Creator of the first bomb. Successful bomb tests

Truth in the penultimate instance

There are not many things in the world that are considered indisputable. Well, I think you know that the sun rises in the east and sets in the west. And that the Moon revolves around the Earth, too. And about the fact that the Americans were the first to create the atomic bomb, ahead of both the Germans and the Russians.

That’s what I thought too, until about four years ago when an old magazine came into my hands. He left my beliefs about the sun and moon alone, but faith in American leadership has been shaken quite seriously. It was a thick volume in German - a binder of the journal "Theoretical Physics" for 1938. I don’t remember why I went there, but quite unexpectedly I came across an article by Professor Otto Hahn.

The name was familiar to me. It was Hahn, the famous German physicist and radiochemist, who in 1938, together with another prominent scientist, Fritz Straussmann, discovered the fission of the uranium nucleus, essentially giving rise to work on the creation of nuclear weapons. At first I just skimmed the article diagonally, but then completely unexpected phrases forced me to become more attentive. And, ultimately, I even forget about why I initially picked up this magazine.

Gan's article was devoted to a review of nuclear developments in different countries of the world. Strictly speaking, there was nothing special to see: everywhere except Germany, nuclear research was in the background. They didn't see much point. " This abstract matter has nothing to do with state needs“,” said British Prime Minister Neville Chamberlain around the same time, when he was asked to support British atomic research with budget money.

« Let these bespectacled scientists look for money themselves, the state is full of other problems! — this is what most world leaders thought in the 1930s. With the exception, of course, of the Nazis, who financed the nuclear program.
But it was not Chamberlain's passage, carefully quoted by Hahn, that attracted my attention. The author of these lines is not particularly interested in England at all. Much more interesting was what Hahn wrote about the state of nuclear research in the United States. And he literally wrote the following:

If we talk about a country in which the least attention is paid to nuclear fission processes, then we should undoubtedly name the USA. Of course, I'm not considering Brazil or the Vatican right now. However among developed countries, even Italy and communist Russia are significantly ahead of the United States. Little attention is paid to the problems of theoretical physics on the other side of the ocean; priority is given to applied developments that can provide immediate profit. Therefore, I can confidently say that during the next decade the North Americans will not be able to do anything significant for the development of atomic physics.

At first I just laughed. Wow, how wrong my compatriot was! And only then did I think: whatever one may say, Otto Hahn was not a simpleton or an amateur. He was well informed about the state of atomic research, especially since before the outbreak of World War II this topic was freely discussed in scientific circles.

Maybe the Americans misinformed the whole world? But for what purpose? No one had yet thought about atomic weapons in the 1930s. Moreover, most scientists considered its creation impossible in principle. That is why, until 1939, the whole world instantly learned about all new achievements in atomic physics - they were published completely openly in scientific journals. No one hid the fruits of their labor; on the contrary, there was open rivalry between various groups of scientists (almost exclusively Germans) - who would move forward faster?

Maybe scientists in the States were ahead of the rest of the world and therefore kept their achievements secret? Not a bad guess. To confirm or refute it, we will have to consider the history of the creation of the American atomic bomb- at least as it appears in official publications. We are all accustomed to taking it for granted. However, upon closer examination, there are so many oddities and inconsistencies in it that you are simply amazed.

From the world by thread - Bomb to the States

The year 1942 started well for the British. The German invasion of their small island, which had seemed inevitable, now, as if by magic, retreated into the foggy distance. Last summer, Hitler made the main mistake of his life - he attacked Russia. This was the beginning of the end. The Russians not only survived despite the hopes of Berlin strategists and the pessimistic forecasts of many observers, but also gave the Wehrmacht a good kick in the teeth during the frosty winter. And in December, the large and powerful United States came to the aid of the British, which now became an official ally. In general, there were more than enough reasons for joy.

Only a few high-ranking officials who had information received by British intelligence were not happy. At the end of 1941, the British learned that the Germans were developing their atomic research at a frantic pace.. The final goal of this process also became clear: a nuclear bomb. British atomic scientists were competent enough to imagine the threat posed by the new weapon.

At the same time, the British had no illusions about their capabilities. All the country's resources were aimed at basic survival. Although the Germans and Japanese were up to their necks in the war with the Russians and Americans, they occasionally found an opportunity to poke their fist at a dilapidated building British Empire. From each such poke, the rotten building staggered and creaked, threatening to collapse.

Rommel's three divisions pinned down almost the entire combat-ready British army in North Africa. Admiral Dönitz's submarines, like predatory sharks, darted in the Atlantic, threatening to interrupt the vital supply line from overseas. Britain simply did not have the resources to enter into a nuclear race with the Germans. The backlog was already large, and in the very near future it threatened to become hopeless.

It must be said that the Americans were skeptical at first about such a gift. The military department did not understand why it should spend money on some obscure project. What other new weapons are there? Here are aircraft carrier groups and armadas of heavy bombers - yes, this is power. And the nuclear bomb, which scientists themselves imagine very vaguely, is just an abstraction, an old wives’ tale.

British Prime Minister Winston Churchill had to directly appeal to American President Franklin Delano Roosevelt with a request, literally a plea, not to reject english gift. Roosevelt summoned scientists, looked into the issue and gave the go-ahead.

Usually the creators of the canonical legend of the American bomb use this episode to emphasize the wisdom of Roosevelt. Look, what an insightful president! We will look at this with slightly different eyes: in what kind of pen were the Yankees' atomic research if they refused to cooperate with the British for so long and stubbornly!

It was only in September 1942 that the decision was made to begin work on an atomic bomb. The organizational period took some more time, and things really got off the ground only with the advent of the new year, 1943. From the army, the work was headed by General Leslie Groves (he would later write memoirs in which he would detail the official version of what happened); the real leader was Professor Robert Oppenheimer. I will talk about it in detail a little later, but for now let’s admire another interesting detail - how the team of scientists who began work on the bomb was formed.

As a matter of fact, when Oppenheimer was asked to recruit specialists, he had very little choice. Good nuclear physicists in the States could be counted on the fingers of a crippled hand. Therefore, the professor made a wise decision - to recruit people whom he knew personally and whom he could trust, regardless of what area of ​​​​physics they had previously worked on. And so it turned out that the lion's share of the places were occupied by Columbia University employees from the Manhattan area (by the way, this is why the project received the name Manhattan).

But even these forces turned out to be not enough. It was necessary to involve British scientists in the work, literally devastating English research centers, and even specialists from Canada. In general, the Manhattan Project turned into something like Tower of Babel, with the only difference being that all its participants spoke at least the same language. However, this did not save us from the usual quarrels and squabbles in the scientific community that arose due to the rivalry of different scientific groups. Echoes of these tensions can be found on the pages of Groves’ book, and they look very funny: the general, on the one hand, wants to convince the reader that everything was orderly and decent, and on the other, to brag about how cleverly he managed to reconcile the scientific luminaries who had completely quarreled.

And so they are trying to convince us that in this friendly atmosphere of a large terrarium, the Americans managed to create an atomic bomb in two and a half years. But the Germans, who cheerfully and amicably labored over their nuclear project for five years, failed to do this. Miracles, and that's all.

However, even if there were no squabbles, such record times would still arouse suspicion. The fact is that in the research process you need to go through certain stages, which are almost impossible to shorten. The Americans themselves attribute their success to gigantic funding - ultimately, Over two billion dollars were spent on the Manhattan Project! However, no matter how you feed a pregnant woman, she still will not be able to give birth to a full-term baby before nine months. It’s the same with the nuclear project: it is impossible to significantly speed up, for example, the process of uranium enrichment.

The Germans worked for five years with full effort. Of course, they made mistakes and miscalculations that took away valuable time. But who said that the Americans did not make mistakes and miscalculations? There were, and a lot of them. One of these mistakes was the involvement of the famous physicist Niels Bohr.

Unknown Skorzeny operation

The British intelligence services are very fond of boasting about one of their operations. It's about about the rescue of the great Danish scientist Niels Bohr from Nazi Germany. The official legend says that after the outbreak of World War II, the outstanding physicist lived quietly and calmly in Denmark, leading a fairly secluded lifestyle. The Nazis offered him cooperation many times, but Bohr invariably refused.

By 1943, the Germans finally decided to arrest him. But, warned in time, Niels Bohr managed to escape to Sweden, from where the British took him away in the bomb bay of a heavy bomber. By the end of the year, the physicist found himself in America and began to work zealously for the benefit of the Manhattan Project.

The legend is beautiful and romantic, but it is sewn with white thread and does not stand up to any tests. There is no more reliability in it than in the fairy tales of Charles Perrault. Firstly, because it makes the Nazis look like complete idiots, but they never were. Think carefully! In 1940, the Germans occupy Denmark. They know that a Nobel laureate lives in the country, who can greatly help them in their work on the atomic bomb. The same atomic bomb that is vital for Germany's victory.

And what are they doing? Over the course of three years, they occasionally visit the scientist, politely knock on the door and quietly ask: “ Herr Bohr, don't you want to work for the benefit of the Fuhrer and the Reich? You do not want? Okay, we'll come back later" No, this was not the style of work of the German intelligence services! Logically, they should have arrested Bohr not in 1943, but back in 1940. If it works, force him (just force him, not beg him!) to work for them; if not, at least make sure that he cannot work for the enemy: put him in a concentration camp or exterminate him. And they leave him to walk around freely, under the noses of the British.

Three years later, so the legend goes, the Germans finally realize that they should arrest the scientist. But then someone (precisely someone, because I couldn’t find any indication of who did it anywhere) warns Bohr about the impending danger. Who could it be? It was not the habit of the Gestapo to shout at every corner about impending arrests. People were taken quietly, unexpectedly, at night. This means that Bohr’s mysterious patron is one of the rather high-ranking officials.

Let's leave this mysterious savior angel alone for now and continue to analyze the wanderings of Niels Bohr. So, the scientist fled to Sweden. How do you think? On a fishing boat, avoiding German Coast Guard boats in the fog? On a raft made of planks? No matter how it is! Bor sailed to Sweden in the greatest possible comfort on a very ordinary private ship, which officially called at the port of Copenhagen.

For now, let’s not rack our brains over the question of how the Germans released the scientist if they were going to arrest him. Let's think about this better. The flight of a world-famous physicist is an emergency of a very serious scale. An investigation had to inevitably be carried out on this matter - the heads of those who screwed up the physicist, as well as the mysterious patron, would fly. However, no traces of such an investigation were simply found. Maybe because he wasn't there.

Indeed, how important was Niels Bohr to the development of the atomic bomb? Born in 1885 and becoming a Nobel laureate in 1922, Bohr turned to the problems of nuclear physics only in the 1930s. At that time he was already a major, accomplished scientist with fully formed views. Such people rarely succeed in fields that require innovation and out-of-the-box thinking, which is precisely the field of nuclear physics. For several years, Bohr failed to make any significant contribution to atomic research.

However, as the ancients said, the first half of a person’s life works for a name, the second - a name for a person. For Niels Bohr, this second half has already begun. Having taken up nuclear physics, he automatically began to be considered a major specialist in this field, regardless of his actual achievements.

But in Germany, where such world-famous nuclear scientists as Hahn and Heisenberg worked, they knew the real value of the Danish scientist. That is why they did not actively try to involve him in the work. If it turns out well, we’ll tell the whole world that Niels Bohr himself is working for us. If it doesn’t work out, that’s also not bad; he won’t get in the way of his authority.

By the way, in the United States, Niels Bohr was largely in the way. The fact is that the outstanding physicist did not believe at all in the possibility of creating a nuclear bomb. At the same time, his authority forced his opinion to be taken into account. According to Groves' memoirs, the scientists working on the Manhattan Project treated Bohr as an elder. Now imagine that you are doing something difficult work without any certainty of ultimate success. And then someone comes up to you, whom you consider a great specialist, and says that your lesson is not even worth wasting time on. Will work get easier? Don't think.

In addition, Bohr was a convinced pacifist. In 1945, when the United States already had an atomic bomb, he categorically protested against its use. Accordingly, he treated his work with lukewarmness. Therefore, I urge you to think again: what did Bohr bring more - movement or stagnation in the development of the issue?

It’s a strange picture, isn’t it? It began to clear up a little after I learned one interesting detail, which seemed to have nothing to do with Niels Bohr or the atomic bomb. We are talking about the “chief saboteur of the Third Reich” Otto Skorzeny.

It is believed that Skorzeny's rise began after he freed the imprisoned Italian dictator Benito Mussolini in 1943. Imprisoned in a mountain prison by his former comrades, Mussolini could not, it would seem, hope for release. But Skorzeny, on the direct orders of Hitler, developed a daring plan: to land troops on gliders and then fly away in a small airplane. Everything turned out just fine: Mussolini was free, Skorzeny was held in high esteem.

At least that's what the majority thinks. Few well-informed historians know that cause and effect are confused here. Skorzeny was entrusted with an extremely difficult and responsible task precisely because Hitler trusted him. That is, the rise of the “king of special operations” began before the story of the rescue of Mussolini. However, very shortly - in a couple of months. Skorzeny was promoted to rank and position precisely when Niels Bohr fled to England. I couldn't find any reasons for a promotion anywhere.

So we have three facts:
Firstly, the Germans did not prevent Niels Bohr from leaving for Britain;
Secondly, Boron did more harm than good to Americans;
Thirdly, immediately after the scientist arrived in England, Skorzeny received a promotion.

What if these are parts of the same mosaic? I decided to try to reconstruct the events. Having captured Denmark, the Germans were well aware that Niels Bohr was unlikely to assist in the creation of the atomic bomb. Moreover, it will rather interfere. Therefore, he was left to live quietly in Denmark, under the very nose of the British. Perhaps even then the Germans were counting on the British to kidnap the scientist. However, for three years the British did not dare to do anything.

At the end of 1942, the Germans began to hear vague rumors about the start of a large-scale project to create an American atomic bomb. Even taking into account the secrecy of the project, it was absolutely impossible to keep an awl in the bag: the instant disappearance of hundreds of scientists from different countries, one way or another connected with nuclear research, should have pushed anyone mentally normal person to such conclusions.

The Nazis were confident that they were far ahead of the Yankees (and this was true), but this did not stop them from doing nasty things to the enemy. And so, at the beginning of 1943, one of the most secret operations of the German intelligence services was carried out. A certain well-wisher appears on the threshold of Niels Bohr's house, who tells him that they want to arrest him and throw him into a concentration camp, and offers his help. The scientist agrees - he has no other choice, being behind barbed wire is not the best prospect.

At the same time, apparently, the British are being fed a lie about Bohr’s complete irreplaceability and uniqueness in nuclear research. The British are biting - but what can they do if the prey itself goes into their hands, that is, to Sweden? And for complete heroism, they take Bor out of there in the belly of a bomber, although they could have comfortably sent him on a ship.

And then the Nobel laureate appears at the epicenter of the Manhattan Project, creating the effect of an exploding bomb. That is, if the Germans had managed to bomb the research center at Los Alamos, the effect would have been approximately the same. Work has slowed down, and quite significantly. Apparently, the Americans did not immediately realize how they had been deceived, and when they realized, it was already too late.
And you still believe that the Yankees themselves built the atomic bomb?

Alsos Mission

Personally, I finally refused to believe in these stories after I studied in detail the activities of the Alsos group. This operation of the American intelligence services was kept secret for many years - until its main participants left for a better world. And only then did information emerge—true, fragmentary and scattered—about how the Americans were hunting for German atomic secrets.

True, if you thoroughly work on this information and compare it with some well-known facts, the picture turns out to be very convincing. But I won't get ahead of myself. So, the Alsos group was formed in 1944, on the eve of the Anglo-American landing in Normandy. Half of the group members are professional intelligence officers, half are nuclear scientists.

At the same time, in order to form Alsos, the Manhattan Project was mercilessly robbed - in fact, the best specialists were taken from there. The mission's objective was to collect information about the German nuclear program. The question is, how desperate are the Americans for the success of their undertaking if their main bet is on stealing the atomic bomb from the Germans?
They were very desperate, if you remember the little-known letter from one of the nuclear scientists to his colleague. It was written on February 4, 1944 and read:

« It seems we've gotten ourselves into a lost cause. The project is not moving forward one iota. Our leaders, in my opinion, do not believe in the success of the entire undertaking. Yes, and we don’t believe it. If it weren’t for the huge money that we are paid here, I think many would have long ago been doing something more useful».

This letter was cited at one time as evidence of American talent: what great fellows we are, we pulled off a hopeless project in just over a year! Then in the USA they realized that not only fools live around, and they hastened to forget about the piece of paper. With great difficulty I managed to dig up this document in an old scientific journal.

No money or effort was spared to ensure the actions of the Alsos group. It was perfectly equipped with everything necessary. The head of the mission, Colonel Pash, had with him a document from US Secretary of Defense Henry Stimson, which obliged everyone to provide all possible assistance to the group. Even the Commander-in-Chief of the Allied Forces, Dwight Eisenhower, did not have such powers.. By the way, about the commander-in-chief - he was obliged to take into account the interests of the Alsos mission in planning military operations, that is, to capture first of all those areas where there could be German atomic weapons.

At the beginning of August 1944, or to be precise on the 9th, the Alsos group landed in Europe. One of the leading US nuclear scientists, Dr. Samuel Goudsmit, was appointed scientific director of the mission. Before the war, he maintained close ties with his German colleagues, and the Americans hoped that the “international solidarity” of scientists would be stronger than political interests.

Alsos managed to achieve its first results after the Americans occupied Paris in the fall of 1944.. Here Goudsmit met with the famous French scientist Professor Joliot-Curie. It seemed that Curie was sincerely happy about the defeats of the Germans; however, as soon as the conversation turned to the German atomic program, he went into deep “ignorance.” The Frenchman insisted that he knew nothing, had not heard anything, the Germans had not come close to developing an atomic bomb, and in general their nuclear project was exclusively peaceful in nature.

It was clear that the professor was not saying something. But there was no way to put pressure on him - for collaborating with the Germans in France at that time, people were shot, regardless of scientific merits, and Curie was clearly afraid of death most of all. Therefore, Goudsmit had to leave empty-handed.

Throughout his stay in Paris, he constantly heard vague but threatening rumors: A uranium bomb exploded in Leipzig., in the mountainous regions of Bavaria strange outbreaks have been reported at night. Everything indicated that the Germans were not very close to creating atomic weapons, otherwise they have already created it.

What happened next is still shrouded in mystery. They say that Pash and Goudsmit managed to find some valuable information in Paris. Since at least November, Eisenhower has been constantly receiving demands to move forward into German territory at any cost. The initiators of these demands - now it is clear! — in the end there were people associated with the atomic project and who received information directly from the Alsos group. Eisenhower had no real ability to carry out the orders he received, but the demands from Washington became increasingly harsh. It is unknown how all this would have ended if the Germans had not made another unexpected move.

Ardennes mystery

As a matter of fact, by the end of 1944 everyone believed that Germany had lost the war. The only question is how long it will take for the Nazis to be defeated. Only Hitler and his inner circle seemed to hold a different point of view. They tried to delay the moment of disaster until the last moment.

This desire is quite understandable. Hitler was sure that after the war he would be declared a criminal and tried. And if you stall for time, you can lead to a quarrel between the Russians and the Americans and, ultimately, get away with it, that is, out of the war. Not without losses, of course, but without losing power.

Let's think about it: what was needed for this in conditions when Germany had nothing left? Naturally, spend them as sparingly as possible and maintain a flexible defense. And Hitler, at the very end of 1944, threw his army into the very wasteful Ardennes offensive. For what?

The troops are given completely unrealistic tasks - to break through to Amsterdam and throw the Anglo-Americans into the sea. At that time, German tanks were like walking to the Moon from Amsterdam, especially since their tanks had fuel splashing less than half the way. Scare your allies? But what could frighten the well-fed and armed armies, behind which was the industrial power of the United States?

All in all, Until now, not a single historian has been able to clearly explain why Hitler needed this offensive. Usually everyone ends up saying that the Fuhrer was an idiot. But in reality, Hitler was not an idiot; moreover, he thought quite sensibly and realistically until the very end. Those historians who make hasty judgments without even trying to understand something can most likely be called idiots.

But let's look at the other side of the front. Even more amazing things are happening there! And the point is not even that the Germans managed to achieve initial, albeit rather limited, successes. The fact is that the British and Americans were really scared! Moreover, the fear was completely inadequate to the threat. After all, from the very beginning it was clear that the Germans had little strength, that the offensive was local in nature...

But no, Eisenhower, Churchill, and Roosevelt are simply panicking! In 1945, on January 6, when the Germans had already been stopped and even thrown back, British Prime Minister writes panic letter to Russian leader Stalin, which requires immediate assistance. Here is the text of this letter:

« Very heavy fighting is taking place in the West, and at any time the High Command may be required to big solutions. You yourself know from your own experience how alarming the situation is when you have to defend a very wide front after a temporary loss of initiative.

It is very desirable and necessary for General Eisenhower to know general outline, what you propose to do, since this, of course, will affect all his and our most important decisions. According to the message received, our emissary, Air Chief Marshal Tedder, was in Cairo last evening, due to weather conditions. His trip was greatly delayed through no fault of yours.

If it has not yet arrived to you, I shall be grateful if you can inform me whether we can count on a major Russian offensive on the Vistula front or elsewhere during January and at any other times that you may be thinking about. , would you like to mention. I will not pass on this highly sensitive information to anyone except Field Marshal Brooke and General Eisenhower, and only on condition that it is kept in the strictest confidence. I consider the matter urgent».

If we translate from diplomatic language into ordinary language: save us, Stalin, they will beat us! Therein lies another mystery. What will they “beat” if the Germans have already been driven back to their original lines? Yes, of course, the American offensive, planned for January, had to be postponed until the spring. And what? We should be glad that the Nazis wasted their strength in senseless attacks!

And further. Churchill was asleep and saw how to prevent the Russians from entering Germany. And now he is literally begging them to begin moving west without delay! To what extent should Sir Winston Churchill have been afraid?! It seems that the slowdown in the Allied advance deep into Germany was interpreted by him as a mortal threat. I wonder why? After all, Churchill was neither a fool nor an alarmist.

And yet, the Anglo-Americans spend the next two months in terrible nervous tension. Subsequently, they will carefully hide this, but the truth will still break through to the surface in their memoirs. For example, Eisenhower after the war would call the last war winter “the most alarming time.”

What worried the marshal so much if the war was actually won? Only in March 1945 did the Ruhr Operation begin, during which the Allies occupied West Germany, encircling 300 thousand Germans. The commander of the German troops in this area, Field Marshal Model, shot himself (the only one of the entire German generals, by the way). Only after this did Churchill and Roosevelt more or less calm down.

But let's return to the Alsos group. In the spring of 1945, it became noticeably more active. During the Ruhr operation, scientists and intelligence officers moved forward almost following the vanguard of the advancing troops, collecting valuable crops. In March-April, many scientists involved in German nuclear research fall into their hands. The decisive discovery was made in mid-April - on the 12th, mission members write that they stumbled upon “a real gold mine” and now they are “learning about the project in general.” By May, Heisenberg, Hahn, Osenberg, Diebner, and many other outstanding German physicists were in the hands of the Americans. However, the Alsos group continued active searches in already defeated Germany... until the end of May.

But at the end of May something incomprehensible happens. The search is almost interrupted. Or rather, they continue, but with much less intensity. If previously they were carried out by major world-famous scientists, now they are carried out by beardless laboratory assistants. And major scientists are packing their bags and leaving for America. Why?

To answer this question, let's look at how events developed further.

At the end of June, the Americans test an atomic bomb - allegedly the first in the world.
And in early August they drop two on Japanese cities.
After this, the Yankees run out of ready-made atomic bombs, and for quite a long time.

Strange situation, isn't it? Let's start with the fact that only a month passes between testing and combat use of a new superweapon. Dear readers, this does not happen. Making an atomic bomb is much more difficult than making a conventional projectile or rocket. This is simply impossible in a month. Then, probably, the Americans made three prototypes at once? Also unlikely.

Making a nuclear bomb is a very expensive procedure. There's no point in doing three if you're not sure you're doing it right. Otherwise it would be possible to create three nuclear project, build three scientific center and so on. Even the US is not rich enough to be so extravagant.

However, okay, let’s assume that the Americans actually built three prototypes at once. Why didn’t they immediately after successful tests launch nuclear bombs into mass production? After all, immediately after the defeat of Germany, the Americans found themselves faced with a much more powerful and formidable enemy - the Russians. The Russians, of course, did not threaten the United States with war, but they prevented the Americans from becoming masters of the entire planet. And this, from the Yankees’ point of view, is a completely unacceptable crime.

And yet, the States got new atomic bombs... When do you think? In the fall of 1945? Summer of 1946? No! Only in 1947 did the first nuclear weapons begin to arrive in American arsenals! You will not find this date anywhere, but no one will undertake to refute it. The data that I managed to obtain is absolutely secret. However, they are fully confirmed by the facts we know about the subsequent buildup of the nuclear arsenal. And most importantly - the results of tests in the deserts of Texas, which took place at the end of 1946.

Yes, yes, dear reader, exactly at the end of 1946, and not a month earlier. Information about this was obtained by Russian intelligence and came to me very the hard way, which probably doesn’t make sense to be disclosed on these pages, so as not to expose the people who helped me. On the eve of the new year, 1947, a very interesting report landed on the table of the Soviet leader Stalin, which I will present here verbatim.

According to Agent Felix, in November-December of this year, a series of nuclear explosions were carried out in the area of ​​El Paso, Texas. At the same time, prototypes of nuclear bombs similar to those dropped on the Japanese islands last year were tested.

Over the course of a month and a half, at least four bombs were tested, three of which ended in failure. This series of bombs was created in preparation for the large-scale industrial production of nuclear weapons. Most likely, the start of such production should be expected no earlier than mid-1947.

The Russian agent fully confirmed the information I had. But maybe all this is disinformation on the part of the American intelligence services? Hardly. In those years, the Yankees tried to assure their opponents that they were stronger than anyone in the world, and would not downplay their military potential. Most likely, we are dealing with a carefully hidden truth.

What happens? In 1945, the Americans dropped three bombs - all successfully. The next tests are of the same bombs! - pass a year and a half later, and not very successfully. Serial production begins in another six months, and we do not know - and will never know - how well the atomic bombs that appeared in American army warehouses corresponded to their terrible purpose, that is, how high quality they were.

Such a picture can only be drawn in one case, namely: if the first three atomic bombs - the same ones from 1945 - were not built by the Americans on their own, but received from someone. To put it bluntly - from the Germans. This hypothesis is indirectly confirmed by the reaction of German scientists to the bombing of Japanese cities, which we know about thanks to the book by David Irving.

“Poor Professor Gan!”

In August 1945, ten leading German nuclear physicists, ten major players in the Nazi “atomic project,” were held captive in the United States. All possible information was extracted from them (I wonder why, if you believe the American version that the Yankees were far ahead of the Germans in atomic research). Accordingly, the scientists were kept in a sort of comfortable prison. There was also a radio in this prison.

On August 6th at seven o'clock in the evening, Otto Hahn and Karl Wirtz found themselves at the radio. It was then that in the next news broadcast they heard that the first atomic bomb had been dropped on Japan. The first reaction of the colleagues to whom they brought this information was unequivocal: this cannot be true. Heisenberg believed that the Americans could not create their own nuclear weapons (and, as we now know, he was right).

« Did the Americans mention the word "uranium" in connection with their new bomb?“he asked Gan. The latter answered negatively. “Then it has nothing to do with the atom,” Heisenberg snapped. The outstanding physicist believed that the Yankees simply used some kind of high-power explosive.

However, the nine o'clock news broadcast dispelled all doubts. Obviously, until then the Germans simply did not imagine that the Americans managed to capture several German atomic bombs. However, now the situation has become clearer, and scientists have begun to be tormented by pangs of conscience. Yes Yes exactly! Dr. Erich Bagge wrote in his diary: “ Now this bomb was used against Japan. They report that even several hours later, the bombed city is hidden in a cloud of smoke and dust. We are talking about the death of 300 thousand people. Poor Professor Gan

Moreover, that evening the scientists were very worried that “poor Gan” would commit suicide. The two physicists kept vigil at his bedside late into the night to prevent him from committing suicide, and retired to their rooms only after they discovered that their colleague was finally fast asleep. Gan himself subsequently described his impressions as follows:

For some time I was obsessed with the idea of ​​​​the need to dump all uranium reserves into the sea in order to avoid a similar catastrophe in the future. Although I felt personally responsible for what had happened, I wondered whether I or anyone else had the right to deprive humanity of all the benefits that a new discovery could bring? And now this terrible bomb has gone off!

I wonder if the Americans are telling the truth, and they really created the bomb that fell on Hiroshima, why on earth would the Germans feel “personally responsible” for what happened?

Of course, each of them contributed to nuclear research, but on the same basis one could lay some of the blame on thousands of scientists, including Newton and Archimedes! After all, their discoveries ultimately led to the creation of nuclear weapons!

The mental anguish of German scientists becomes meaningful only in one case. Namely, if they themselves created the bomb that destroyed hundreds of thousands of Japanese. Otherwise, why on earth would they worry about what the Americans did?

/However, so far all my conclusions have been nothing more than a hypothesis, confirmed only by indirect evidence. What if I’m wrong and the Americans really achieved the impossible? To answer this question, it was necessary to closely study the German atomic program. And this is not as simple as it seems. Hans-Ulrich von Kranz, " Secret weapon/

Third Reich", topwar.ru

Hundreds of thousands of famous and forgotten gunsmiths of antiquity fought in search of the ideal weapon, capable of evaporating an enemy army with one click. From time to time, a trace of these searches can be found in fairy tales that more or less plausibly describe a miracle sword or a bow that hits without missing. Fortunately, technological progress moved so slowly for a long time that the real embodiment of the devastating weapon remained in dreams and oral stories, and later on the pages of books. The scientific and technological leap of the 19th century provided the conditions for the creation of the main phobia of the 20th century. Nuclear bomb created and tested in real conditions

, revolutionized both military affairs and politics.

History of the creation of weapons

Uranium itself has been known since 1786, but at that time no one suspected its radioactivity. The work of scientists at the turn of the 19th and 20th centuries revealed not only special physical properties, but also the possibility of obtaining energy from radioactive substances.

The option of making weapons based on uranium was first described in detail, published and patented by French physicists, the Joliot-Curies in 1939.

Despite its value for weapons, the scientists themselves were strongly opposed to the creation of such a devastating weapon.

Having gone through the Second World War in the Resistance, in the 1950s the couple (Frederick and Irene), realizing the destructive power of war, advocated for general disarmament. They are supported by Niels Bohr, Albert Einstein and other prominent physicists of the time.

Meanwhile, while the Joliot-Curies were busy with the problem of the Nazis in Paris, on the other side of the planet, in America, the world's first nuclear charge was being developed. Robert Oppenheimer, who led the work, was given the broadest powers and enormous resources. The end of 1941 marked the beginning of the Manhattan Project, which ultimately led to the creation of the first combat nuclear warhead.


In the town of Los Alamos, New Mexico, the first production facilities for weapons-grade uranium were erected. Subsequently, similar nuclear centers appeared throughout the country, for example in Chicago, in Oak Ridge, Tennessee, and research was carried out in California. The best forces of the professors of American universities, as well as physicists who fled from Germany, were thrown into creating the bomb.

In the “Third Reich” itself, work on creating a new type of weapon was launched in a manner characteristic of the Fuhrer.

Since “Besnovaty” was more interested in tanks and planes, and the more the better, he did not see much need for a new miracle bomb.

Accordingly, projects not supported by Hitler moved at a snail's pace at best.

When things started to get hot, and it turned out that the tanks and planes were swallowed up by the Eastern Front, the new miracle weapon received support. But it was too late; in conditions of bombing and constant fear of Soviet tank wedges, it was not possible to create a device with a nuclear component.

Soviet Union was more attentive to the possibility of creating a new type destructive weapons. In the pre-war period, physicists collected and consolidated general knowledge about nuclear energy and the possibility of creating nuclear weapons. Intelligence worked intensively throughout the entire period of the creation of the nuclear bomb both in the USSR and in the USA. The war played a significant role in slowing down the pace of development, as huge resources went to the front.

True, Academician Igor Vasilyevich Kurchatov, with his characteristic tenacity, promoted the work of all subordinate departments in this direction. Looking ahead a little, it is he who will be tasked with accelerating the development of weapons in the face of the threat of an American strike on the cities of the USSR. It was he, standing in the gravel of a huge machine of hundreds and thousands of scientists and workers, who would be awarded the honorary title of the father of the Soviet nuclear bomb.

World's first tests

But let's return to the American nuclear program. By the summer of 1945, American scientists managed to create the world's first nuclear bomb. Any boy who has made himself or bought a powerful firecracker in a store experiences extraordinary torment, wanting to blow it up as quickly as possible. In 1945, hundreds of American soldiers and scientists experienced the same thing.

On June 16, 1945, the first ever nuclear weapons test and one of the most powerful explosions to date took place in the Alamogordo Desert, New Mexico.

Eyewitnesses watching the explosion from the bunker were amazed by the force with which the charge exploded at the top of the 30-meter steel tower. At first, everything was flooded with light, several times stronger than the sun. Then he rose into the sky fire ball, which turned into a column of smoke, shaped into the famous mushroom.

As soon as the dust settled, researchers and bomb creators rushed to the site of the explosion. They watched the consequences from lead-encrusted Sherman tanks. What they saw amazed them; no weapon could cause such damage. The sand melted to glass in places.


Tiny remains of the tower were also found; in a crater of huge diameter, mutilated and crushed structures clearly illustrated the destructive power.

Damaging factors

This explosion provided the first information about the power of the new weapon, about what it could use to destroy the enemy. These are several factors:

  • light radiation, flash, capable of blinding even protected organs of vision;
  • shock wave, a dense stream of air moving from the center, destroying most buildings;
  • an electromagnetic pulse that disables most equipment and does not allow the use of communications for the first time after the explosion;
  • penetrating radiation, the most dangerous factor for those who have taken refuge from other damaging factors, is divided into alpha-beta-gamma irradiation;
  • radioactive contamination that can negatively affect health and life for tens or even hundreds of years.

The further use of nuclear weapons, including in combat, showed all the peculiarities of their impact on living organisms and nature. August 6, 1945 was the last day for tens of thousands of residents of the small city of Hiroshima, then known for several important military installations.

The outcome of the war in the Pacific was a foregone conclusion, but the Pentagon believed that the operation on the Japanese archipelago would cost more than a million lives of US Marines. It was decided to kill several birds with one stone, take Japan out of the war, saving on the landing operation, test a new weapon and announce it to the whole world, and, above all, to the USSR.

At one o'clock in the morning, the plane carrying the "Baby" nuclear bomb took off on a mission.

The bomb, dropped over the city, exploded at an altitude of approximately 600 meters at 8.15 am. All buildings located at a distance of 800 meters from the epicenter were destroyed. The walls of only a few buildings, designed to withstand a magnitude 9 earthquake, survived.

Of every ten people who were within a radius of 600 meters at the time of the bomb explosion, only one could survive. The light radiation turned people into coal, leaving shadow marks on the stone, a dark imprint of the place where the person was. The ensuing blast wave was so strong that it could break glass at a distance of 19 kilometers from the explosion site.


One teenager was knocked out of the house through a window by a dense stream of air; when he landed, the guy saw the walls of the house folding like cards. The blast wave was followed by a fire tornado, destroying those few residents who survived the explosion and did not have time to leave the fire zone. Those at a distance from the explosion began to experience severe malaise, the cause of which was initially unclear to doctors.

Much later, a few weeks later, the term “radiation poisoning” was announced, now known as radiation sickness.

More than 280 thousand people became victims of just one bomb, both directly from the explosion and from subsequent illnesses.

The bombing of Japan with nuclear weapons did not end there. According to the plan, only four to six cities were to be hit, but weather conditions only allowed Nagasaki to be hit. In this city, more than 150 thousand people became victims of the Fat Man bomb.


Promises by the American government to carry out such attacks until Japan surrendered led to an armistice and then to the signing of an agreement that ended World War II. But for nuclear weapons this was just the beginning.

The most powerful bomb in the world

The post-war period was marked by the confrontation between the USSR bloc and its allies with the USA and NATO. In the 1940s, the Americans seriously considered the possibility of striking the Soviet Union. To contain former ally work on creating a bomb had to be accelerated, and already in 1949, on August 29, the US monopoly in nuclear weapons was ended. During the arms race, two nuclear tests deserve the most attention.

Bikini Atoll, known primarily for frivolous swimsuits, literally made a splash throughout the world in 1954 due to the testing of a specially powerful nuclear charge.

The Americans, having decided to test a new design of atomic weapons, did not calculate the charge. As a result, the explosion was 2.5 times more powerful than planned. Residents of nearby islands, as well as the ubiquitous Japanese fishermen, were under attack.


But it was not the most powerful American bomb. In 1960, the B41 nuclear bomb was put into service, but it never underwent full testing due to its power. The force of the charge was calculated theoretically, for fear of exploding such a dangerous weapon at the test site.

The Soviet Union, which loved to be the first in everything, experienced in 1961, otherwise nicknamed “Kuzka’s mother.”

Responding to America's nuclear blackmail, Soviet scientists created the most powerful bomb in the world. Tested on Novaya Zemlya, it left its mark in almost all corners of the globe. According to recollections, a slight earthquake was felt in the most remote corners at the time of the explosion.


The blast wave, of course, having lost all its destructive power, was able to circle the Earth. To date, this is the most powerful nuclear bomb in the world created and tested by mankind. Of course, if his hands were free, Kim Jong-un's nuclear bomb would be more powerful, but he does not have New Earth to test it.

Atomic bomb device

Let's consider a very primitive, purely for understanding, device of an atomic bomb. There are many classes of atomic bombs, but let’s consider three main ones:

  • uranium, based on uranium 235, first exploded over Hiroshima;
  • plutonium, based on plutonium 239, first exploded over Nagasaki;
  • thermonuclear, sometimes called hydrogen, based on heavy water with deuterium and tritium, fortunately not used against the population.

The first two bombs are based on the effect of heavy nuclei fissioning into smaller ones through an uncontrolled nuclear reaction, releasing huge amounts of energy. The third is based on the fusion of hydrogen nuclei (or rather its isotopes of deuterium and tritium) with the formation of helium, which is heavier in relation to hydrogen. For the same bomb weight, the destructive potential of a hydrogen bomb is 20 times greater.


If for uranium and plutonium it is enough to bring together a mass greater than the critical one (at which a chain reaction begins), then for hydrogen this is not enough.

To reliably connect several pieces of uranium into one, a cannon effect is used in which smaller pieces of uranium are shot into larger ones. Gunpowder can also be used, but for reliability, low-power explosives are used.

In a plutonium bomb, to create the necessary conditions for a chain reaction, explosives are placed around ingots containing plutonium. Due to the cumulative effect, as well as the neutron initiator located at the very center (beryllium with several milligrams of polonium), the necessary conditions are achieved.

It has a main charge, which cannot explode on its own, and a fuse. To create conditions for the fusion of deuterium and tritium nuclei, we need unimaginable pressures and temperatures at at least one point. Next, a chain reaction will occur.

To create such parameters, the bomb includes a conventional, but low-power, nuclear charge, which is the fuse. Its detonation creates the conditions for the start of a thermonuclear reaction.

To estimate the power of an atomic bomb, the so-called “TNT equivalent” is used. An explosion is a release of energy, the most famous explosive in the world is TNT (TNT - trinitrotoluene), and all new types of explosives are equated to it. Bomb "Baby" - 13 kilotons of TNT. That is equivalent to 13000.


Bomb "Fat Man" - 21 kilotons, "Tsar Bomba" - 58 megatons of TNT. It’s scary to think of 58 million tons of explosives concentrated in a mass of 26.5 tons, that’s how much weight this bomb has.

The danger of nuclear war and nuclear disasters

Appearing in the midst of the worst war of the twentieth century, nuclear weapons became the greatest danger to humanity. Immediately after World War II, the Cold War began, which several times almost escalated into a full-fledged nuclear conflict. The threat of the use of nuclear bombs and missiles by at least one side began to be discussed back in the 1950s.

Everyone understood and understands that there can be no winners in this war.

To contain it, efforts have been and are being made by many scientists and politicians. The University of Chicago, using the input of visiting nuclear scientists, including Nobel laureates, sets the Doomsday Clock a few minutes before midnight. Midnight signifies a nuclear cataclysm, the beginning of a new World War and the destruction of the old world. IN different years The clock hands fluctuated from 17 to 2 minutes to midnight.


There are also several known major accidents that occurred at nuclear power plants. These disasters have an indirect relation to weapons; nuclear power plants are still different from nuclear bombs, but they perfectly demonstrate the results of using the atom for military purposes. The largest of them:

  • 1957, Kyshtym accident, due to a failure in the storage system, an explosion occurred near Kyshtym;
  • 1957, Britain, in the north-west of England, security checks were not carried out;
  • 1979, USA, due to an untimely detected leak, an explosion and release from a nuclear power plant occurred;
  • 1986, tragedy in Chernobyl, explosion of the 4th power unit;
  • 2011, accident at the Fukushima station, Japan.

Each of these tragedies left a heavy mark on the fate of hundreds of thousands of people and turned entire areas into non-residential zones with special control.


There were incidents that almost cost the beginning nuclear disaster. Soviet nuclear submarines repeatedly had reactor-related accidents on board. The Americans dropped a Superfortress bomber with two Mark 39 nuclear bombs on board, with a yield of 3.8 megatons. But the activated “safety system” did not allow the charges to detonate and a disaster was avoided.

Nuclear weapons past and present

Today it is clear to anyone that nuclear war will destroy modern humanity. Meanwhile, the desire to possess nuclear weapons and enter the nuclear club, or rather, burst into it by knocking down the door, still excites the minds of some state leaders.

India and Pakistan created nuclear weapons without permission, and the Israelis are hiding the presence of a bomb.

For some, owning a nuclear bomb is a way to prove their importance on the international stage. For others, it is a guarantee of non-interference by winged democracy or other external factors. But the main thing is that these reserves do not go into business, for which they were really created.

Video

The emergence of atomic (nuclear) weapons was due to a mass of objective and subjective factors. Objectively, the creation of atomic weapons came thanks to the rapid development of science, which began with fundamental discoveries in the field of physics in the first half of the twentieth century. The main subjective factor was the military-political situation, when the states of the anti-Hitler coalition began a secret race to develop such powerful weapons. Today we will find out who invented the atomic bomb, how it developed in the world and the Soviet Union, and also get acquainted with its structure and the consequences of its use.

Creation of the atomic bomb

From a scientific point of view, the year of creation of the atomic bomb was the distant 1896. It was then that the French physicist A. Becquerel discovered the radioactivity of uranium. Subsequently, the chain reaction of uranium began to be seen as a source of enormous energy, and became the basis for the development of the most dangerous weapons in the world. However, Becquerel is rarely remembered when talking about who invented the atomic bomb.

Over the next few decades, alpha, beta and gamma rays were discovered by scientists from different parts of the Earth. It was opened then a large number of radioactive isotopes, the law of radioactive decay was formulated and the beginning of the study of nuclear isomerism was laid.

In the 1940s, scientists discovered the neuron and the positron and for the first time carried out the fission of the nucleus of a uranium atom, accompanied by the absorption of neurons. It was this discovery that became turning point in history. In 1939, French physicist Frederic Joliot-Curie patented the world's first nuclear bomb, which he developed with his wife out of purely scientific interest. It was Joliot-Curie who is considered the creator of the atomic bomb, despite the fact that he was a staunch defender of world peace. In 1955, he, along with Einstein, Born and a number of other famous scientists, organized the Pugwash movement, whose members advocated peace and disarmament.

Rapidly developing, atomic weapons have become an unprecedented military-political phenomenon, which makes it possible to ensure the safety of its owner and reduce to a minimum the capabilities of other weapons systems.

How does a nuclear bomb work?

Structurally, an atomic bomb consists of a large number of components, the main ones being the body and automation. The housing is designed to protect automation and nuclear charge from mechanical, thermal, and other influences. Automation controls the timing of the explosion.

It includes:

  1. Emergency explosion.
  2. Cocking and safety devices.
  3. Power supply.
  4. Various sensors.

Transportation of atomic bombs to the site of attack is carried out using missiles (anti-aircraft, ballistic or cruise). Nuclear ammunition can be part of a landmine, torpedo, aircraft bomb and other elements. Used for atomic bombs various systems detonation. The simplest is a device in which the impact of a projectile on a target, causing the formation of a supercritical mass, stimulates an explosion.

Nuclear weapons can be of large, medium and small caliber. The power of the explosion is usually expressed in TNT equivalent. Small-caliber atomic shells have a yield of several thousand tons of TNT. Medium-caliber ones already correspond to tens of thousands of tons, and the capacity of large-caliber ones reaches millions of tons.

Principle of operation

The principle of operation of a nuclear bomb is based on the use of energy released during a nuclear chain reaction. During this process, heavy particles are divided and light particles are synthesized. When an atomic bomb explodes, a huge amount of energy is released over a small area in the shortest period of time. That is why such bombs are classified as weapons of mass destruction.

There are two key areas in the area of ​​a nuclear explosion: the center and the epicenter. At the center of the explosion, the process of energy release directly occurs. The epicenter is the projection of this process onto the earth or water surface. The energy of a nuclear explosion, projected onto the ground, can lead to seismic tremors that spread over a considerable distance. Harm environment These shocks occur only within a radius of several hundred meters from the point of explosion.

Damaging factors

Atomic weapons have the following destruction factors:

  1. Radioactive contamination.
  2. Light radiation.
  3. Shock wave.
  4. Electromagnetic pulse.
  5. Penetrating radiation.

The consequences of an atomic bomb explosion are disastrous for all living things. Due to the release of a huge amount of light and heat energy, the explosion of a nuclear projectile is accompanied by a bright flash. The power of this flash is several times stronger than Sun rays, therefore, there is a danger of damage from light and thermal radiation within a radius of several kilometers from the point of explosion.

Another dangerous damaging factor of atomic weapons is the radiation generated during the explosion. It lasts only a minute after the explosion, but has maximum penetrating power.

The shock wave has a very strong destructive effect. She literally wipes out everything that stands in her way. Penetrating radiation poses a danger to all living beings. In humans, it causes the development of radiation sickness. Well, an electromagnetic pulse only harms technology. Taken together, the damaging factors atomic explosion carry enormous danger.

First tests

Throughout the history of the atomic bomb, America showed the greatest interest in its creation. At the end of 1941, the country's leadership allocated a huge amount of money and resources to this area. Robert Oppenheimer, who is considered by many to be the creator of the atomic bomb, was appointed project manager. In fact, he was the first who was able to bring the scientists' idea to life. As a result, on July 16, 1945, the first atomic bomb test took place in the desert of New Mexico. Then America decided that in order to completely end the war it needed to defeat Japan, an ally of Nazi Germany. The Pentagon quickly selected targets for the first nuclear attacks, which were supposed to become a vivid illustration of the power of American weapons.

On August 6, 1945, the US atomic bomb, cynically called "Little Boy", was dropped on the city of Hiroshima. The shot turned out to be simply perfect - the bomb exploded at an altitude of 200 meters from the ground, due to which its blast wave caused horrific damage to the city. In areas far from the center, coal stoves were overturned, leading to severe fires.

The bright flash was followed by a heat wave, which in 4 seconds managed to melt the tiles on the roofs of houses and incinerate telegraph poles. The heat wave was followed by a shock wave. The wind, which swept through the city at a speed of about 800 km/h, demolished everything in its path. Of the 76,000 buildings located in the city before the explosion, about 70,000 were completely destroyed. A few minutes after the explosion, rain began to fall from the sky, large drops of which were black. The rain fell due to the formation of a huge amount of condensation, consisting of steam and ash, in the cold layers of the atmosphere.

People who were affected by the fireball within a radius of 800 meters from the point of the explosion turned to dust. Those who were a little further from the explosion had burned skin, the remains of which were torn off by the shock wave. Black radioactive rain left incurable burns on the skin of survivors. Those who miraculously managed to escape soon began to show signs of radiation sickness: nausea, fever and attacks of weakness.

Three days after the bombing of Hiroshima, America attacked another Japanese city - Nagasaki. The second explosion had the same disastrous consequences as the first.

In a matter of seconds, two atomic bombs destroyed hundreds of thousands of people. The shock wave practically wiped Hiroshima off the face of the earth. More than half of the local residents (about 240 thousand people) died immediately from their injuries. In the city of Nagasaki, about 73 thousand people died from the explosion. Many of those who survived were subjected to severe radiation, which caused infertility, radiation sickness and cancer. As a result, some of the survivors died in terrible agony. The use of the atomic bomb in Hiroshima and Nagasaki illustrated the terrible power of these weapons.

You and I already know who invented the atomic bomb, how it works and what consequences it can lead to. Now we will find out how things were with nuclear weapons in the USSR.

After the bombing of Japanese cities, J.V. Stalin realized that the creation of a Soviet atomic bomb was a matter of national security. On August 20, 1945, a committee on nuclear energy was created in the USSR, and L. Beria was appointed head of it.

It is worth noting that work in this direction has been carried out in the Soviet Union since 1918, and in 1938, a special commission on the atomic nucleus was created at the Academy of Sciences. With the outbreak of World War II, all work in this direction was frozen.

In 1943, USSR intelligence officers transferred from England materials from closed scientific works in the field of nuclear energy. These materials illustrated that the work of foreign scientists on the creation of an atomic bomb had made serious progress. At the same time, American residents contributed to the introduction of reliable Soviet agents to the main US nuclear research centers. The agents passed on information about new developments to Soviet scientists and engineers.

Technical task

When in 1945 the issue of creating a Soviet nuclear bomb became almost a priority, one of the project leaders, Yu. Khariton, drew up a plan for the development of two versions of the projectile. On June 1, 1946, the plan was signed by senior management.

According to the assignment, the designers needed to build an RDS (special jet engine) of two models:

  1. RDS-1. A bomb with a plutonium charge that is detonated by spherical compression. The device was borrowed from the Americans.
  2. RDS-2. A cannon bomb with two uranium charges converging in the gun barrel before reaching a critical mass.

In the history of the notorious RDS, the most common, albeit humorous, formulation was the phrase “Russia does it itself.” It was invented by Yu. Khariton’s deputy, K. Shchelkin. This phrase very accurately conveys the essence of the work, at least for RDS-2.

When America learned that the Soviet Union possessed the secrets of creating nuclear weapons, it began to desire a rapid escalation of preventive war. In the summer of 1949, the “Troyan” plan appeared, according to which on January 1, 1950 it was planned to begin military operations against the USSR. Then the date of the attack was moved to the beginning of 1957, but with the condition that all NATO countries join it.

Tests

When information about America's plans arrived through intelligence channels in the USSR, the work of Soviet scientists accelerated significantly. Western experts believed that atomic weapons would be created in the USSR no earlier than 1954-1955. In fact, the tests of the first atomic bomb in the USSR took place already in August 1949. On August 29, an RDS-1 device was blown up at a test site in Semipalatinsk. A large team of scientists took part in its creation, headed by Igor Vasilievich Kurchatov. The design of the charge belonged to the Americans, and the electronic equipment was created from scratch. The first atomic bomb in the USSR exploded with a power of 22 kt.

Due to the likelihood of a retaliatory strike, the Trojan plan, which involved a nuclear attack on 70 Soviet cities, was thwarted. The tests at Semipalatinsk marked the end of the American monopoly on the possession of atomic weapons. The invention of Igor Vasilyevich Kurchatov completely destroyed the military plans of America and NATO and prevented the development of another world war. Thus began an era of peace on Earth, which exists under the threat of absolute destruction.

"Nuclear Club" of the world

Today, not only America and Russia have nuclear weapons, but also a number of other states. The collection of countries that own such weapons is conventionally called the “nuclear club.”

It includes:

  1. America (since 1945).
  2. USSR, and now Russia (since 1949).
  3. England (since 1952).
  4. France (since 1960).
  5. China (since 1964).
  6. India (since 1974).
  7. Pakistan (since 1998).
  8. Korea (since 2006).

Israel also has nuclear weapons, although the country's leadership refuses to comment on their presence. In addition, on the territory of NATO countries (Italy, Germany, Turkey, Belgium, the Netherlands, Canada) and allies (Japan, South Korea, despite the official refusal), there are American nuclear weapons.

Ukraine, Belarus and Kazakhstan, which owned part of the USSR's nuclear weapons, transferred their bombs to Russia after the collapse of the Union. She became the sole heir to the USSR's nuclear arsenal.

Conclusion

Today we learned who invented the atomic bomb and what it is. Summarizing the above, we can conclude that nuclear weapons today are the most powerful instrument of global politics, firmly entrenched in relations between countries. On the one hand, it is an effective means of deterrence, and on the other, a convincing argument for preventing military confrontation and strengthening peaceful relations between states. Atomic weapons are a symbol of an entire era that require especially careful handling.

    In the 30s of the last century, many physicists worked on creating an atomic bomb. It is officially believed that the United States was the first to create, test and use the atomic bomb. However, recently I read books by Hans-Ulrich von Kranz, a researcher of the secrets of the Third Reich, where he claims that the Nazis invented the bomb, and the world's first atomic bomb was tested by them in March 1944 in Belarus. The Americans seized all the documents about the atomic bomb, the scientists and the samples themselves (there were supposedly 13 of them). So the Americans had access to 3 samples, and the Germans transported 10 to a secret base in Antarctica. Kranz confirms his conclusions by the fact that after Hiroshima and Nagasaki in the United States there was no news of testing bombs larger than 1.5, and after that the tests were unsuccessful. This, in his opinion, would have been impossible if the bombs had been created by the United States itself.

    We are unlikely to know the truth.

    In one thousand nine hundred and forty, Enrico Fermi finished working on a theory called the Nuclear Chain Reaction. After this, the Americans created their first nuclear reactor. In one thousand nine hundred and forty-five, the Americans created three atomic bombs. The first was blown up in New Mexico, and the next two were dropped on Japan.

    It is hardly possible to specifically name any person that he is the creator of atomic (nuclear) weapons. Without the discoveries of predecessors there would have been no final result. But many people call Otto Hahn, a German by birth, a nuclear chemist, the father of the atomic bomb. Apparently, it was his discoveries in the field of nuclear fission, together with Fritz Strassmann, that can be considered fundamental in the creation of nuclear weapons.

    The father of Soviet weapons mass destruction It is generally accepted to consider Igor Kurchatov and Soviet intelligence and Klaus Fuchs personally. However, we should not forget about the discoveries of our scientists in the late 30s. Work on uranium fission was carried out by A.K. Peterzhak and G.N. Flerov.

    The atomic bomb is a product that was not invented immediately. It took dozens of years of various studies to reach the result. Before specimens were first invented in 1945, many experiments and discoveries were carried out. All scientists who are related to these works can be counted among the creators of the atomic bomb. Besom speaks directly about the team of inventors of the bomb itself, then there was a whole team, it’s better to read about it on Wikipedia.

    A large number of scientists and engineers from various industries took part in the creation of the atomic bomb. It would be unfair to name just one. The material from Wikipedia does not mention the French physicist Henri Becquerel, the Russian scientists Pierre Curie and his wife Maria Sklodowska-Curie, who discovered the radioactivity of uranium, and the German theoretical physicist Albert Einstein.

    Quite an interesting question.

    After reading information on the Internet, I came to the conclusion that the USSR and the USA began working on creating these bombs at the same time.

    I think you will read in more detail in the article. Everything is written there in great detail.

    Many discoveries have their own parents, but inventions are often the collective result of a common cause, when everyone contributed. In addition, many inventions are, as it were, a product of their era, so work on them is carried out simultaneously in different laboratories. so with the atomic bomb, it does not have one single parent.

    Quite a difficult task, it is difficult to say who exactly invented the atomic bomb, because many scientists were involved in its appearance, who consistently worked on the study of radioactivity, uranium enrichment, chain reaction of fission of heavy nuclei, etc. Here are the main points of its creation:

    By 1945, American scientists had invented two atomic bombs Baby weighed 2722 kg and was equipped with enriched Uranium-235 and Fat man with a charge of Plutonium-239 with a power of more than 20 kt, it had a mass of 3175 kg.

    At this time, they are completely different in size and shape.

    Work on nuclear projects in the USA and USSR began simultaneously. In July 1945, an American atomic bomb (Robert Oppenheimer, head of the laboratory) was exploded at the test site, and then, in August, bombs were also dropped on the infamous Nagasaki and Hiroshima. First test Soviet bomb happened in 1949 (project manager Igor Kurchatov), ​​but as they say its creation became possible thanks to excellent reconnaissance.

    There is also information that the Germans were the creators of the atomic bomb. You can, for example, read about this here..

    There is simply no clear answer to this question - many talented physicists and chemists worked on the creation of a deadly weapon capable of destroying the planet, whose names are listed in this article - as we see, the inventor was far from alone.

The investigation took place in April-May 1954 in Washington and was called, in the American manner, “hearings.”
Physicists (with a capital P!) participated in the hearings, but for the scientific world of America the conflict was unprecedented: not a dispute about priority, not the behind-the-scenes struggle of scientific schools, and not even the traditional confrontation between a forward-looking genius and a crowd of mediocre envious people. Sounded authoritative during the proceedings keyword- "loyalty". The accusation of “disloyalty,” which acquired a negative, menacing meaning, entailed punishment: deprivation of access to work of the highest secrecy. The action took place at the Atomic Energy Commission (AEC). Main characters:

Robert Oppenheimer, native New Yorker, pioneer of quantum physics in the USA, scientific director of the Manhattan Project, "father of the atomic bomb", successful scientific manager and refined intellectual, after 1945 national hero America...



“I am not the simplest person,” American physicist Isidore Isaac Rabi once remarked. “But compared to Oppenheimer, I am very, very simple.” Robert Oppenheimer was one of the central figures of the twentieth century, whose very “complexity” absorbed the political and ethical contradictions of the country.

During World War II, the brilliant physicist Azulius Robert Oppenheimer led the development of American nuclear scientists to create the first atomic bomb in human history. The scientist led a solitary and secluded lifestyle, and this gave rise to suspicions of treason.

Atomic weapons are the result of all previous developments of science and technology. Discoveries that are directly related to its emergence were made at the end of the 19th century. The research of A. Becquerel, Pierre Curie and Marie Sklodowska-Curie, E. Rutherford and others played a huge role in revealing the secrets of the atom.

At the beginning of 1939, the French physicist Joliot-Curie concluded that a chain reaction was possible that would lead to the explosion of a monstrous destructive force and that uranium can become a source of energy, like a conventional explosive. This conclusion became the impetus for developments in the creation of nuclear weapons.


Europe was on the eve of World War II, and the potential possession of such powerful weapons pushed militaristic circles to quickly create them, but the problem of having a large number of weapons was a brake. uranium ore for large-scale research. Physicists from Germany, England, the USA, and Japan worked on the creation of atomic weapons, realizing that without a sufficient amount of uranium ore it was impossible to carry out work, the USA in September 1940 purchased a large amount of the required ore using false documents from Belgium, which allowed them to work on the creation nuclear weapons are in full swing.

From 1939 to 1945, more than two billion dollars were spent on the Manhattan Project. A huge uranium purification plant was built in Oak Ridge, Tennessee. H.C. Urey and Ernest O. Lawrence (inventor of the cyclotron) proposed a purification method based on the principle of gas diffusion followed by magnetic separation of the two isotopes. A gas centrifuge separated the light Uranium-235 from the heavier Uranium-238.

On the territory of the United States, in Los Alamos, in the desert expanses of New Mexico, an American nuclear center was created in 1942. Many scientists worked on the project, but the main one was Robert Oppenheimer. Under his leadership, the best minds of that time were gathered not only in the USA and England, but in almost all of Western Europe. A huge team worked on the creation of nuclear weapons, including 12 Nobel Prize laureates. Work in Los Alamos, where the laboratory was located, did not stop for a minute. In Europe, meanwhile, the Second World War, and Germany carried out massive bombings of English cities, which endangered the English atomic project “Tub Alloys”, and England voluntarily transferred its developments and leading scientists of the project to the United States, which allowed the United States to take a leading position in the development of nuclear physics (the creation of nuclear weapons).


“The Father of the Atomic Bomb,” he was at the same time an ardent opponent of American nuclear policy. Bearing the title of one of the most outstanding physicists of his time, he enjoyed studying the mysticism of ancient Indian books. A communist, a traveler, and a staunch American patriot, a very spiritual man, he was nevertheless willing to betray his friends in order to protect himself from the attacks of anti-communists. The scientist who developed the plan to cause the greatest damage to Hiroshima and Nagasaki cursed himself for the “innocent blood on his hands.”

Writing about this controversial man is not an easy task, but it is an interesting one, and the twentieth century is marked by a number of books about him. However, the scientist’s rich life continues to attract biographers.

Oppenheimer was born in New York in 1903 into a family of wealthy and educated Jews. Oppenheimer was brought up in a love of painting, music, and in an atmosphere of intellectual curiosity. In 1922, he entered Harvard University and graduated with honors in just three years, his main subject being chemistry. Over the next few years, the precocious young man traveled to several European countries, where he worked with physicists who were studying the problems of studying atomic phenomena in the light of new theories. Just a year after graduating from university, Oppenheimer published scientific work, which showed how deeply he understands new methods. Soon he, together with the famous Max Born, developed the most important part of quantum theory, known as the Born-Oppenheimer method. In 1927, his outstanding doctoral dissertation brought him worldwide fame.

In 1928 he worked at the Universities of Zurich and Leiden. The same year he returned to the USA. From 1929 to 1947 Oppenheimer taught at the University of California and the University of California Institute of Technology. From 1939 to 1945, he actively participated in the work on creating an atomic bomb as part of the Manhattan Project; heading the Los Alamos laboratory specially created for this purpose.


In 1929, Oppenheimer, a rising scientific star, accepted offers from two of several universities vying for the right to invite him. He taught the spring semester at the vibrant, young California Institute of Technology in Pasadena, and the fall and winter semesters at the University of California, Berkeley, where he became the first professor of quantum mechanics. In fact, the polymath had to adjust for some time, gradually reducing the level of discussion to the capabilities of his students. In 1936, he fell in love with Jean Tatlock, a restless and moody young woman whose passionate idealism found outlet in communist activism. Like many thoughtful people of the time, Oppenheimer explored the ideas of the left as a possible alternative, although he did not join the Communist Party, as his younger brother, sister-in-law and many of his friends did. His interest in politics, like his ability to read Sanskrit, was a natural result of his constant pursuit of knowledge. In his own words, he was also deeply alarmed by the explosion of anti-Semitism in fascist Germany and Spain and invested $1,000 a year out of his $15,000 annual salary in projects related to the activities of communist groups. After meeting Kitty Harrison, who became his wife in 1940, Oppenheimer broke up with Jean Tatlock and moved away from her circle of left-wing friends.

In 1939, the United States learned that Hitler's Germany had discovered nuclear fission in preparation for global war. Oppenheimer and other scientists immediately realized that the German physicists would try to create a controlled chain reaction that could be the key to creating a weapon far more destructive than any that existed at that time. Enlisting the help of the great scientific genius, Albert Einstein, concerned scientists warned President Franklin D. Roosevelt of the danger in a famous letter. In authorizing funding for projects aimed at creating untested weapons, the president acted in strict secrecy. Ironically, many of the world's leading scientists, forced to flee their homeland, worked together with American scientists in laboratories scattered throughout the country. One part of the university groups explored the possibility of creating a nuclear reactor, others took up the problem of separating uranium isotopes necessary to release energy in a chain reaction. Oppenheimer, who had previously been busy with theoretical problems, was offered to organize a wide range of work only at the beginning of 1942.


The US Army's atomic bomb program was codenamed Project Manhattan and was led by 46-year-old Colonel Leslie R. Groves, a career military officer. Groves, who characterized the scientists working on the atomic bomb as "an expensive bunch of nuts," however, acknowledged that Oppenheimer had a hitherto untapped ability to control his fellow debaters when the atmosphere became tense. The physicist proposed that all the scientists be brought together in one laboratory in the quiet provincial town of Los Alamos, New Mexico, in an area he knew well. By March 1943, the boarding school for boys had been turned into a strictly guarded secret center, with Oppenheimer becoming its scientific director. By insisting on the free exchange of information between scientists, who were strictly forbidden to leave the center, Oppenheimer created an atmosphere of trust and mutual respect, which contributed to the amazing success of his work. Without sparing himself, he remained the head of all areas of this complex project, although his personal life suffered greatly from this. But for a mixed group of scientists - among whom there were more than a dozen then or future Nobel laureates and of whom it was a rare person who did not have a pronounced individuality - Oppenheimer was an unusually dedicated leader and a subtle diplomat. Most of them would agree that the lion's share of the credit for the project's ultimate success belongs to him. By December 30, 1944, Groves, who had by then become a general, could say with confidence that the two billion dollars spent would produce a bomb ready for action by August 1 of the following year. But when Germany admitted defeat in May 1945, many of the researchers working at Los Alamos began to think about using new weapons. After all, Japan would probably have soon capitulated even without the atomic bombing. Should the United States become the first country in the world to use such a terrible device? Harry S. Truman, who became president after Roosevelt's death, appointed a committee to study the possible consequences of the use of the atomic bomb, which included Oppenheimer. Experts decided to recommend dropping an atomic bomb without warning on a large Japanese military installation. Oppenheimer's consent was also obtained.
All these worries would, of course, be moot if the bomb had not gone off. The world's first atomic bomb was tested on July 16, 1945, approximately 80 kilometers from the air force base in Alamogordo, New Mexico. The device being tested, named "Fat Man" for its convex shape, was attached to a steel tower installed in a desert area. At exactly 5:30 a.m., a remote-controlled detonator detonated the bomb. With an echoing roar, a giant purple-green-orange fireball shot into the sky across an area 1.6 kilometers in diameter. The earth shook from the explosion, the tower disappeared. A white column of smoke quickly rose to the sky and began to gradually expand, taking on the terrifying shape of a mushroom at an altitude of about 11 kilometers. The first nuclear explosion shocked scientific and military observers near the test site and turned their heads. But Oppenheimer remembered the lines from the Indian epic poem "Bhagavad Gita": "I will become Death, the destroyer of worlds." Until the end of his life, satisfaction from scientific success was always mixed with a sense of responsibility for the consequences.
On the morning of August 6, 1945, there was a clear, cloudless sky over Hiroshima. As before, the approach of two American planes from the east (one of them was called Enola Gay) at an altitude of 10-13 km did not cause alarm (since they appeared in the sky of Hiroshima every day). One of the planes dived and dropped something, and then both planes turned and flew away. The dropped object slowly descended by parachute and suddenly exploded at an altitude of 600 m above the ground. It was the Baby bomb.

Three days after "Little Boy" was blown up in Hiroshima, exact copy The first "Fat Man" was dropped on the city of Nagasaki. On August 15, Japan, whose resolve was finally broken by these new weapons, signed unconditional surrender. However, the voices of skeptics had already begun to be heard, and Oppenheimer himself predicted two months after Hiroshima that “mankind will curse the names Los Alamos and Hiroshima.”

The whole world was shocked by the explosions in Hiroshima and Nagasaki. Tellingly, Oppenheimer managed to combine his worries about testing a bomb on civilians and the joy that the weapon had finally been tested.

Nevertheless, the following year he accepted an appointment as chairman of the scientific council of the Atomic Energy Commission (AEC), thereby becoming the most influential adviser to the government and military on nuclear issues. While the West and the Stalin-led Soviet Union prepared in earnest for the Cold War, each side focused its attention on the arms race. Although many of the Manhattan Project scientists did not support the idea of ​​creating a new weapon, former Oppenheimer collaborators Edward Teller and Ernest Lawrence believed that US national security required speedy development hydrogen bomb. Oppenheimer was horrified. From his point of view, two nuclear powers and so they were already confronting each other, like “two scorpions in a jar, each capable of killing the other, but only at the risk of their own life.” With the proliferation of new weapons, wars would no longer have winners and losers - only victims. And the “father of the atomic bomb” made a public statement that he was against the development of the hydrogen bomb. Always feeling out of place under Oppenheimer and clearly envious of his achievements, Teller began to make efforts to lead new project, implying that Oppenheimer should no longer be involved in the work. He told FBI investigators that his rival was using his authority to keep scientists from working on the hydrogen bomb, and revealed the secret that Oppenheimer suffered from bouts of severe depression in his youth. When President Truman agreed to fund the hydrogen bomb in 1950, Teller could celebrate victory.

In 1954, Oppenheimer's enemies launched a campaign to remove him from power, which they succeeded after a month-long search for "black spots" in his personal biography. As a result, a show case was organized in which many influential political and scientific figures spoke out against Oppenheimer. As Albert Einstein later put it: “Oppenheimer’s problem was that he loved a woman who didn’t love him: the US government.”

By allowing Oppenheimer's talent to flourish, America doomed him to destruction.


Oppenheimer is known not only as the creator of the American atomic bomb. He is the author of many works on quantum mechanics, the theory of relativity, elementary particle physics, and theoretical astrophysics. In 1927 he developed the theory of interaction of free electrons with atoms. Together with Born, he created the theory of the structure of diatomic molecules. In 1931, he and P. Ehrenfest formulated a theorem, the application of which to the nitrogen nucleus showed that the proton-electron hypothesis of the structure of nuclei leads to a number of contradictions with the known properties of nitrogen. Investigated the internal conversion of g-rays. In 1937 he developed the cascade theory of cosmic showers, in 1938 he made the first calculation of the model neutron star, predicted the existence of “black holes” in 1939.

Oppenheimer owns a number of popular books, including Science and the Common Understanding (1954), The Open Mind (1955), Some Reflections on Science and Culture (1960) . Oppenheimer died in Princeton on February 18, 1967.


Work on nuclear projects in the USSR and the USA began simultaneously. In August 1942, the secret “Laboratory No. 2” began working in one of the buildings in the courtyard of Kazan University. Igor Kurchatov was appointed its leader.

In Soviet times, it was argued that the USSR solved its atomic problem completely independently, and Kurchatov was considered the “father” of the domestic atomic bomb. Although there were rumors about some secrets stolen from the Americans. And only in the 90s, 50 years later, one of the main characters then, Yuli Khariton, spoke about the significant role of intelligence in accelerating the lagging behind. Soviet project. And American scientific and technical results were obtained by Klaus Fuchs, who arrived in the English group.

Information from abroad helped the country's leadership make a difficult decision - to begin work on nuclear weapons during a difficult war. The reconnaissance allowed our physicists to save time and helped to avoid a “misfire” during the first atomic test, which had enormous political significance.

In 1939, a chain reaction of fission of uranium-235 nuclei was discovered, accompanied by the release of colossal energy. Soon after, articles on nuclear physics began to disappear from the pages of scientific journals. This could indicate the real prospect of creating an atomic explosive and weapons based on it.

After the discovery by Soviet physicists of the spontaneous fission of uranium-235 nuclei and the determination of the critical mass, a corresponding directive was sent to the residency on the initiative of the head of the scientific and technological revolution L. Kvasnikov.

In the FSB of Russia (formerly the KGB of the USSR), 17 volumes of archival file No. 13676, which document who and how recruited US citizens to work for Soviet intelligence, are buried under the heading “keep forever.” Only a few of the top leadership of the USSR KGB had access to the materials of this case, the secrecy of which was only recently lifted. The first information about the work to create an American atomic bomb Soviet intelligence received in the fall of 1941. And already in March 1942, extensive information about the research ongoing in the USA and England fell on I.V. Stalin’s desk. According to Yu. B. Khariton, in that dramatic period it was safer to use the bomb design already tested by the Americans for our first explosion. “Taking into account state interests, any other solution was then unacceptable. The merit of Fuchs and our other assistants abroad is undoubted. However, we implemented the American scheme during the first test not so much for technical, but for political reasons.


The message that the Soviet Union had mastered the secret of nuclear weapons caused the US ruling circles to want to start a preventive war as quickly as possible. The Troyan plan was developed, which envisaged the start of hostilities on January 1, 1950. At that time, the United States had 840 strategic bombers in combat units, 1,350 in reserve, and over 300 atomic bombs.

A test site was built in the area of ​​Semipalatinsk. At exactly 7:00 a.m. on August 29, 1949, the first Soviet nuclear device, codenamed RDS-1, was detonated at this test site.

The Troyan plan, according to which atomic bombs were to be dropped on 70 cities of the USSR, was thwarted due to the threat of a retaliatory strike. The event that took place at the Semipalatinsk test site informed the world about the creation of nuclear weapons in the USSR.


Foreign intelligence not only attracted the attention of the country's leadership to the problem of creating atomic weapons in the West and thereby initiated similar work in our country. Thanks to foreign intelligence information, as recognized by academicians A. Aleksandrov, Yu. Khariton and others, I. Kurchatov did not make big mistakes, we managed to avoid dead-end directions in the creation of atomic weapons and create an atomic bomb in the USSR in a shorter time, in just three years , while the United States spent four years on this, spending five billion dollars on its creation.
As he noted in an interview with the Izvestia newspaper on December 8, 1992, the first Soviet atomic charge was manufactured according to the American model with the help of information received from K. Fuchs. According to the academician, when government awards were presented to participants in the Soviet atomic project, Stalin, satisfied that there was no American monopoly in this area, remarked: “If we had been one to a year and a half late, we would probably have tried this charge on ourselves.” ".