The order of the planets. Fascinating astronomy: interesting facts about the planets of the solar system

The endless space that surrounds us is not just a huge airless space and emptiness. Here everything is subject to a single and strict order, everything has its own rules and obeys the laws of physics. Everything is in constant movement and is constantly in relationship with each other. This is a system in which each celestial body occupies its own specific place. The center of the Universe is surrounded by galaxies, among which ours is located. Milky Way. Our galaxy, in turn, is formed by stars around which large and small planets with their natural satellites revolve. The picture of a universal scale is complemented by wandering objects - comets and asteroids.

In this endless cluster of stars our Solar System is located - a tiny astrophysical object by cosmic standards, which includes our cosmic home - planet Earth. For us earthlings, the size of the solar system is colossal and difficult to perceive. In terms of the scale of the Universe, these are tiny numbers - only 180 astronomical units or 2.693e+10 km. Here, too, everything is subject to its own laws, has its own clearly defined place and sequence.

Brief characteristics and description

The interstellar medium and the stability of the Solar System are ensured by the location of the Sun. Its location is an interstellar cloud included in the Orion-Cygnus arm, which in turn is part of our galaxy. From a scientific point of view, our Sun is located on the periphery, 25 thousand light years from the center of the Milky Way, if we consider the galaxy in the diametrical plane. In turn, the movement of the solar system around the center of our galaxy is carried out in orbit. A complete revolution of the Sun around the center of the Milky Way is carried out in different ways, within 225-250 million years and is one galactic year. The orbit of the Solar System has an inclination of 600 to the galactic plane. Nearby, in the neighborhood of our system, other stars and other solar systems with their large and small planets are running around the center of the galaxy.

The approximate age of the solar system is 4.5 billion years. Like most objects in the Universe, our star was formed as a result big bang. The origin of the solar system is explained by the action of the same laws that acted and continue to operate today in the region nuclear physics, thermodynamics and mechanics. First, a star was formed, around which, due to the ongoing centripetal and centrifugal processes, the formation of planets began. The Sun was formed from a dense accumulation of gases - a molecular cloud, which was the product of a colossal Explosion. As a result of centripetal processes, molecules of hydrogen, helium, oxygen, carbon, nitrogen and other elements were compressed into one continuous and dense mass.

The result of grandiose and such large-scale processes was the formation of a protostar, in the structure of which thermonuclear fusion began. We observe this long process, which began much earlier, today, looking at our Sun 4.5 billion years after its formation. The scale of the processes occurring during the formation of a star can be imagined by assessing the density, size and mass of our Sun:

  • density is 1.409 g/cm3;
  • the volume of the Sun is almost the same figure - 1.40927x1027 m3;
  • star mass – 1.9885x1030 kg.

Today our Sun is an ordinary astrophysical object in the Universe, not the smallest star in our galaxy, but far from the largest. The sun remains in its mature age, being not only the center of the solar system, but also the main factor in the emergence and existence of life on our planet.

The final structure of the solar system falls on the same period, with a difference of plus or minus half a billion years. The mass of the entire system, where the Sun interacts with other celestial bodies of the Solar System, is 1.0014 M☉. In other words, all the planets, satellites and asteroids, cosmic dust and particles of gases revolving around the Sun, compared to the mass of our star, are a drop in the bucket.

The way we have an idea of ​​our star and the planets revolving around the Sun is a simplified version. The first mechanical heliocentric model of the solar system with a clock mechanism was presented to the scientific community in 1704. It should be taken into account that the orbits of the planets of the solar system do not all lie in the same plane. They rotate around at a certain angle.

The model of the solar system was created on the basis of a simpler and more ancient mechanism - tellurium, with the help of which the position and movement of the Earth in relation to the Sun was simulated. With the help of tellurium, it was possible to explain the principle of the movement of our planet around the Sun and to calculate the duration of the earth's year.

The simplest model of the solar system is presented in school textbooks, where each of the planets and other celestial bodies occupies a certain place. It should be taken into account that the orbits of all objects revolving around the Sun are located at different angles to the central plane of the Solar System. The planets of the Solar System are located at different distances from the Sun, rotate at different speeds and rotate differently around their own axis.

A map - a diagram of the Solar System - is a drawing where all objects are located in the same plane. In this case, such an image gives an idea only of the size celestial bodies and the distances between them. Thanks to this interpretation, it became possible to understand the location of our planet among other planets, to assess the scale of celestial bodies and to give an idea of ​​the enormous distances that separate us from our celestial neighbors.

Planets and other objects of the solar system

Almost the entire universe is made up of myriads of stars, among which there are large and small solar systems. The presence of a star with its own satellite planets is a common occurrence in space. The laws of physics are the same everywhere and our solar system is no exception.

If you ask the question how many planets there were in the solar system and how many there are today, it is quite difficult to answer unequivocally. Currently, the exact location of 8 major planets is known. In addition, 5 small dwarf planets revolve around the Sun. The existence of a ninth planet is currently disputed in scientific circles.

The entire solar system is divided into groups of planets, which are arranged in the following order:

Terrestrial planets:

  • Mercury;
  • Venus;
  • Mars.

Gas planets - giants:

  • Jupiter;
  • Saturn;
  • Uranus;
  • Neptune.

All planets presented in the list differ in structure and have different astrophysical parameters. Which planet is larger or smaller than the others? The sizes of the planets of the solar system are different. The first four objects, similar in structure to the Earth, have a solid rock surface and are endowed with an atmosphere. Mercury, Venus and Earth are the inner planets. Mars closes this group. Following it are the gas giants: Jupiter, Saturn, Uranus and Neptune - dense, spherical gas formations.

The process of life of the planets of the solar system does not stop for a second. Those planets that we see in the sky today are the arrangement of celestial bodies that the planetary system of our star has at the current moment. The state that was at the dawn of formation solar system strikingly different from what is studied today.

About astrophysical parameters modern planets evidenced by the table, which also indicates the distance of the planets of the solar system to the sun.

The existing planets of the solar system are approximately the same age, but there are theories that in the beginning there were more planets. This is evidenced by numerous ancient myths and legends that describe the presence of other astrophysical objects and disasters that led to the death of the planet. This is confirmed by the structure of our star system, where, along with the planets, there are objects that are products of violent cosmic cataclysms.

A striking example of such activity is the asteroid belt, located between the orbits of Mars and Jupiter. Objects of extraterrestrial origin are concentrated here in huge numbers, mainly represented by asteroids and small planets. It is these fragments irregular shape V human culture are considered the remains of the protoplanet Phaethon, which died billions of years ago as a result of a large-scale cataclysm.

In fact, there is an opinion in scientific circles that the asteroid belt was formed as a result of the destruction of a comet. Astronomers have discovered the presence of water on the large asteroid Themis and on the small planets Ceres and Vesta, which are the largest objects in the asteroid belt. Ice found on the surface of asteroids may indicate the cometary nature of the formation of these cosmic bodies.

Previously one of the major planets, Pluto is not considered a full-fledged planet today.

Pluto, which was previously ranked among the large planets of the solar system, is today reduced to the size of dwarf celestial bodies revolving around the Sun. Pluto, along with Haumea and Makemake, the largest dwarf planets, is located in the Kuiper belt.

These dwarf planets of the solar system are located in the Kuiper belt. The region between the Kuiper belt and the Oort cloud is the most distant from the Sun, but even there space not empty. In 2005, the most distant celestial body of our solar system, the dwarf planet Eris, was discovered there. The process of exploration of the most distant regions of our solar system continues. The Kuiper Belt and Oort Cloud are hypothetically the border regions of our star system, the visible boundary. This cloud of gas is one light years from the Sun and is the region where comets, the wandering satellites of our star, are born.

Characteristics of the planets of the solar system

The terrestrial group of planets is represented by the planets closest to the Sun - Mercury and Venus. These two cosmic bodies of the solar system, despite the similarity in physical structure with our planet, are a hostile environment for us. Mercury is the smallest planet in our star system and is closest to the Sun. The heat of our star literally incinerates the surface of the planet, practically destroying its atmosphere. The distance from the surface of the planet to the Sun is 57,910,000 km. In size, only 5 thousand km in diameter, Mercury is inferior to most large satellites, which are dominated by Jupiter and Saturn.

Saturn's satellite Titan has a diameter of over 5 thousand km, Jupiter's satellite Ganymede has a diameter of 5265 km. Both satellites are second only to Mars in size.

The very first planet rushes around our star at tremendous speed, making a full revolution around our star in 88 Earth days. It is almost impossible to notice this small and nimble planet in the starry sky due to the close presence of the solar disk. Among the terrestrial planets, it is on Mercury that the largest daily temperature differences are observed. While the surface of the planet facing the Sun heats up to 700 degrees Celsius, back side The planet is immersed in universal cold with temperatures down to -200 degrees.

The main difference between Mercury and all the planets of the solar system is its internal structure. Mercury has the largest iron-nickel inner core, which accounts for 83% of the mass of the entire planet. However, even this uncharacteristic quality did not allow Mercury to have its own natural satellites.

Next to Mercury is the closest planet to us - Venus. The distance from Earth to Venus is 38 million km, and it is very similar to our Earth. The planet has almost the same diameter and mass, slightly inferior in these parameters to our planet. However, in all other respects, our neighbor is fundamentally different from our cosmic home. The period of Venus' revolution around the Sun is 116 Earth days, and the planet rotates extremely slowly around its own axis. average temperature surface of Venus rotating around its axis in 224 Earth days is 447 degrees Celsius.

Like its predecessor, Venus lacks the physical conditions conducive to the existence of known life forms. The planet is surrounded by a dense atmosphere consisting mainly of carbon dioxide and nitrogen. Both Mercury and Venus are the only planets in the solar system that do not have natural satellites.

Earth is the last of inner planets Solar system, located from the Sun at a distance of approximately 150 million km. Our planet makes one revolution around the Sun every 365 days. Rotates around its own axis in 23.94 hours. The Earth is the first of the celestial bodies located on the path from the Sun to the periphery, which has natural satellite.

Digression: The astrophysical parameters of our planet are well studied and known. Earth is the largest and densest planet of all the other inner planets in the solar system. It is here that natural physical conditions have been preserved under which the existence of water is possible. Our planet has a stable magnetic field holding the atmosphere. Earth is the most well studied planet. The subsequent study is mainly of not only theoretical interest, but also practical one.

Mars closes the parade of terrestrial planets. The subsequent study of this planet is mainly not only of theoretical interest, but also of practical interest, associated with human exploration of extraterrestrial worlds. Astrophysicists are attracted not only by the relative proximity of this planet to Earth (on average 225 million km), but also by the absence of complex climatic conditions. The planet is surrounded by an atmosphere, although it is in an extremely rarefied state, has its own magnetic field, and temperature differences on the surface of Mars are not as critical as on Mercury and Venus.

Like Earth, Mars has two satellites - Phobos and Deimos. natural nature which in Lately is in doubt. Mars is the last fourth planet with a rocky surface in the solar system. Following the asteroid belt, which is a kind of inner boundary of the Solar system, begins the kingdom of gas giants.

The largest cosmic celestial bodies of our solar system

The second group of planets that are part of the system of our star has bright and large representatives. These are the largest objects in our solar system, which are considered the outer planets. Jupiter, Saturn, Uranus and Neptune are the most distant from our star, huge by earthly standards and their astrophysical parameters. These celestial bodies are distinguished by their massiveness and composition, which is mainly gaseous in nature.

The main beauties of the solar system are Jupiter and Saturn. Total weight this pair of giants would be quite enough to contain the mass of all known celestial bodies of the solar system. So Jupiter is the most big planet The solar system weighs 1876.64328 1024 kg, and the mass of Saturn is 561.80376 1024 kg. These planets have the most natural satellites. Some of them, Titan, Ganymede, Callisto and Io, are the largest satellites of the Solar System and are comparable in size to the terrestrial planets.

The largest planet in the solar system, Jupiter, has a diameter of 140 thousand km. In many respects, Jupiter is more like a failed star - shining example existence of a small solar system. This is evidenced by the size of the planet and astrophysical parameters - Jupiter is only 10 times smaller than our star. The planet rotates around its own axis quite quickly - only 10 Earth hours. The number of satellites, of which 67 have been identified to date, is also striking. The behavior of Jupiter and its moons is very similar to the model of the solar system. Such a number of natural satellites for one planet puts new question, how many planets there were in the solar system at the early stage of its formation. It is assumed that Jupiter, having a powerful magnetic field, turned some planets into its natural satellites. Some of them - Titan, Ganymede, Callisto and Io - are the largest satellites of the solar system and are comparable in size to the terrestrial planets.

It is slightly inferior in size to Jupiter. little brother- gas giant Saturn. This planet, like Jupiter, consists mainly of hydrogen and helium - gases that are the basis of our star. With its size, the diameter of the planet is 57 thousand km, Saturn also resembles a protostar that has stopped in its development. The number of satellites of Saturn is slightly inferior to the number of satellites of Jupiter - 62 versus 67. Saturn's satellite Titan, like Io, a satellite of Jupiter, has an atmosphere.

In other words, the largest planets Jupiter and Saturn with their systems of natural satellites strongly resemble small solar systems, with their clearly defined center and system of movement of celestial bodies.

Behind the two gas giants come the cold and dark worlds, the planets Uranus and Neptune. These celestial bodies are located at a distance of 2.8 billion km and 4.49 billion km. from the Sun, respectively. Due to their enormous distance from our planet, Uranus and Neptune were discovered relatively recently. Unlike the other two gas giants, Uranus and Neptune contain large quantities of frozen gases - hydrogen, ammonia and methane. These two planets are also called ice giants. Uranus is smaller in size than Jupiter and Saturn and ranks third in the solar system. The planet represents the pole of cold of our star system. The average temperature on the surface of Uranus is -224 degrees Celsius. Uranus differs from other celestial bodies revolving around the Sun by its strong tilt on its own axis. The planet seems to be rolling, revolving around our star.

Like Saturn, Uranus is surrounded by a hydrogen-helium atmosphere. Neptune, unlike Uranus, has a different composition. Indicates the presence of methane in the atmosphere Blue colour spectrum of the planet.

Both planets move slowly and majestically around our star. Uranus orbits the Sun in 84 Earth years, and Neptune orbits our star twice as long - 164 Earth years.

Finally

Our Solar System is a huge mechanism in which each planet, all satellites of the Solar System, asteroids and other celestial bodies move along a clearly defined route. The laws of astrophysics apply here and have not changed for 4.5 billion years. Along the outer edges of our solar system, dwarf planets move in the Kuiper belt. Comets are frequent guests of our star system. These space objects visit with a frequency of 20-150 years interior areas Solar system, flying within sight of our planet.

If you have any questions, leave them in the comments below the article. We or our visitors will be happy to answer them

Pluto by decision of the MAC (International Astronomical Union) no longer refers to the planets of the solar system, but is dwarf planet and is even smaller in diameter than the other dwarf planet Eris. Pluto's designation is 134340.


solar system

Scientists put forward many versions of the origin of our solar system. In the forties of the last century, Otto Schmidt hypothesized that the solar system arose because cold dust clouds were attracted to the Sun. Over time, clouds formed the foundations of future planets. IN modern science It is Schmidt's theory that is fundamental. The solar system is only a small part of a large galaxy called the Milky Way. The Milky Way contains more than one hundred billion various stars. It took humanity thousands of years to realize such a simple truth. The discovery of the solar system did not happen immediately; step by step, based on victories and mistakes, a system of knowledge was formed. The main basis for studying the solar system was knowledge about the Earth.

Fundamentals and Theories

The main milestones in the study of the solar system are the modern atomic system, heliocentric system Copernicus and Ptolemy. The most probable version of the origin of the system is considered to be the Big Bang theory. In accordance with it, the formation of the galaxy began with the “scattering” of the elements of the megasystem. At the turn of the impenetrable house, our Solar system was born. The basis of everything is the Sun - 99.8% of the total volume, the planets account for 0.13%, the remaining 0.0003% are the various bodies of our system. Scientists have accepted the division of planets into two conditional groups . The first includes planets of the Earth type: the Earth itself, Venus, Mercury. The main distinctive characteristics of the planets of the first group are their relatively small area, hardness, a large number of satellites. The second group includes Uranus, Neptune and Saturn - they are distinguished big sizes(giant planets), they are formed by helium and hydrogen gases.

In addition to the Sun and planets, our system also includes planetary satellites, comets, meteorites and asteroids.

Particular attention should be paid to the asteroid belts, which are located between Jupiter and Mars, and between the orbits of Pluto and Neptune. At the moment, science does not have an unambiguous version of the origin of such formations.
Which planet is not currently considered a planet:

From the time of its discovery until 2006, Pluto was considered a planet, but later many celestial bodies were discovered in the outer part of the Solar System, comparable in size to Pluto and even larger than it. To avoid confusion, a new definition of planet was given. Pluto did not fall under this definition, so it was given a new “status” - a dwarf planet. So, Pluto can serve as an answer to the question: it used to be considered a planet, but now it is not. However, some scientists continue to believe that Pluto should be reclassified back to a planet.

Scientists' forecasts

Based on research, scientists say that the sun is approaching the middle of its life path. It is unimaginable to imagine what will happen if the Sun goes out. But scientists say this is not only possible, but also inevitable. The age of the Sun was determined using the latest computer developments and it was found that it is about five billion years old. According to astronomical law, the life of a star like the Sun lasts about ten billion years. Thus, our solar system is in the middle of its life cycle. What do scientists mean by the word “will go out”? The sun's enormous energy comes from hydrogen, which becomes helium at the core. Every second, about six hundred tons of hydrogen in the Sun's core are converted into helium. According to scientists, the Sun has already used up most of its hydrogen reserves.

If instead of the Moon there were planets of the solar system:



Add your price to the database

A comment

The solar system is a group of planets revolving in specific orbits around a bright star - the Sun. This star is the main source of heat and light in the solar system.

It is believed that our planetary system was formed as a result of the explosion of one or more stars and this happened about 4.5 billion years ago. At first, the Solar System was an accumulation of gas and dust particles, however, over time and under the influence of its own mass, the Sun and other planets arose.

Planets of the Solar System

At the center of the solar system is the Sun, around which eight planets move in their orbits: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune.

Until 2006, Pluto also belonged to this group of planets; it was considered the 9th planet from the Sun, however, due to its significant distance from the Sun and small size, it was excluded from this list and called a dwarf planet. More precisely, it is one of several dwarf planets in the Kuiper belt.

All of the above planets are usually divided into two large groups: the terrestrial group and the gas giants.

The terrestrial group includes such planets as: Mercury, Venus, Earth, Mars. They are distinguished by their small size and rocky surface, and in addition, they are located closest to the Sun.

Gas giants include: Jupiter, Saturn, Uranus, Neptune. They are characterized by large sizes and the presence of rings, which are ice dust and rocky pieces. These planets consist mainly of gas.

Mercury

This planet is one of the smallest in the solar system, its diameter is 4,879 km. In addition, it is closest to the Sun. This proximity predetermined a significant temperature difference. The average temperature on Mercury during the day is +350 degrees Celsius, and at night - -170 degrees.

  1. Mercury is the first planet from the Sun.
  2. There are no seasons on Mercury. The tilt of the planet's axis is almost perpendicular to the plane of the planet's orbit around the Sun.
  3. The temperature on the surface of Mercury is not the highest, although the planet is located closest to the Sun. He lost first place to Venus.
  4. The first research vehicle to visit Mercury was Mariner 10. It conducted a number of demonstration flights in 1974.
  5. A day on Mercury lasts 59 Earth days, and a year is only 88 days.
  6. Mercury experiences the most dramatic temperature changes, reaching 610 °C. During the day, temperatures can reach 430 °C, and at night -180 °C.
  7. The gravity on the planet's surface is only 38% of Earth's. This means that on Mercury you could jump three times as high, and it would be easier to lift heavy objects.
  8. The first observations of Mercury through a telescope were made by Galileo Galilei in the early 17th century.
  9. Mercury has no natural satellites.
  10. The first official map of Mercury's surface was published only in 2009, thanks to data obtained from the Mariner 10 and Messenger spacecraft.

Venus

This planet is the second from the Sun. In size it is close to the diameter of the Earth, the diameter is 12,104 km. In all other respects, Venus differs significantly from our planet. A day here lasts 243 Earth days, and a year lasts 255 days. The atmosphere of Venus is 95% composed of carbon dioxide, which creates on its surface Greenhouse effect. This results in an average temperature on the planet of 475 degrees Celsius. The atmosphere also contains 5% nitrogen and 0.1% oxygen.

  1. Venus is the second planet from the Sun in the Solar System.
  2. Venus is the hottest planet in the solar system, although it is the second planet from the sun. Surface temperature can reach 475 °C.
  3. The first spacecraft sent to explore Venus was sent from Earth on February 12, 1961 and was called Venera 1.
  4. Venus is one of two planets whose direction of rotation around its axis is different from most planets in the solar system.
  5. The planet's orbit around the Sun is very close to circular.
  6. The day and night temperatures of the surface of Venus are practically the same due to the large thermal inertia of the atmosphere.
  7. Venus makes one revolution around the Sun in 225 Earth days, and one revolution around its axis in 243 Earth days, that is, one day on Venus lasts more than one year.
  8. The first observations of Venus through a telescope were made by Galileo Galilei at the beginning of the 17th century.
  9. Venus has no natural satellites.
  10. Venus is the third brightest object in the sky, after the Sun and Moon.

Earth

Our planet is located at a distance of 150 million km from the Sun, and this allows us to create on its surface a temperature suitable for the existence of liquid water, and, therefore, for the emergence of life.

Its surface is 70% covered with water, and it is the only planet to contain such an amount of liquid. It is believed that many thousands of years ago, steam contained in the atmosphere created the temperature on the Earth's surface necessary for the formation of liquid water, and solar radiation contributed to photosynthesis and the birth of life on the planet.

  1. Earth in the solar system is the third planet from the sunsA;
  2. Our planet revolves around one natural satellite - the Moon;
  3. Earth is the only planet not named after a divine being;
  4. The Earth's density is the greatest of all the planets in the solar system;
  5. The Earth's rotation speed is gradually slowing down;
  6. The average distance from the Earth to the Sun is 1 astronomical unit (a conventional measure of length in astronomy), which is approximately 150 million km;
  7. The Earth has a magnetic field of sufficient strength to protect living organisms on its surface from harmful solar radiation;
  8. The first artificial Earth satellite, called PS-1 (The simplest satellite - 1), was launched from the Baikonur Cosmodrome on the Sputnik launch vehicle on October 4, 1957;
  9. In orbit around the Earth, compared to other planets, there is the largest number of spacecraft;
  10. The earth is the most big planet terrestrial group in the solar system;

Mars

This planet is the fourth from the Sun and is 1.5 times more distant from it than the Earth. The diameter of Mars is smaller than Earth's and is 6,779 km. The average air temperature on the planet ranges from -155 degrees to +20 degrees at the equator. The magnetic field on Mars is much weaker than that of Earth, and the atmosphere is quite thin, which allows unhindered solar radiation influence the surface. In this regard, if there is life on Mars, it is not on the surface.

When surveyed with the help of Mars rovers, it was found that there are many mountains on Mars, as well as dried up river beds and glaciers. The surface of the planet is covered with red sand. It is iron oxide that gives Mars its color.

  1. Mars is located in the fourth orbit from the Sun;
  2. The Red Planet has the most high volcano in the solar system;
  3. Of the 40 exploration missions sent to Mars, only 18 were successful;
  4. The biggest things happen on Mars dust storms in the solar system;
  5. In 30-50 million years, there will be a system of rings around Mars, like Saturn’s;
  6. Debris from Mars has been found on Earth;
  7. The Sun from the surface of Mars looks half as big as from the surface of the Earth;
  8. Mars is the only planet in the solar system that has polar ice caps;
  9. Two natural satellites revolve around Mars - Deimos and Phobos;
  10. Mars has no magnetic field;

Jupiter

This planet is the largest in the solar system and has a diameter of 139,822 km, which is 19 times larger than Earth. A day on Jupiter lasts 10 hours, and a year is approximately 12 Earth years. Jupiter is mainly composed of xenon, argon and krypton. If it were 60 times larger, it could become a star due to a spontaneous thermonuclear reaction.

The average temperature on the planet is -150 degrees Celsius. The atmosphere consists of hydrogen and helium. There is no oxygen or water on its surface. There is an assumption that there is ice in the atmosphere of Jupiter.

  1. Jupiter is located in the fifth orbit from the Sun;
  2. In the Earth's sky, Jupiter is the fourth brightest object, after the Sun, Moon and Venus;
  3. Jupiter has the shortest day of all the planets in the solar system;
  4. In the atmosphere of Jupiter, one of the longest and most powerful storms in the solar system rages, better known as the Great Red Spot;
  5. Jupiter's moon, Ganymede, is the most big moon in the solar system;
  6. Located around Jupiter thin system rings;
  7. Jupiter was visited by 8 research vehicles;
  8. Jupiter has a strong magnetic field;
  9. If Jupiter were 80 times more massive, it would become a star;
  10. There are 67 natural satellites orbiting Jupiter. This is the largest in the Solar System;

Saturn

This planet is the second largest in the solar system. Its diameter is 116,464 km. It is most similar in composition to the Sun. A year on this planet lasts quite a long time, almost 30 Earth years, and a day lasts 10.5 hours. The average surface temperature is -180 degrees.

Its atmosphere consists mainly of hydrogen and small amount helium. In her upper layers Thunderstorms and auroras often occur.

  1. Saturn is the sixth planet from the Sun;
  2. Saturn's atmosphere contains the strongest winds in the solar system;
  3. Saturn is one of the least dense planets in the solar system;
  4. Surrounding the planet is the largest ring system in the Solar System;
  5. One day on the planet lasts almost one Earth year and is equal to 378 Earth days;
  6. Saturn was visited by 4 research spacecraft;
  7. Saturn, together with Jupiter, constitutes approximately 92% of the total planetary mass of the Solar System;
  8. One year on the planet lasts 29.5 Earth years;
  9. There are 62 known natural satellites orbiting the planet;
  10. Currently, the automatic interplanetary station Cassini is studying Saturn and its rings;

Uranus

Uranus, computer artwork.

Uranus is the third largest planet in the solar system and the seventh from the Sun. It has a diameter of 50,724 km. It is also called " ice planet", since the temperature on its surface is -224 degrees. A day on Uranus lasts 17 hours, and a year lasts 84 Earth years. Moreover, summer lasts as long as winter - 42 years. This a natural phenomenon This is due to the fact that the axis of that planet is located at an angle of 90 degrees to the orbit and it turns out that Uranus seems to be “lying on its side.”

  1. Uranus is located in the seventh orbit from the Sun;
  2. The first person to learn about the existence of Uranus was William Herschel in 1781;
  3. Uranus has only been visited by one spacecraft, Voyager 2 in 1982;
  4. Uranus is the most cold planet in the solar system;
  5. The plane of Uranus' equator is inclined to the plane of its orbit at almost a right angle - that is, the planet rotates retrograde, "lying on its side slightly upside down";
  6. The moons of Uranus bear names taken from the works of William Shakespeare and Alexander Pope, rather than Greek or Roman mythology;
  7. A day on Uranus lasts about 17 Earth hours;
  8. There are 13 known rings around Uranus;
  9. One year on Uranus lasts 84 Earth years;
  10. There are 27 known natural satellites orbiting Uranus;

Neptune

Neptune is the eighth planet from the Sun. It is similar in composition and size to its neighbor Uranus. The diameter of this planet is 49,244 km. A day on Neptune lasts 16 hours, and a year is equal to 164 Earth years. Neptune is an ice giant and for a long time it was believed that nothing happens on its icy surface. weather phenomena. However, it was recently discovered that Neptune has raging vortices and wind speeds that are the highest among the planets in the solar system. It reaches 700 km/h.

Neptune has 14 moons, the most famous of which is Triton. It is known to have its own atmosphere.

Neptune also has rings. This planet has 6 of them.

  1. Neptune is the most distant planet in the Solar System and occupies the eighth orbit from the Sun;
  2. Mathematicians were the first to know about the existence of Neptune;
  3. There are 14 satellites circling around Neptune;
  4. Neputna's orbit is removed from the Sun by an average of 30 AU;
  5. One day on Neptune lasts 16 Earth hours;
  6. Neptune has only been visited by one spacecraft, Voyager 2;
  7. There is a system of rings around Neptune;
  8. Neptune has the second highest gravity after Jupiter;
  9. One year on Neptune lasts 164 Earth years;
  10. The atmosphere on Neptune is extremely active;

  1. Jupiter is considered the largest planet in the solar system.
  2. There are 5 dwarf planets in the Solar System, one of which has been reclassified as Pluto.
  3. There are very few asteroids in the Solar System.
  4. Venus is the hottest planet in the solar system.
  5. About 99% of the space (by volume) is occupied by the Sun in the Solar System.
  6. The satellite of Saturn is considered one of the most beautiful and original places in the solar system. There you can see a huge concentration of ethane and liquid methane.
  7. Our solar system has a tail that resembles a four-leaf clover.
  8. The sun follows a continuous 11-year cycle.
  9. There are 8 planets in the solar system.
  10. The Solar System is fully formed thanks to a large gas and dust cloud.
  11. Spacecraft have flown to all the planets of the solar system.
  12. Venus is the only planet in the solar system that rotates counterclockwise around its axis.
  13. Uranus has 27 satellites.
  14. The largest mountain is on Mars.
  15. A huge mass of objects in the solar system fell on the sun.
  16. The solar system is part of the Milky Way galaxy.
  17. The sun is the central object of the solar system.
  18. The solar system is often divided into regions.
  19. The Sun is a key component of the Solar System.
  20. The solar system was formed approximately 4.5 billion years ago.
  21. The most distant planet in the solar system is Pluto.
  22. Two regions in the Solar System are filled with small bodies.
  23. The solar system was built contrary to all the laws of the Universe.
  24. If you compare the solar system and space, then it is just a grain of sand in it.
  25. Over the past few centuries, the solar system has lost 2 planets: Vulcan and Pluto.
  26. Researchers claim that the solar system was created artificially.
  27. The only satellite of the Solar System that has a dense atmosphere and whose surface cannot be seen due to cloud cover is Titan.
  28. The region of the solar system that lies beyond the orbit of Neptune is called the Kuiper belt.
  29. The Oort cloud is the region of the solar system that serves as the source of a comet and a long orbital period.
  30. Every object in the solar system is held there due to the force of gravity.
  31. The leading theory of the solar system involves the emergence of planets and moons from a huge cloud.
  32. The solar system is considered the most secret particle of the Universe.
  33. There is a huge asteroid belt in the solar system.
  34. On Mars you can see the eruption of the big volcano Solar system, which is named Olympus.
  35. Pluto is considered to be the outskirts of the solar system.
  36. Jupiter has a large ocean of liquid water.
  37. The Moon is the largest satellite of the Solar System.
  38. Pallas is considered the largest asteroid in the solar system.
  39. The brightest planet in the solar system is Venus.
  40. The solar system is mostly made of hydrogen.
  41. The Earth is an equal member of the solar system.
  42. The sun heats up slowly.
  43. Oddly enough, the largest reserves of water in the solar system are in the sun.
  44. The equator plane of each planet in the solar system diverges from the orbital plane.
  45. The satellite of Mars called Phobos is an anomaly in the solar system.
  46. The solar system can amaze with its diversity and scale.
  47. The planets of the solar system are influenced by the sun.
  48. The outer shell of the Solar system is considered to be the haven of satellites and gas giants.
  49. A huge number of planetary satellites of the solar system are dead.
  50. The largest asteroid, with a diameter of 950 km, is called Ceres.

Theories on how it arose , a great many. The first of these was the famous theory put forward by the German philosopher Immanuel Kant in 1755. He believed that the emergence solar system originated from some primary matter, before which it was freely dispersed in space.

One of the subsequent cosmogonic theories is the theory of “catastrophes”. According to it, our planet Earth was formed after some kind of external intervention, for example, a meeting of the Sun with some other star, this meeting could cause the eruption of a certain part of the solar substance. Due to incandescence, gaseous matter quickly cooled and became denser, while forming many small solid particles, their accumulations were a kind of embryos of planets.

Planets of the solar system

The central body in our system is the Sun. It belongs to the class of yellow dwarf stars. The Sun is the most massive object in our planetary system. The closest star to Earth, as well as the main body in our planetary system. In our system, the planets are more or less ordinary. There are none, for example, that almost do not reflect light. Images of planets are often used in interior signs.

The very first planet from the Sun in our solar system is Mercury - it is also the smallest planet in the terrestrial group (in addition to Earth and Mercury, it includes Mars and Venus).

Next, second in line, comes Venus. Next comes the Earth - the shelter of all humanity. Our planet has a satellite - the Moon, which is almost 80 times lighter than the Earth. The Moon is the only satellite of the Earth orbiting the Earth. After the Sun, it is the brightest object in the sky. The fourth planet is Mars - this desert planet has two satellites. Followed by large group planets are the so-called giant planets.


The sun and other planets played a big role in different. There were many religions that worshiped the Sun. And astrology, which studies the effect of planets on humans, still influences many people. Astrology used to be considered a science, but nowadays many people consider it a science.

The largest and most massive of all the giants is Jupiter, which represents our solar system in miniature. Jupiter has more than 40 satellites, the largest of which are Ganymede, Io, Europa, and Callisto. These satellites have another name - Galilean, in honor of the man who discovered them - Galileo Galilei.

Next comes the giant planet Uranus - it is unusual in that it has a “lying on its side” position - which is why there is a rather sharp change in seasons on Uranus. It has 21 satellites and a distinctive feature in the form of rotation in the opposite direction.

The last giant planet is Neptune (Neptune’s largest satellite is Triton). All giant planets have distinctive feature in the form of many satellites, as well as a system of rings.

But the farthest and the last planet in the solar system is Pluto, which is also the smallest planet in our system. Pluto has one satellite, Charon, which is slightly smaller than the planet itself.

Planets of the Solar System

According to the official position of the International Astronomical Union (IAU), the organization that assigns names to astronomical objects, there are only 8 planets.

Pluto was removed from the planet category in 2006. because There are objects in the Kuiper belt that are larger/equal in size to Pluto. Therefore, even if we take it as a full-fledged celestial body, then it is necessary to add Eris to this category, which has almost the same size as Pluto.

By MAC definition, there are 8 known planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune.

All planets are divided into two categories depending on their physical characteristics: terrestrial group and gas giants.

Schematic representation of the location of the planets

Terrestrial planets

Mercury

The smallest planet in the solar system has a radius of only 2440 km. The period of revolution around the Sun, equated to an earthly year for ease of understanding, is 88 days, while Mercury manages to rotate around its own axis only one and a half times. Thus, his day lasts approximately 59 Earth days. For a long time it was believed that this planet was always turned to the Sun with the same side, since the periods of its visibility from the Earth were repeated with a frequency approximately equal to four Mercury days. This misconception was dispelled with the advent of the ability to use radar research and conduct continuous observations using space stations. The orbit of Mercury is one of the most unstable; not only the speed of movement and its distance from the Sun change, but also the position itself. Anyone interested can observe this effect.

Mercury in color, image from the MESSENGER spacecraft

Its proximity to the Sun is the reason that Mercury is subject to the largest temperature changes among the planets in our system. The average daytime temperature is about 350 degrees Celsius, and the nighttime temperature is -170 °C. Sodium, oxygen, helium, potassium, hydrogen and argon were detected in the atmosphere. There is a theory that it was previously a satellite of Venus, but so far this remains unproven. It does not have its own satellites.

Venus

The second planet from the Sun, the atmosphere is almost entirely composed of carbon dioxide. She is often called Morning star and the Evening Star, because it is the first of the stars to become visible after sunset, just as before dawn it continues to be visible even when all the other stars have disappeared from view. The percentage of carbon dioxide in the atmosphere is 96%, there is relatively little nitrogen in it - almost 4%, and water vapor and oxygen are present in very small quantities.

Venus in the UV spectrum

Such an atmosphere creates a greenhouse effect; the temperature on the surface is even higher than that of Mercury and reaches 475 °C. Considered the slowest, a Venusian day lasts 243 Earth days, which is almost equal to a year on Venus - 225 Earth days. Many call it Earth's sister because of its mass and radius, the values ​​of which are very close to those of Earth. The radius of Venus is 6052 km (0.85% of Earth's). Like Mercury, there are no satellites.

The third planet from the Sun and the only one in our system where there is liquid water on the surface, without which life on the planet could not have developed. At least life as we know it. The radius of the Earth is 6371 km and, unlike other celestial bodies in our system, more than 70% of its surface is covered with water. The rest of the space is occupied by continents. Another feature of the Earth is the tectonic plates hidden under the planet's mantle. At the same time, they are able to move, albeit at a very low speed, which over time causes changes in the landscape. The speed of the planet moving along it is 29-30 km/sec.

Our planet from space

One revolution around its axis takes almost 24 hours, and complete walkthrough in orbit lasts 365 days, which is much longer in comparison with its closest neighboring planets. The Earth's day and year are also accepted as a standard, but this is done only for the convenience of perceiving time periods on other planets. The Earth has one natural satellite - the Moon.

Mars

The fourth planet from the Sun, known for its thin atmosphere. Since 1960, Mars has been actively explored by scientists from several countries, including the USSR and the USA. Not all exploration programs have been successful, but water found at some sites suggests that primitive life exists on Mars, or existed in the past.

The brightness of this planet allows it to be seen from Earth without any instruments. Moreover, once every 15-17 years, during the Confrontation, it becomes the brightest object in the sky, eclipsing even Jupiter and Venus.

The radius is almost half that of Earth and is 3390 km, but the year is much longer - 687 days. He has 2 satellites - Phobos and Deimos .

Visual model of the solar system

Attention! The animation only works in browsers that support the -webkit standard ( Google Chrome, Opera or Safari).

  • Sun

    The Sun is a star that is a hot ball of hot gases at the center of our Solar System. Its influence extends far beyond the orbits of Neptune and Pluto. Without the Sun and its intense energy and heat, there would be no life on Earth. There are billions of stars like our Sun scattered throughout the Milky Way galaxy.

  • Mercury

    Sun-scorched Mercury is only slightly larger than Earth's satellite the Moon. Like the Moon, Mercury is practically devoid of an atmosphere and cannot smooth out the traces of impact from falling meteorites, so it, like the Moon, is covered with craters. The day side of Mercury gets very hot from the Sun, while on the night side the temperature drops hundreds of degrees below zero. There is ice in the craters of Mercury, which are located at the poles. Mercury completes one revolution around the Sun every 88 days.

  • Venus

    Venus is a world of monstrous heat (even more than on Mercury) and volcanic activity. Similar in structure and size to Earth, Venus is covered by a thick and toxic atmosphere that creates a strong greenhouse effect. This scorched world is hot enough to melt lead. Radar images through the powerful atmosphere revealed volcanoes and deformed mountains. Venus rotates in opposite direction, from the rotation of most planets.

  • Earth is an ocean planet. Our home, with its abundance of water and life, makes it unique in our solar system. Other planets, including several moons, also have ice deposits, atmospheres, seasons and even weather, but only on Earth did all these components come together in a way that made life possible.

  • Mars

    Although details of the surface of Mars are difficult to see from Earth, observations through a telescope indicate that Mars has seasons and white spots at the poles. For decades, people believed that the bright and dark areas on Mars were patches of vegetation, that Mars might be a suitable place for life, and that water existed in the polar ice caps. When the Mariner 4 spacecraft arrived at Mars in 1965, many scientists were shocked to see photographs of the murky, cratered planet. Mars turned out to be dead planet. More recent missions, however, have revealed that Mars holds many mysteries that remain to be solved.

  • Jupiter

    Jupiter is the most massive planet in our solar system, with four large moons and many small moons. Jupiter forms a kind of miniature solar system. To become a full-fledged star, Jupiter needed to become 80 times more massive.

  • Saturn

    Saturn is the farthest of the five planets known before the invention of the telescope. Like Jupiter, Saturn is composed primarily of hydrogen and helium. Its volume is 755 times greater than that of the Earth. Winds in its atmosphere reach speeds of 500 meters per second. These fast winds, combined with heat rising from the planet's interior, cause the yellow and golden streaks we see in the atmosphere.

  • Uranus

    The first planet found using a telescope, Uranus was discovered in 1781 by astronomer William Herschel. The seventh planet is so far from the Sun that one revolution around the Sun takes 84 years.

  • Neptune

    Distant Neptune rotates almost 4.5 billion kilometers from the Sun. It takes him 165 years to complete one revolution around the Sun. It is invisible to the naked eye due to its vast distance from Earth. Interestingly, its unusual elliptical orbit intersects with the orbit of the dwarf planet Pluto, which is why Pluto is inside the orbit of Neptune for about 20 years out of 248 during which it makes one revolution around the Sun.

  • Pluto

    Tiny, cold and incredibly distant, Pluto was discovered in 1930 and was long considered the ninth planet. But after discoveries of Pluto-like worlds that were even further away, Pluto was reclassified as a dwarf planet in 2006.

Planets are giants

There are four gas giants located beyond the orbit of Mars: Jupiter, Saturn, Uranus, Neptune. They are located in the outer solar system. They are distinguished by their massiveness and gas composition.

Planets of the solar system, not to scale

Jupiter

Fifth in a row from the Sun and largest planet our system. Its radius is 69912 km, it is 19 times more than Earth and only 10 times smaller than the Sun. The year on Jupiter is not the longest in the solar system, lasting 4333 Earth days (less than 12 years). His own day has a duration of about 10 Earth hours. The exact composition of the planet’s surface has not yet been determined, but it is known that krypton, argon and xenon are present on Jupiter in much greater quantities. large quantities than on the Sun.

There is an opinion that one of the four gas giants is actually a failed star. This theory is also supported by the largest number of satellites, of which Jupiter has many - as many as 67. To imagine their behavior in the planet’s orbit, you need a fairly accurate and clear model of the solar system. The largest of them are Callisto, Ganymede, Io and Europa. Moreover, Ganymede is the largest satellite of the planets in the entire solar system, its radius is 2634 km, which is 8% greater than the size of Mercury, the smallest planet in our system. Io has the distinction of being one of only three moons with an atmosphere.

Saturn

The second largest planet and the sixth in the solar system. Compared to other planets, its composition is most similar to the Sun chemical elements. The radius of the surface is 57,350 km, the year is 10,759 days (almost 30 Earth years). A day here lasts a little longer than on Jupiter - 10.5 Earth hours. In terms of the number of satellites, it is not much behind its neighbor - 62 versus 67. The most large satellite Saturn's planet is Titan, as is Io, which is distinguished by the presence of an atmosphere. Slightly smaller in size, but no less famous are Enceladus, Rhea, Dione, Tethys, Iapetus and Mimas. It is these satellites that are the objects for the most frequent observation, and therefore we can say that they are the most studied in comparison with the others.

For a long time, the rings on Saturn were considered a unique phenomenon unique to it. Only recently it was established that all gas giants have rings, but in others they are not so clearly visible. Their origin has not yet been established, although there are several hypotheses about how they appeared. In addition, it was recently discovered that Rhea, one of the satellites of the sixth planet, also has some kind of rings.