first it seemed that without the separation of two isotopes, the operation of the reactor was generally impossible, but one important circumstance was soon established: it turned out that uranium-235 and uranium-238 were susceptible to neutrons of different energies. The nucleus of a uranium-235 atom can be split by a neutron of relatively low energy, having a speed of about 22 m/s. Such slow neutrons are not captured by uranium-238 nuclei - for this they must have a speed of the order of hundreds of thousands of meters per second. In other words, uranium-238 is powerless to prevent the beginning and progress of a chain reaction in uranium-235 caused by neutrons slowed down to extremely low speeds - no more than 22 m/s. This phenomenon was discovered by the Italian physicist Fermi, who lived in the USA since 1938 and led the work here to create the first reactor. Fermi decided to use graphite as a neutron moderator. According to his calculations, the neutrons emitted from uranium-235, having passed through a 40 cm layer of graphite, should have reduced their speed to 22 m/s and begun a self-sustaining chain reaction in uranium-235.

Another moderator could be so-called “heavy” water. Since the hydrogen atoms included in it are very similar in size and mass to neutrons, they could best slow them down. (With fast neutrons, approximately the same thing happens as with balls: if a small ball hits a large one, it rolls back, almost without losing speed, but when it meets a small ball, it transfers a significant part of its energy to it - in the same way a neutron during an elastic collision bounces off a heavy nucleus, slowing down only slightly, and when colliding with the nuclei of hydrogen atoms very quickly loses all its energy.) However, plain water not suitable for moderation since its hydrogen tends to absorb neutrons. That is why deuterium, which is part of “heavy” water, should be used for this purpose.

In early 1942, under Fermi's leadership, construction began on the first nuclear reactor in history in the tennis court area under the west stands of Chicago Stadium. The scientists carried out all the work themselves. The reaction can be controlled in the only way - by adjusting the number of neutrons participating in the chain reaction. Fermi intended to achieve this using rods made of substances such as boron and cadmium, which strongly absorb neutrons. The moderator was graphite bricks, from which the physicists built columns 3 m high and 1.2 m wide. Rectangular blocks with uranium oxide were installed between them. The entire structure required about 46 tons of uranium oxide and 385 tons of graphite. To slow down the reaction, rods of cadmium and boron were introduced into the reactor.

If this were not enough, then for insurance, two scientists stood on a platform located above the reactor with buckets filled with a solution of cadmium salts - they were supposed to pour them onto the reactor if the reaction got out of control. Fortunately, this was not required. On December 2, 1942, Fermi ordered all control rods to be extended and the experiment began. After four minutes, the neutron counters began to click louder and louder. With every minute the intensity of the neutron flux became greater. This indicated that a chain reaction was taking place in the reactor. It lasted for 28 minutes. Then Fermi gave the signal, and the lowered rods stopped the process. Thus, for the first time, man freed the energy of the atomic nucleus and proved that he could control it at will. Now there was no longer any doubt that nuclear weapons were a reality.

In 1943, the Fermi reactor was dismantled and transported to the Aragonese National Laboratory (50 km from Chicago). Was here soon
Another nuclear reactor was built in which heavy water was used as a moderator. It consisted of a cylindrical aluminum tank containing 6.5 tons of heavy water, into which were vertically immersed 120 rods of uranium metal, encased in an aluminum shell. The seven control rods were made of cadmium. Around the tank there was a graphite reflector, then a screen made of lead and cadmium alloys. The entire structure was enclosed in a concrete shell with a wall thickness of about 2.5 m.

Experiments at these pilot reactors confirmed the possibility of industrial production of plutonium.

The main center of the Manhattan Project soon became the town of Oak Ridge in the Tennessee River Valley, whose population grew to 79 thousand people in a few months. Here, the first enriched uranium production plant in history was built in a short time. An industrial reactor producing plutonium was launched here in 1943. In February 1944, about 300 kg of uranium was extracted from it daily, from the surface of which plutonium was obtained by chemical separation. (To do this, the plutonium was first dissolved and then precipitated.) The purified uranium was then returned to the reactor. That same year, construction began on the huge Hanford plant in the barren, bleak desert on the south bank of the Columbia River. There were three powerful nuclear reactor, which provided several hundred grams of plutonium daily.

Parallel in full swing Research was underway to develop an industrial process for uranium enrichment.

Having considered different options, Groves and Oppenheimer decided to focus their efforts on two methods: gaseous diffusion and electromagnetic.

The gas diffusion method was based on a principle known as Graham's law (it was first formulated in 1829 by the Scottish chemist Thomas Graham and developed in 1896 by the English physicist Reilly). According to this law, if two gases, one of which is lighter than the other, are passed through a filter with negligibly small holes, then slightly more of the light gas will pass through it than of the heavy one. In November 1942, Urey and Dunning from Columbia University created a gaseous diffusion method for separating uranium isotopes based on the Reilly method.

Since natural uranium is a solid, it was first converted into uranium fluoride (UF6). This gas was then passed through microscopic - on the order of thousandths of a millimeter - holes in the filter partition.

Since the difference in the molar weights of the gases was very small, behind the partition the content of uranium-235 increased by only 1.0002 times.

In order to increase the amount of uranium-235 even more, the resulting mixture is again passed through a partition, and the amount of uranium is again increased by 1.0002 times. Thus, to increase the uranium-235 content to 99%, it was necessary to pass the gas through 4000 filters. This took place at a huge gaseous diffusion plant in Oak Ridge.

In 1940, under the leadership of Ernest Lawrence, research began on the separation of uranium isotopes by the electromagnetic method at the University of California. It was necessary to find such physical processes, which would make it possible to separate isotopes using the difference in their masses. Lawrence attempted to separate isotopes using the principle of a mass spectrograph, an instrument used to determine the masses of atoms.

The principle of its operation was as follows: pre-ionized atoms were accelerated electric field, and then passed through a magnetic field in which they described circles located in a plane perpendicular to the direction of the field. Since the radii of these trajectories were proportional to their mass, light ions ended up on circles of smaller radius than heavy ones. If traps were placed along the path of the atoms, then different isotopes could be collected separately in this way.

That was the method. In laboratory conditions it gave good results. But building a facility where isotope separation could be carried out on an industrial scale proved extremely difficult. However, Lawrence eventually managed to overcome all difficulties. The result of his efforts was the appearance of calutron, which was installed in a giant plant in Oak Ridge.

This electromagnetic plant was built in 1943 and turned out to be perhaps the most expensive brainchild of the Manhattan Project. Lawrence's method required a large number of complex, not yet developed devices associated with high voltage, high vacuum and strong magnetic fields. The scale of the costs turned out to be enormous. Calutron had a giant electromagnet, the length of which reached 75 m and weighed about 4000 tons.

Several thousand tons of silver wire were used for the windings for this electromagnet.

The entire work (not counting the cost of $300 million in silver, which the State Treasury provided only temporarily) cost $400 million. The Ministry of Defense paid 10 million for the electricity consumed by calutron alone. Much of the equipment at the Oak Ridge plant was superior in scale and precision to anything that had ever been developed in this field of technology.

But all these costs were not in vain. Having spent a total of about 2 billion dollars, US scientists by 1944 created a unique technology for uranium enrichment and plutonium production. Meanwhile, at the Los Alamos laboratory they were working on the design of the bomb itself. The principle of its operation was, in general terms, clear for a long time: the fissile substance (plutonium or uranium-235) had to be transferred to a critical state at the moment of the explosion (for a chain reaction to occur, the mass of the charge must be even noticeably greater than the critical one) and irradiated with a beam of neutrons, which entailed is the beginning of a chain reaction.

According to calculations, the critical mass of the charge exceeded 50 kilograms, but they were able to significantly reduce it. In general, the value of the critical mass is strongly influenced by several factors. The larger the surface area of ​​the charge, the more neutrons are uselessly emitted into the surrounding space. A sphere has the smallest surface area. Consequently, spherical charges with other equal conditions have the smallest critical mass. In addition, the value of the critical mass depends on the purity and type of fissile materials. It is inversely proportional to the square of the density of this material, which allows, for example, by doubling the density, reducing the critical mass by four times. The required degree of subcriticality can be obtained, for example, by compacting the fissile material due to the explosion of a charge of a conventional explosive made in the form of a spherical shell surrounding the nuclear charge. The critical mass can also be reduced by surrounding the charge with a screen that reflects neutrons well. Lead, beryllium, tungsten, natural uranium, iron and many others can be used as such a screen.

One possible design of an atomic bomb consists of two pieces of uranium, which, when combined, form a mass greater than critical. In order to cause a bomb explosion, you need to bring them closer together as quickly as possible. The second method is based on the use of an inward converging explosion. In this case, a stream of gases from a conventional explosive was directed at the fissile material located inside and compressed it until it reached a critical mass. Combining a charge and intensely irradiating it with neutrons, as already mentioned, causes a chain reaction, as a result of which in the first second the temperature increases to 1 million degrees. During this time, only about 5% of the critical mass managed to separate. The rest of the charge in early bomb designs evaporated without
any benefit.

The first atomic bomb in history (it was given the name Trinity) was assembled in the summer of 1945. And on June 16, 1945, the first atomic explosion on Earth was carried out at the nuclear test site in the Alamogordo desert (New Mexico). The bomb was placed in the center of the test site on top of a 30-meter steel tower. Recording equipment was placed around it at a great distance. There was an observation post 9 km away, and a command post 16 km away. The atomic explosion made a stunning impression on all witnesses to this event. According to eyewitnesses' descriptions, it felt as if many suns had united into one and illuminated the test site at once. Then a huge fireball appeared over the plain and a round cloud of dust and light began to rise towards it slowly and ominously.

Taking off from the ground, this fireball soared to a height of more than three kilometers in a few seconds. With every moment it grew in size, soon its diameter reached 1.5 km, and it slowly rose into the stratosphere. Then the fireball gave way to a column of billowing smoke, which stretched to a height of 12 km, taking the shape of a giant mushroom. All this was accompanied by a terrible roar, from which the earth shook. The power of the exploding bomb exceeded all expectations.

As soon as the radiation situation allowed, several Sherman tanks, lined with lead plates on the inside, rushed to the area of ​​the explosion. On one of them was Fermi, who was eager to see the results of his work. What appeared before his eyes was a dead, scorched earth, on which all living things had been destroyed within a radius of 1.5 km. The sand had baked into a glassy greenish crust that covered the ground. In a huge crater lay the mangled remains of a steel support tower. The force of the explosion was estimated at 20,000 tons of TNT.

The next step was to be combat use bombs against Japan, which, after the surrender of Nazi Germany, alone continued the war with the United States and its allies. There were no launch vehicles at that time, so the bombing had to be carried out from an airplane. The components of the two bombs were transported with great care by the cruiser Indianapolis to Tinian Island, where the 509th Combined Air Force Group was based. These bombs differed somewhat from each other in the type of charge and design.

The first bomb - "Baby" - was a large air bomb with an atomic charge of highly enriched uranium-235. Its length was about 3 m, diameter - 62 cm, weight - 4.1 tons.

The second bomb - "Fat Man" - with a charge of plutonium-239 was egg-shaped with a large stabilizer. Its length
was 3.2 m, diameter 1.5 m, weight - 4.5 tons.

On August 6, Colonel Tibbets' B-29 Enola Gay bomber dropped "Little Boy" on the major Japanese city of Hiroshima. The bomb was lowered by parachute and exploded, as planned, at an altitude of 600 m from the ground.

The consequences of the explosion were terrible. Even for the pilots themselves, the sight of a peaceful city destroyed by them in an instant made a depressing impression. Later, one of them admitted that at that second they saw the worst thing a person can see.

For those who were on earth, what was happening resembled true hell. First of all, a heat wave passed over Hiroshima. Its effect lasted only a few moments, but was so powerful that it melted even tiles and quartz crystals in granite slabs, turned telephone poles 4 km away into coal, and finally incinerated human bodies that all that remained of them were shadows on the asphalt of pavements or on the walls of houses. Then a monstrous gust of wind burst out from under the fireball and rushed over the city at a speed of 800 km/h, destroying everything in its path. Houses that could not withstand his furious onslaught collapsed as if they had been knocked down. There is not a single intact building left in the giant circle with a diameter of 4 km. A few minutes after the explosion, black radioactive rain fell over the city - this moisture turned into steam condensed in the high layers of the atmosphere and fell to the ground in the form of large drops mixed with radioactive dust.

After the rain, a new gust of wind hit the city, this time blowing in the direction of the epicenter. It was weaker than the first, but still strong enough to uproot trees. The wind fanned a giant fire, in which everything that could burn burned. Of the 76 thousand buildings, 55 thousand were completely destroyed and burned. Witnesses of this terrible disaster they remembered torch people, from which burnt clothes fell to the ground along with rags of skin, and about crowds of maddened people, covered with terrible burns, rushing screaming through the streets. There was a suffocating stench of burnt human flesh in the air. There were people lying everywhere, dead and dying. There were many who were blind and deaf and, poking in all directions, could not make out anything in the chaos that reigned around them.

The unfortunate people, who were located at a distance of up to 800 m from the epicenter, literally burned out in a split second - their insides evaporated and their bodies turned into lumps of smoking coals. Those located at a distance of 1 km from the epicenter were affected by radiation sickness in an extremely severe form. Within a few hours, they began to vomit violently, their temperature jumped to 39-40 degrees, and they began to experience shortness of breath and bleeding. Then non-healing ulcers appeared on the skin, the composition of the blood changed dramatically, and hair fell out. After terrible suffering, usually on the second or third day, death occurred.

In total, about 240 thousand people died from the explosion and radiation sickness. About 160 thousand received radiation sickness in a milder form - their painful death was delayed by several months or years. When news of the disaster spread throughout the country, all of Japan was paralyzed with fear. It increased further after Major Sweeney's Box Car dropped a second bomb on Nagasaki on August 9. Several hundred thousand inhabitants were also killed and injured here. Unable to resist the new weapons, the Japanese government capitulated - the atomic bomb ended World War II.

The war is over. It lasted only six years, but managed to change the world and people almost beyond recognition.

Human civilization before 1939 and human civilization after 1945 are strikingly different from each other. There are many reasons for this, but one of the most important is the emergence of nuclear weapons. It can be said without exaggeration that the shadow of Hiroshima lies over the entire second half of the 20th century. It became a deep moral burn for many millions of people, both contemporaries of this catastrophe and those born decades after it. Modern man can no longer think about the world the way they thought about it before August 6, 1945 - he understands too clearly that this world can turn into nothing in a few moments.

Modern man cannot look at war the way his grandfathers and great-grandfathers did - he knows for certain that this war will be the last, and there will be neither winners nor losers in it. Nuclear weapons have left their mark on all spheres of public life, and modern civilization cannot live by the same laws as sixty or eighty years ago. No one understood this better than the creators of the atomic bomb themselves.

"People of our planet , wrote Robert Oppenheimer, must unite. The horror and destruction sown by the last war dictate this thought to us. The explosions of atomic bombs proved it with all cruelty. Other people at other times have already said similar words - only about other weapons and about other wars. They weren't successful. But anyone who today would say that these words are useless is misled by the vicissitudes of history. We cannot be convinced of this. The results of our work leave humanity no choice but to create a united world. A world based on legality and humanity."

The one who invented the atomic bomb could not even imagine what tragic consequences this miracle invention of the 20th century could lead to. It was a very long journey before the residents of the Japanese cities of Hiroshima and Nagasaki experienced this superweapon.

A start has been made

In April 1903, Paul Langevin's friends gathered in the Parisian garden of France. The reason was the defense of a dissertation by a young and talented scientist Maria Curie. Among the distinguished guests was the famous English physicist Sir Ernest Rutherford. In the midst of the fun, the lights were turned off. announced to everyone that there would be a surprise. With a solemn look, Pierre Curie brought in a small tube with radium salts, which shone with a green light, causing extraordinary delight among those present. Subsequently, the guests heatedly discussed the future of this phenomenon. Everyone agreed that radium would solve the acute problem of energy shortages. This inspired everyone for new research and further prospects. If they had been told then that laboratory work with radioactive elements would lay the foundation for the terrible weapons of the 20th century, it is not known what their reaction would have been. It was then that the story of the atomic bomb began, killing hundreds of thousands of Japanese civilians.

Playing ahead

On December 17, 1938, the German scientist Otto Gann obtained irrefutable evidence of the decay of uranium into smaller elementary particles. Essentially, he managed to split the atom. In the scientific world this was regarded as new milestone in the history of mankind. Otto Gann did not share the political views of the Third Reich. Therefore, in the same year, 1938, the scientist was forced to move to Stockholm, where, together with Friedrich Strassmann, he continued his scientific research. Fearing that Nazi Germany would be the first to receive terrible weapon, he writes a letter warning about this. The news of a possible advance greatly alarmed the US government. The Americans began to act quickly and decisively.

Who created the atomic bomb? American project

Even before the group, many of whom were refugees from the Nazi regime in Europe, was tasked with the development of nuclear weapons. Initial research, it is worth noting, was carried out in Nazi Germany. In 1940, the government of the United States of America began funding its own program to develop atomic weapons. An incredible sum of two and a half billion dollars was allocated to implement the project. Outstanding physicists of the 20th century were invited to implement this secret project, among whom were more than ten Nobel laureates. In total, about 130 thousand employees were involved, among whom were not only military personnel, but also civilians. The development team was headed by Colonel Leslie Richard Groves, and Robert Oppenheimer became the scientific director. He is the man who invented the atomic bomb. A special secret engineering building was built in the Manhattan area, which we know under the code name “Manhattan Project”. Over the next few years, scientists from the secret project worked on the problem of nuclear fission of uranium and plutonium.

The non-peaceful atom of Igor Kurchatov

Today, every schoolchild will be able to answer the question of who invented the atomic bomb in the Soviet Union. And then, in the early 30s of the last century, no one knew this.

In 1932, Academician Igor Vasilyevich Kurchatov was one of the first in the world to begin studying the atomic nucleus. Gathering like-minded people around him, Igor Vasilyevich created the first cyclotron in Europe in 1937. In the same year, he and his like-minded people created the first artificial nuclei.

In 1939, I.V. Kurchatov began studying a new direction - nuclear physics. After several laboratory successes in studying this phenomenon, the scientist receives at his disposal a secret research center, which was called “Laboratory No. 2”. Nowadays this classified object is called "Arzamas-16".

The target direction of this center was the serious research and creation of nuclear weapons. Now it becomes obvious who created the atomic bomb in the Soviet Union. His team then consisted of only ten people.

There will be an atomic bomb

By the end of 1945, Igor Vasilyevich Kurchatov managed to assemble a serious team of scientists numbering more than a hundred people. The best minds of various scientific specializations came to the laboratory from all over the country to create atomic weapons. After the Americans dropped an atomic bomb on Hiroshima, Soviet scientists realized that this could be done with Soviet Union. "Laboratory No. 2" receives from the country's leadership a sharp increase in funding and a large influx of qualified personnel. Lavrenty Pavlovich Beria is appointed responsible for such an important project. The enormous efforts of Soviet scientists have borne fruit.

Semipalatinsk test site

The atomic bomb in the USSR was first tested at the test site in Semipalatinsk (Kazakhstan). On August 29, 1949, a nuclear device with a yield of 22 kilotons shook the Kazakh soil. Nobel laureate physicist Otto Hanz said: “This is good news. If Russia has atomic weapons, then there will be no war.” It was this atomic bomb in the USSR, encrypted as product No. 501, or RDS-1, that eliminated the US monopoly on nuclear weapons.

Atomic bomb. Year 1945

Early on the morning of July 16, the Manhattan Project held its first successful test nuclear device - a plutonium bomb - at the Alamogordo test site, New Mexico, USA.

The money invested in the project was well spent. The first in the history of mankind was carried out at 5:30 am.

“We have done the devil’s work,” the one who invented the atomic bomb in the USA, later called “the father of the atomic bomb,” will say later.

Japan will not capitulate

By the time of the final and successful testing of the atomic bomb Soviet troops and the Allies finally defeated fascist Germany. However, there was one state that promised to fight to the end for dominance in the Pacific Ocean. From mid-April to mid-July 1945, the Japanese army repeatedly carried out air strikes against allied forces, thereby causing big losses US Army. At the end of July 1945, the militaristic Japanese government rejected the Allied demand for surrender under the Potsdam Declaration. It stated, in particular, that in case of disobedience, the Japanese army would face rapid and complete destruction.

The President agrees

The American government kept its word and began a targeted bombing of Japanese military positions. Air strikes did not bring the desired result, and US President Harry Truman decides to invade Japanese territory by American troops. However, the military command dissuades its president from such a decision, citing the fact that an American invasion would entail large number victims.

At the suggestion of Henry Lewis Stimson and Dwight David Eisenhower, it was decided to use a more effective way to end the war. A big supporter of the atomic bomb, US Presidential Secretary James Francis Byrnes, believed that the bombing of Japanese territories would finally end the war and put the United States in a dominant position, which would have a positive effect on the further course of events post-war world. Thus, US President Harry Truman was convinced that this was the only correct option.

Atomic bomb. Hiroshima

The small Japanese city of Hiroshima with a population of just over 350 thousand people, located five hundred miles from the Japanese capital Tokyo, was chosen as the first target. After the modified B-29 Enola Gay bomber arrived at the US naval base on Tinian Island, an atomic bomb was installed on board the aircraft. Hiroshima was to experience the effects of 9 thousand pounds of uranium-235.

This never-before-seen weapon was intended for civilians in a small Japanese town. The bomber's commander was Colonel Paul Warfield Tibbetts Jr. The US atomic bomb bore the cynical name “Baby”. On the morning of August 6, 1945, at approximately 8:15 a.m., the American “Little” was dropped on Hiroshima, Japan. About 15 thousand tons of TNT destroyed all life within a radius of five square miles. One hundred and forty thousand city residents died in a matter of seconds. The surviving Japanese died a painful death from radiation sickness.

They were destroyed by the American atomic “Baby”. However, the devastation of Hiroshima did not cause the immediate surrender of Japan, as everyone expected. Then it was decided to carry out another bombing of Japanese territory.

Nagasaki. The sky is on fire

The American atomic bomb “Fat Man” was installed on board a B-29 aircraft on August 9, 1945, still there, at the US naval base in Tinian. This time the commander of the aircraft was Major Charles Sweeney. Initially, the strategic target was the city of Kokura.

However weather conditions They did not allow us to carry out our plans; large clouds interfered. Charles Sweeney went into the second round. At 11:02 a.m., the American nuclear “Fat Man” engulfed Nagasaki. It was a more powerful destructive air strike, which was several times stronger than the bombing in Hiroshima. Nagasaki tested an atomic weapon weighing about 10 thousand pounds and 22 kilotons of TNT.

The geographic location of the Japanese city reduced the expected effect. The thing is that the city is located in a narrow valley between the mountains. Therefore, the destruction of 2.6 square miles did not reveal its full potential American weapons. The Nagasaki atomic bomb test is considered the failed Manhattan Project.

Japan surrendered

At noon on August 15, 1945, Emperor Hirohito announced his country's surrender in a radio address to the people of Japan. This news quickly spread around the world. Celebrations began in the United States of America to mark the victory over Japan. The people rejoiced.

On September 2, 1945, a formal agreement to end the war was signed aboard the American battleship Missouri anchored in Tokyo Bay. Thus ended the most brutal and bloody war in human history.

For six long years, the world community has been moving towards this significant date - since September 1, 1939, when the first shots of Nazi Germany were fired in Poland.

Peaceful atom

In total, 124 nuclear explosions were carried out in the Soviet Union. The characteristic thing is that all of them were carried out for the benefit national economy. Only three of them were accidents that resulted in the leakage of radioactive elements. Programs for the use of peaceful atoms were implemented in only two countries - the USA and the Soviet Union. Nuclear peaceful energy also knows an example of a global catastrophe, when a reactor exploded at the fourth power unit of the Chernobyl nuclear power plant.

The question of the creators of the first Soviet nuclear bomb is quite controversial and requires more detailed study, but about who in reality father of the Soviet atomic bomb, There are several entrenched opinions. Most physicists and historians believe that the main contribution to the creation of Soviet nuclear weapons was made by Igor Vasilyevich Kurchatov. However, some have expressed the opinion that without Yuli Borisovich Khariton, the founder of Arzamas-16 and the creator of the industrial basis for obtaining enriched fissile isotopes, the first test of this type of weapon in the Soviet Union would have dragged on for several more years.

Let us consider the historical sequence of research and development work to create a practical model of an atomic bomb, leaving aside theoretical studies of fissile materials and the conditions for the occurrence of a chain reaction, without which a nuclear explosion is impossible.

For the first time, a series of applications for obtaining copyright certificates for the invention (patents) of the atomic bomb was filed in 1940 by employees of the Kharkov Institute of Physics and Technology F. Lange, V. Spinel and V. Maslov. The authors examined issues and proposed solutions for the enrichment of uranium and its use as an explosive. The proposed bomb had classic scheme detonation (gun type), which was later, with some modifications, used to initiate a nuclear explosion in American uranium-based nuclear bombs.

The Great Beginning Patriotic War slowed down theoretical and experimental research in the field of nuclear physics, and the largest centers (Kharkov Institute of Physics and Technology and the Radium Institute - Leningrad) ceased their activities and were partially evacuated.

Beginning in September 1941, the intelligence agencies of the NKVD and the Main Intelligence Directorate of the Red Army began to receive an increasing amount of information about the special interest shown in British military circles in the creation of explosives based on fissile isotopes. In May 1942, the Main Intelligence Directorate, having summarized the materials received, reported to the State Defense Committee (GKO) about the military purpose of the nuclear research being carried out.

Around the same time, technical lieutenant Georgy Nikolaevich Flerov, who in 1940 was one of the discoverers of the spontaneous fission of uranium nuclei, wrote a letter personally to I.V. Stalin. In his message, the future academician, one of the creators of Soviet nuclear weapons, draws attention to the fact that publications on work related to the fission of the atomic nucleus have disappeared from the scientific press of Germany, Great Britain and the United States. According to the scientist, this may indicate a reorientation of “pure” science into the practical military field.

In October - November 1942, the NKVD foreign intelligence reported to L.P. Beria provides all available information about work in the field of nuclear research, obtained by illegal intelligence officers in England and the USA, on the basis of which the People's Commissar writes a memo to the head of state.

At the end of September 1942, I.V. Stalin signs a resolution of the State Defense Committee on the resumption and intensification of “uranium work,” and in February 1943, after studying the materials presented by L.P. Beria, a decision is made to transfer all research into the creation of nuclear weapons (atomic bombs) into a “practical direction.” General management and coordination of all types of work were entrusted to the Deputy Chairman of the State Defense Committee V.M. Molotov, the scientific management of the project was entrusted to I.V. Kurchatov. Management of the search for deposits and extraction of uranium ore was entrusted to A.P. Zavenyagin, M.G. was responsible for the creation of enterprises for uranium enrichment and heavy water production. Pervukhin, and People's Commissar of Non-ferrous Metallurgy P.F. Lomako “trusted” to accumulate 0.5 tons of metallic (enriched to the required standards) uranium by 1944.

At this point, the first stage (the deadlines for which were missed), providing for the creation of an atomic bomb in the USSR, was completed.

After the United States dropped atomic bombs on Japanese cities, the leadership of the USSR saw firsthand the lag in scientific research and practical work to create nuclear weapons from their competitors. To intensify and create an atomic bomb as quickly as possible short terms On August 20, 1945, a special decree of the State Defense Committee was issued on the creation of Special Committee No. 1, whose functions included the organization and coordination of all types of work on the creation of a nuclear bomb. L.P. is appointed as the head of this emergency body with unlimited powers. Beria, scientific leadership is entrusted to I.V. Kurchatov. Direct management of all research, development and manufacturing enterprises should have been carried out by People's Commissar of Armaments B.L. Vannikov.

Due to the fact that scientific, theoretical and experimental research was completed, intelligence data on the organization of industrial production of uranium and plutonium was obtained, intelligence officers obtained schematics for American atomic bombs, the greatest difficulty was the transfer of all types of work to an industrial basis. To create enterprises for the production of plutonium, the city of Chelyabinsk-40 was built from scratch (scientific director I.V. Kurchatov). In the village of Sarov (future Arzamas - 16) a plant was built for the assembly and production on an industrial scale of the atomic bombs themselves (scientific supervisor - chief designer Yu.B. Khariton).

Thanks to the optimization of all types of work and strict control over them by L.P. Beria, who, however, did not interfere creative development ideas included in the projects, in July 1946, technical specifications were developed for the creation of the first two Soviet atomic bombs:

  • "RDS - 1" - a bomb with a plutonium charge, the detonation of which was carried out using the implosion type;
  • "RDS - 2" - a bomb with a cannon detonation of a uranium charge.

I.V. was appointed scientific director of the work on the creation of both types of nuclear weapons. Kurchatov.

Paternity rights

Tests of the first atomic bomb created in the USSR, “RDS-1” (the abbreviation in different sources stands for “ jet engine C" or "Russia Does Itself") took place in late August 1949 in Semipalatinsk under the direct leadership of Yu.B. Khariton. The power of the nuclear charge was 22 kilotons. However, from the point of view of modern copyright law, it is impossible to attribute the paternity of this product to any of the Russian (Soviet) citizens. Earlier, when developing the first practical model suitable for military use, the USSR Government and the leadership of Special Project No. 1 decided to copy as much as possible a domestic implosion bomb with a plutonium charge from the American “Fat Man” prototype dropped on the Japanese city of Nagasaki. Thus, the “fatherhood” of the first nuclear bomb of the USSR most likely belongs to General Leslie Groves, the military leader of the Manhattan Project, and Robert Oppenheimer, known throughout the world as the “father of the atomic bomb” and who provided scientific leadership over the project "Manhattan". The main difference between the Soviet model and the American one is the use of domestic electronics in the detonation system and a change in the aerodynamic shape of the bomb body.

The RDS-2 product can be considered the first “purely” Soviet atomic bomb. Despite the fact that it was originally planned to copy the American uranium prototype “Baby”, the Soviet uranium atomic bomb “RDS-2” was created in an implosion version, which had no analogues at that time. L.P. participated in its creation. Beria – general project management, I.V. Kurchatov – scientific supervisor of all types of work and Yu.B. Khariton is the scientific director and chief designer responsible for the production of a practical bomb sample and its testing.

When talking about who is the father of the first Soviet atomic bomb, one cannot lose sight of the fact that both RDS-1 and RDS-2 were exploded at the test site. The first atomic bomb dropped from a Tu-4 bomber was the RDS-3 product. Its design was similar to the RDS-2 implosion bomb, but had a combined uranium-plutonium charge, which made it possible to increase its power, with the same dimensions, to 40 kilotons. Therefore, in many publications, Academician Igor Kurchatov is considered the “scientific” father of the first atomic bomb actually dropped from an airplane, since his scientific colleague, Yuli Khariton, was categorically against making any changes. “Paternity” is also supported by the fact that throughout the history of the USSR L.P. Beria and I.V. Kurchatov were the only ones who in 1949 were awarded the title of Honorary Citizen of the USSR - “... for the implementation of the Soviet atomic project, the creation of the atomic bomb.”