What is cosine alpha. Sine, cosine, tangent, cotangent of an acute angle

Trigonometry, as a science, originated in the Ancient East. The first trigonometric ratios were derived by astronomers to create an accurate calendar and orientation by the stars. These calculations related to spherical trigonometry, while in school course study the ratios of sides and angles of a plane triangle.

Trigonometry is a branch of mathematics that deals with the properties of trigonometric functions and the relationships between the sides and angles of triangles.

During the heyday of culture and science in the 1st millennium AD, knowledge spread from Ancient East to Greece. But the main discoveries of trigonometry are the merit of the men of the Arab Caliphate. In particular, the Turkmen scientist al-Marazwi introduced functions such as tangent and cotangent, and compiled the first tables of values ​​for sines, tangents and cotangents. The concepts of sine and cosine were introduced by Indian scientists. Trigonometry received a lot of attention in the works of such great figures of antiquity as Euclid, Archimedes and Eratosthenes.

Basic quantities of trigonometry

The basic trigonometric functions of a numeric argument are sine, cosine, tangent, and cotangent. Each of them has its own graph: sine, cosine, tangent and cotangent.

The formulas for calculating the values ​​of these quantities are based on the Pythagorean theorem. It is better known to schoolchildren in the formulation: “Pythagorean pants are equal in all directions,” since the proof is given using the example of an isosceles right triangle.

Sine, cosine and other relationships establish the relationship between the acute angles and sides of any right triangle. Let us present formulas for calculating these quantities for angle A and trace the relationships between trigonometric functions:

As you can see, tg and ctg are inverse functions. If we imagine leg a as the product of sin A and hypotenuse c, and leg b as cos A * c, we obtain the following formulas for tangent and cotangent:

Trigonometric circle

Graphically, the relationship between the mentioned quantities can be represented as follows:

The circle, in this case, represents everything possible values angle α - from 0° to 360°. As can be seen from the figure, each function takes a negative or positive value depending on the size of the angle. For example, sin α will have a “+” sign if α belongs to the 1st and 2nd quarters of the circle, that is, it is in the range from 0° to 180°. For α from 180° to 360° (III and IV quarters), sin α can only be a negative value.

Let's try to build trigonometric tables for specific angles and find out the meaning of the quantities.

Values ​​of α equal to 30°, 45°, 60°, 90°, 180° and so on are called special cases. The values ​​of trigonometric functions for them are calculated and presented in the form of special tables.

These angles were not chosen at random. The designation π in the tables is for radians. Rad is the angle at which the length of a circle's arc corresponds to its radius. This value was introduced in order to establish a universal dependence; when calculating in radians, the actual length of the radius in cm does not matter.

Angles in tables for trigonometric functions correspond to radian values:

So, it’s not difficult to guess that 2π is full circle or 360°.

Properties of trigonometric functions: sine and cosine

In order to consider and compare the basic properties of sine and cosine, tangent and cotangent, it is necessary to draw their functions. This can be done in the form of a curve located in a two-dimensional coordinate system.

Consider the comparative table of properties for sine and cosine:

Sine waveCosine
y = sinxy = cos x
ODZ [-1; 1]ODZ [-1; 1]
sin x = 0, for x = πk, where k ϵ Zcos x = 0, for x = π/2 + πk, where k ϵ Z
sin x = 1, for x = π/2 + 2πk, where k ϵ Zcos x = 1, at x = 2πk, where k ϵ Z
sin x = - 1, at x = 3π/2 + 2πk, where k ϵ Zcos x = - 1, for x = π + 2πk, where k ϵ Z
sin (-x) = - sin x, i.e. the function is oddcos (-x) = cos x, i.e. the function is even
the function is periodic, the smallest period is 2π
sin x › 0, with x belonging to the I and II quarters or from 0° to 180° (2πk, π + 2πk)cos x › 0, with x belonging to the I and IV quarters or from 270° to 90° (- π/2 + 2πk, π/2 + 2πk)
sin x ‹ 0, with x belonging to the third and fourth quarters or from 180° to 360° (π + 2πk, 2π + 2πk)cos x ‹ 0, with x belonging to the 2nd and 3rd quarters or from 90° to 270° (π/2 + 2πk, 3π/2 + 2πk)
increases in the interval [- π/2 + 2πk, π/2 + 2πk]increases on the interval [-π + 2πk, 2πk]
decreases on intervals [π/2 + 2πk, 3π/2 + 2πk]decreases on intervals
derivative (sin x)’ = cos xderivative (cos x)’ = - sin x

Determining whether a function is even or not is very simple. Just imagine trigonometric circle with the signs of trigonometric quantities and mentally “add” the graph relative to the OX axis. If the signs coincide, the function is even, otherwise it is odd.

The introduction of radians and the listing of the basic properties of sine and cosine waves allow us to present the following pattern:

It is very easy to verify that the formula is correct. For example, for x = π/2, the sine is 1, as is the cosine of x = 0. The check can be done by consulting tables or by tracing function curves for given values.

Properties of tangentsoids and cotangentsoids

The graphs of the tangent and cotangent functions differ significantly from the sine and cosine functions. The values ​​tg and ctg are reciprocals of each other.

  1. Y = tan x.
  2. The tangent tends to the values ​​of y at x = π/2 + πk, but never reaches them.
  3. The smallest positive period of the tangentoid is π.
  4. Tg (- x) = - tg x, i.e. the function is odd.
  5. Tg x = 0, for x = πk.
  6. The function is increasing.
  7. Tg x › 0, for x ϵ (πk, π/2 + πk).
  8. Tg x ‹ 0, for x ϵ (— π/2 + πk, πk).
  9. Derivative (tg x)’ = 1/cos 2 ⁡x.

Consider the graphic image of the cotangentoid below in the text.

Main properties of cotangentoids:

  1. Y = cot x.
  2. Unlike the sine and cosine functions, in the tangentoid Y can take on the values ​​of the set of all real numbers.
  3. The cotangentoid tends to the values ​​of y at x = πk, but never reaches them.
  4. The smallest positive period of a cotangentoid is π.
  5. Ctg (- x) = - ctg x, i.e. the function is odd.
  6. Ctg x = 0, for x = π/2 + πk.
  7. The function is decreasing.
  8. Ctg x › 0, for x ϵ (πk, π/2 + πk).
  9. Ctg x ‹ 0, for x ϵ (π/2 + πk, πk).
  10. Derivative (ctg x)’ = - 1/sin 2 ⁡x Correct

Where problems on solving a right triangle were considered, I promised to present a technique for memorizing the definitions of sine and cosine. Using it, you will always quickly remember which side belongs to the hypotenuse (adjacent or opposite). I decided not to put it off for too long, required material below, please read 😉

The fact is that I have repeatedly observed how students in grades 10-11 have difficulty remembering these definitions. They remember very well that the leg refers to the hypotenuse, but which one- they forget and confused. The price of a mistake, as you know in an exam, is a lost point.

The information that I will present directly has nothing to do with mathematics. It is associated with figurative thinking and with methods of verbal-logical communication. That's exactly how I remember it, once and for alldefinition data. If you do forget them, you can always easily remember them using the techniques presented.

Let me remind you of the definitions of sine and cosine in a right triangle:

Cosine acute angle in a right triangle, this is the ratio of the adjacent leg to the hypotenuse:

Sinus The acute angle in a right triangle is the ratio of the opposite side to the hypotenuse:

So, what associations do you have with the word cosine?

Probably everyone has their own 😉Remember the link:

Thus, the expression will immediately appear in your memory -

«… ratio of the ADJACENT leg to the hypotenuse».

The problem with determining cosine has been solved.

If you need to remember the definition of sine in a right triangle, then remembering the definition of cosine, you can easily establish that the sine of an acute angle in a right triangle is the ratio of the opposite side to the hypotenuse. After all, there are only two legs, if the adjacent leg is “occupied” by the cosine, then only the opposite leg remains with the sine.

What about tangent and cotangent? The confusion is the same. Students know that this is a relationship of legs, but the problem is to remember which one refers to which - either the opposite to the adjacent, or vice versa.

Definitions:

Tangent The acute angle in a right triangle is the ratio of the opposite side to the adjacent side:

Cotangent The acute angle in a right triangle is the ratio of the adjacent side to the opposite:

How to remember? There are two ways. One also uses a verbal-logical connection, the other uses a mathematical one.

MATHEMATICAL METHOD

There is such a definition - the tangent of an acute angle is the ratio of the sine of the angle to its cosine:

*Having memorized the formula, you can always determine that the tangent of an acute angle in a right triangle is the ratio of the opposite side to the adjacent side.

Likewise.The cotangent of an acute angle is the ratio of the cosine of the angle to its sine:

So! By remembering these formulas, you can always determine that:

- the tangent of an acute angle in a right triangle is the ratio of the opposite side to the adjacent one

— the cotangent of an acute angle in a right triangle is the ratio of the adjacent side to the opposite side.

WORD-LOGICAL METHOD

About tangent. Remember the link:

That is, if you need to remember the definition of tangent, using this logical connection, you can easily remember what it is

“... the ratio of the opposite side to the adjacent side”

If we talk about cotangent, then remembering the definition of tangent you can easily voice the definition of cotangent -

“... the ratio of the adjacent side to the opposite side”

There is an interesting trick for remembering tangent and cotangent on the website " Mathematical tandem " , look.

UNIVERSAL METHOD

You can just memorize it.But as practice shows, thanks to verbal-logical connections, a person remembers information for a long time, and not only mathematical ones.

I hope the material was useful to you.

Best regards, Alexander Krutitskikh

P.S: I would be grateful if you tell me about the site on social networks.

Important notes!
1. If you see gobbledygook instead of formulas, clear your cache. How to do this in your browser is written here:
2. Before you start reading the article, pay attention to our navigator for the most useful resource For

Sine, cosine, tangent, cotangent

The concepts of sine (), cosine (), tangent (), cotangent () are inextricably linked with the concept of angle. In order to have a good understanding of these, at first glance, complex concepts (which cause a state of horror in many schoolchildren), and to make sure that “the devil is not as terrible as he is painted,” let’s start from the very beginning and understand the concept of an angle.

Angle concept: radian, degree

Let's look at the picture. The vector has “turned” relative to the point by a certain amount. So the measure of this rotation relative to the initial position will be corner.

What else do you need to know about the concept of angle? Well, of course, angle units!

Angle, in both geometry and trigonometry, can be measured in degrees and radians.

Angle (one degree) is the central angle in a circle subtended by a circular arc equal to part of the circle. Thus, the entire circle consists of “pieces” of circular arcs, or the angle described by the circle is equal.

That is, the figure above shows an angle equal to, that is, this angle rests on a circular arc the size of the circumference.

An angle in radians is the central angle in a circle subtended by a circular arc whose length is equal to the radius of the circle. Well, did you figure it out? If not, then let's figure it out from the drawing.

So, the figure shows an angle equal to a radian, that is, this angle rests on a circular arc, the length of which is equal to the radius of the circle (the length is equal to the length or the radius is equal to the length of the arc). Thus, the arc length is calculated by the formula:

Where is the central angle in radians.

Well, knowing this, can you answer how many radians are contained in the angle described by the circle? Yes, for this you need to remember the formula for circumference. Here it is:

Well, now let’s correlate these two formulas and find that the angle described by the circle is equal. That is, by correlating the value in degrees and radians, we get that. Respectively, . As you can see, unlike "degrees", the word "radian" is omitted, since the unit of measurement is usually clear from the context.

How many radians are there? That's right!

Got it? Then go ahead and fix it:

Having difficulties? Then look answers:

Right triangle: sine, cosine, tangent, cotangent of angle

So, we figured out the concept of an angle. But what is sine, cosine, tangent, and cotangent of an angle? Let's figure it out. For this it will help us right triangle.

What are the sides of a right triangle called? That's right, hypotenuse and legs: the hypotenuse is the side that lies opposite right angle(in our example this is the side); the legs are the two remaining sides and (those adjacent to the right angle), and if we consider the legs relative to the angle, then the leg is the adjacent leg, and the leg is the opposite. So, now let’s answer the question: what are sine, cosine, tangent and cotangent of an angle?

Sine of angle- this is the ratio of the opposite (distant) leg to the hypotenuse.

In our triangle.

Cosine of angle- this is the ratio of the adjacent (close) leg to the hypotenuse.

In our triangle.

Tangent of the angle- this is the ratio of the opposite (distant) side to the adjacent (close).

In our triangle.

Cotangent of angle- this is the ratio of the adjacent (close) leg to the opposite (far).

In our triangle.

These definitions are necessary remember! To make it easier to remember which leg to divide into what, you need to clearly understand that in tangent And cotangent only the legs sit, and the hypotenuse appears only in sinus And cosine. And then you can come up with a chain of associations. For example, this one:

Cosine→touch→touch→adjacent;

Cotangent→touch→touch→adjacent.

First of all, you need to remember that sine, cosine, tangent and cotangent as the ratios of the sides of a triangle do not depend on the lengths of these sides (at the same angle). Don't believe me? Then make sure by looking at the picture:

Consider, for example, the cosine of an angle. By definition, from a triangle: , but we can calculate the cosine of an angle from a triangle: . You see, the lengths of the sides are different, but the value of the cosine of one angle is the same. Thus, the values ​​of sine, cosine, tangent and cotangent depend solely on the magnitude of the angle.

If you understand the definitions, then go ahead and consolidate them!

For the triangle shown in the figure below, we find.

Well, did you get it? Then try it yourself: calculate the same for the angle.

Unit (trigonometric) circle

Understanding the concepts of degree and radian, we considered a circle with a radius equal to. Such a circle is called single. It will be very useful when studying trigonometry. Therefore, let's look at it in a little more detail.

As you can see, given circle constructed in a Cartesian coordinate system. The radius of the circle is equal to one, while the center of the circle lies at the origin of coordinates, the initial position of the radius vector is fixed along the positive direction of the axis (in our example, this is the radius).

Each point on the circle corresponds to two numbers: the axis coordinate and the axis coordinate. What are these coordinate numbers? And in general, what do they have to do with the topic at hand? To do this, we need to remember about the considered right triangle. In the figure above, you can see two whole right triangles. Consider a triangle. It is rectangular because it is perpendicular to the axis.

What is the triangle equal to? That's right. In addition, we know that is the radius of the unit circle, which means . Let's substitute this value into our formula for cosine. Here's what happens:

What is the triangle equal to? Well of course! Substitute the radius value into this formula and get:

So, can you tell what coordinates a point belonging to a circle has? Well, no way? What if you realize that and are just numbers? Which coordinate does it correspond to? Well, of course, the coordinates! And what coordinate does it correspond to? That's right, coordinates! Thus, period.

What then are and equal to? That's right, let's use the corresponding definitions of tangent and cotangent and get that, a.

What if the angle is larger? For example, like in this picture:

What has changed in in this example? Let's figure it out. To do this, let's turn again to a right triangle. Consider a right triangle: angle (as adjacent to an angle). What are the values ​​of sine, cosine, tangent and cotangent for an angle? That's right, we adhere to the corresponding definitions of trigonometric functions:

Well, as you can see, the value of the sine of the angle still corresponds to the coordinate; the value of the cosine of the angle - the coordinate; and the values ​​of tangent and cotangent to the corresponding ratios. Thus, these relations apply to any rotation of the radius vector.

It has already been mentioned that the initial position of the radius vector is along the positive direction of the axis. So far we have rotated this vector counterclockwise, but what happens if we rotate it clockwise? Nothing extraordinary, you will also get an angle of a certain value, but only it will be negative. Thus, when rotating the radius vector counterclockwise, we get positive angles, and when rotating clockwise - negative.

So, we know that a whole revolution of the radius vector around a circle is or. Is it possible to rotate the radius vector to or to? Well, of course you can! In the first case, therefore, the radius vector will make one full revolution and stop at position or.

In the second case, that is, the radius vector will make three full revolutions and stop at position or.

Thus, from the above examples we can conclude that angles that differ by or (where is any integer) correspond to the same position of the radius vector.

The figure below shows an angle. The same image corresponds to the corner, etc. This list can be continued indefinitely. All these angles can be written by the general formula or (where is any integer)

Now, knowing the definitions of the basic trigonometric functions and using the unit circle, try to answer what the values ​​are:

Here's a unit circle to help you:

Having difficulties? Then let's figure it out. So we know that:

From here, we determine the coordinates of the points corresponding to certain angle measures. Well, let's start in order: the angle at corresponds to a point with coordinates, therefore:

Doesn't exist;

Further, adhering to the same logic, we find out that the corners in correspond to points with coordinates, respectively. Knowing this, it is easy to determine the values ​​of trigonometric functions at the corresponding points. Try it yourself first, and then check the answers.

Answers:

Thus, we can make the following table:

There is no need to remember all these values. It is enough to remember the correspondence between the coordinates of points on the unit circle and the values ​​of trigonometric functions:

But the values ​​of the trigonometric functions of angles in and, given in the table below, must be remembered:

Don't be scared, now we'll show you one example quite simple to remember the corresponding values:

To use this method, it is vital to remember the values ​​of the sine for all three measures of angle (), as well as the value of the tangent of the angle. Knowing these values, it is quite simple to restore the entire table - the cosine values ​​are transferred in accordance with the arrows, that is:

Knowing this, you can restore the values ​​for. The numerator " " will match and the denominator " " will match. Cotangent values ​​are transferred in accordance with the arrows indicated in the figure. If you understand this and remember the diagram with the arrows, then it will be enough to remember all the values ​​​​from the table.

Coordinates of a point on a circle

Is it possible to find a point (its coordinates) on a circle, knowing the coordinates of the center of the circle, its radius and angle of rotation?

Well, of course you can! Let's get it out general formula to find the coordinates of a point.

For example, here is a circle in front of us:

We are given that the point is the center of the circle. The radius of the circle is equal. It is necessary to find the coordinates of a point obtained by rotating the point by degrees.

As can be seen from the figure, the coordinate of the point corresponds to the length of the segment. The length of the segment corresponds to the coordinate of the center of the circle, that is, it is equal. The length of a segment can be expressed using the definition of cosine:

Then we have that for the point coordinate.

Using the same logic, we find the y coordinate value for the point. Thus,

So, in general view coordinates of points are determined by the formulas:

Coordinates of the center of the circle,

Circle radius,

The rotation angle of the vector radius.

As you can see, for the unit circle we are considering, these formulas are significantly reduced, since the coordinates of the center are equal to zero and the radius is equal to one:

Well, let's try out these formulas by practicing finding points on a circle?

1. Find the coordinates of a point on the unit circle obtained by rotating the point on.

2. Find the coordinates of a point on the unit circle obtained by rotating the point on.

3. Find the coordinates of a point on the unit circle obtained by rotating the point on.

4. The point is the center of the circle. The radius of the circle is equal. It is necessary to find the coordinates of the point obtained by rotating the initial radius vector by.

5. The point is the center of the circle. The radius of the circle is equal. It is necessary to find the coordinates of the point obtained by rotating the initial radius vector by.

Having trouble finding the coordinates of a point on a circle?

Solve these five examples (or get good at solving them) and you will learn to find them!

SUMMARY AND BASIC FORMULAS

The sine of an angle is the ratio of the opposite (far) leg to the hypotenuse.

The cosine of an angle is the ratio of the adjacent (close) leg to the hypotenuse.

The tangent of an angle is the ratio of the opposite (far) side to the adjacent (close) side.

The cotangent of an angle is the ratio of the adjacent (close) side to the opposite (far) side.

Well, the topic is over. If you are reading these lines, it means you are very cool.

Because only 5% of people are able to master something on their own. And if you read to the end, then you are in this 5%!

Now the most important thing.

You have understood the theory on this topic. And, I repeat, this... this is just super! You are already better than the vast majority of your peers.

The problem is that this may not be enough...

For what?

For successful completion Unified State Exam, for admission to college on a budget and, MOST IMPORTANTLY, for life.

I won’t convince you of anything, I’ll just say one thing...

People who received good education, earn much more than those who did not receive it. This is statistics.

But this is not the main thing.

The main thing is that they are MORE HAPPY (there are such studies). Perhaps because many more opportunities open up before them and life becomes brighter? Don't know...

But think for yourself...

What does it take to be sure to be better than others on the Unified State Exam and ultimately be... happier?

GAIN YOUR HAND BY SOLVING PROBLEMS ON THIS TOPIC.

You won't be asked for theory during the exam.

You will need solve problems against time.

And, if you haven’t solved them (A LOT!), you’ll definitely make a stupid mistake somewhere or simply won’t have time.

It's like in sports - you need to repeat it many times to win for sure.

Find the collection wherever you want, necessarily with solutions, detailed analysis and decide, decide, decide!

You can use our tasks (optional) and we, of course, recommend them.

In order to get better at using our tasks, you need to help extend the life of the YouClever textbook you are currently reading.

How? There are two options:

  1. Unlock all hidden tasks in this article -
  2. Unlock access to all hidden tasks in all 99 articles of the textbook - Buy a textbook - 499 RUR

Yes, we have 99 such articles in our textbook and access to all tasks and all hidden texts in them can be opened immediately.

Access to all hidden tasks is provided for the ENTIRE life of the site.

And in conclusion...

If you don't like our tasks, find others. Just don't stop at theory.

“Understood” and “I can solve” are completely different skills. You need both.

Find problems and solve them!

Centered at point A.
α is the angle expressed in radians.

Tangent ( tan α) is a trigonometric function depending on the angle α between the hypotenuse and the leg of a right triangle, equal to the ratio of the length of the opposite leg |BC| to the length of the adjacent leg |AB| .

Cotangent ( ctg α) is a trigonometric function depending on the angle α between the hypotenuse and the leg of a right triangle, equal to the ratio of the length of the adjacent leg |AB| to the length of the opposite leg |BC| .

Tangent

Where n- whole.

In Western literature, tangent is denoted as follows:
.
;
;
.

Graph of the tangent function, y = tan x

Cotangent

Where n- whole.

In Western literature, cotangent is denoted as follows:
.
The following notations are also accepted:
;
;
.

Graph of the cotangent function, y = ctg x


Properties of tangent and cotangent

Periodicity

Functions y = tg x and y = ctg x are periodic with period π.

Parity

The tangent and cotangent functions are odd.

Areas of definition and values, increasing, decreasing

The tangent and cotangent functions are continuous in their domain of definition (see proof of continuity). The main properties of tangent and cotangent are presented in the table ( n- whole).

y= tg x y= ctg x
Scope and continuity
Range of values -∞ < y < +∞ -∞ < y < +∞
Increasing -
Descending -
Extremes - -
Zeros, y = 0
Intercept points with the ordinate axis, x = 0 y= 0 -

Formulas

Expressions using sine and cosine

; ;
; ;
;

Formulas for tangent and cotangent from sum and difference



The remaining formulas are easy to obtain, for example

Product of tangents

Formula for the sum and difference of tangents

This table presents the values ​​of tangents and cotangents for certain values ​​of the argument.

Expressions using complex numbers

Expressions through hyperbolic functions

;
;

Derivatives

; .


.
Derivative of the nth order with respect to the variable x of the function:
.
Deriving formulas for tangent > > > ; for cotangent > > >

Integrals

Series expansions

To obtain the expansion of the tangent in powers of x, you need to take several terms of the expansion in a power series for the functions sin x And cos x and divide these polynomials by each other, . This produces the following formulas.

At .

at .
Where Bn- Bernoulli numbers. They are determined either from the recurrence relation:
;
;
Where .
Or according to Laplace's formula:


Inverse functions

The inverse functions of tangent and cotangent are arctangent and arccotangent, respectively.

Arctangent, arctg


, Where n- whole.

Arccotangent, arcctg


, Where n- whole.

Used literature:
I.N. Bronstein, K.A. Semendyaev, Handbook of mathematics for engineers and college students, “Lan”, 2009.
G. Korn, Handbook of Mathematics for Scientists and Engineers, 2012.

The concepts of sine, cosine, tangent and cotangent are the main categories of trigonometry, a branch of mathematics, and are inextricably linked with the definition of angle. Mastery of this mathematical science requires memorization and understanding of formulas and theorems, as well as developed spatial thinking. This is why trigonometric calculations often cause difficulties for schoolchildren and students. To overcome them, you should become more familiar with trigonometric functions and formulas.

Concepts in trigonometry

To understand the basic concepts of trigonometry, you must first understand what a right triangle and an angle in a circle are, and why all basic trigonometric calculations are associated with them. A triangle in which one of the angles measures 90 degrees is rectangular. Historically, this figure was often used by people in architecture, navigation, art, and astronomy. Accordingly, by studying and analyzing the properties of this figure, people came to calculate the corresponding ratios of its parameters.

The main categories associated with right triangles are the hypotenuse and the legs. The hypotenuse is the side of a triangle opposite the right angle. The legs, respectively, are the other two sides. The sum of the angles of any triangles is always 180 degrees.

Spherical trigonometry is a section of trigonometry that is not studied in school, but in applied sciences such as astronomy and geodesy, scientists use it. The peculiarity of a triangle in spherical trigonometry is that it always has a sum of angles greater than 180 degrees.

Angles of a triangle

In a right triangle, the sine of an angle is the ratio of the leg opposite the desired angle to the hypotenuse of the triangle. Accordingly, cosine is the ratio of the adjacent leg and the hypotenuse. Both of these values ​​always have a magnitude less than one, since the hypotenuse is always longer than the leg.

The tangent of an angle is a value equal to the ratio of the opposite side to the adjacent side of the desired angle, or sine to cosine. Cotangent, in turn, is the ratio of the adjacent side of the desired angle to the opposite side. The cotangent of an angle can also be obtained by dividing one by the tangent value.

Unit circle

A unit circle in geometry is a circle whose radius is equal to one. Such a circle is constructed in a Cartesian coordinate system, with the center of the circle coinciding with the origin point, and the initial position of the radius vector is determined along the positive direction of the X axis (abscissa axis). Each point on the circle has two coordinates: XX and YY, that is, the coordinates of the abscissa and ordinate. By selecting any point on the circle in the XX plane and dropping a perpendicular from it to the abscissa axis, we obtain a right triangle formed by the radius to the selected point (denoted by the letter C), the perpendicular drawn to the X axis (the intersection point is denoted by the letter G), and the segment the abscissa axis is between the origin of coordinates (the point is designated by the letter A) and the intersection point G. The resulting triangle ACG is a right triangle inscribed in a circle, where AG is the hypotenuse, and AC and GC are the legs. The angle between the radius of the circle AC and the segment of the abscissa axis with the designation AG is defined as α (alpha). So, cos α = AG/AC. Considering that AC is the radius of the unit circle, and it is equal to one, it turns out that cos α=AG. Likewise, sin α=CG.

In addition, knowing this data, you can determine the coordinate of point C on the circle, since cos α=AG, and sin α=CG, which means point C has the given coordinates (cos α;sin α). Knowing that the tangent is equal to the ratio of sine to cosine, we can determine that tan α = y/x, and cot α = x/y. By considering angles in a negative coordinate system, you can calculate that the sine and cosine values ​​of some angles can be negative.

Calculations and basic formulas


Trigonometric function values

Having considered the essence of trigonometric functions through the unit circle, we can derive the values ​​of these functions for some angles. The values ​​are listed in the table below.

The simplest trigonometric identities

Equations in which the sign of the trigonometric function contains unknown value, are called trigonometric. Identities with the value sin x = α, k - any integer:

  1. sin x = 0, x = πk.
  2. 2. sin x = 1, x = π/2 + 2πk.
  3. sin x = -1, x = -π/2 + 2πk.
  4. sin x = a, |a| > 1, no solutions.
  5. sin x = a, |a| ≦ 1, x = (-1)^k * arcsin α + πk.

Identities with the value cos x = a, where k is any integer:

  1. cos x = 0, x = π/2 + πk.
  2. cos x = 1, x = 2πk.
  3. cos x = -1, x = π + 2πk.
  4. cos x = a, |a| > 1, no solutions.
  5. cos x = a, |a| ≦ 1, x = ±arccos α + 2πk.

Identities with the value tg x = a, where k is any integer:

  1. tan x = 0, x = π/2 + πk.
  2. tan x = a, x = arctan α + πk.

Identities with the value ctg x = a, where k is any integer:

  1. cot x = 0, x = π/2 + πk.
  2. ctg x = a, x = arcctg α + πk.

Reduction formulas

This category of constant formulas denotes methods with which you can move from trigonometric functions of the form to functions of argument, that is, reduce the sine, cosine, tangent and cotangent of an angle of any value to the corresponding indicators of the angle of the interval from 0 to 90 degrees for greater ease of calculation.

Formulas for reducing functions for the sine of an angle look like this:

  • sin(900 - α) = α;
  • sin(900 + α) = cos α;
  • sin(1800 - α) = sin α;
  • sin(1800 + α) = -sin α;
  • sin(2700 - α) = -cos α;
  • sin(2700 + α) = -cos α;
  • sin(3600 - α) = -sin α;
  • sin(3600 + α) = sin α.

For cosine of angle:

  • cos(900 - α) = sin α;
  • cos(900 + α) = -sin α;
  • cos(1800 - α) = -cos α;
  • cos(1800 + α) = -cos α;
  • cos(2700 - α) = -sin α;
  • cos(2700 + α) = sin α;
  • cos(3600 - α) = cos α;
  • cos(3600 + α) = cos α.

The use of the above formulas is possible subject to two rules. First, if the angle can be represented as a value (π/2 ± a) or (3π/2 ± a), the value of the function changes:

  • from sin to cos;
  • from cos to sin;
  • from tg to ctg;
  • from ctg to tg.

The value of the function remains unchanged if the angle can be represented as (π ± a) or (2π ± a).

Secondly, the sign of the reduced function does not change: if it was initially positive, it remains so. Same with negative functions.

Addition formulas

These formulas express the values ​​of sine, cosine, tangent and cotangent of the sum and difference of two rotation angles through their trigonometric functions. Typically the angles are denoted as α and β.

The formulas look like this:

  1. sin(α ± β) = sin α * cos β ± cos α * sin.
  2. cos(α ± β) = cos α * cos β ∓ sin α * sin.
  3. tan(α ± β) = (tg α ± tan β) / (1 ∓ tan α * tan β).
  4. ctg(α ± β) = (-1 ± ctg α * ctg β) / (ctg α ± ctg β).

These formulas are valid for any angles α and β.

Double and triple angle formulas

The double and triple angle trigonometric formulas are formulas that relate the functions of the angles 2α and 3α, respectively, to the trigonometric functions of the angle α. Derived from addition formulas:

  1. sin2α = 2sinα*cosα.
  2. cos2α = 1 - 2sin^2 α.
  3. tan2α = 2tgα / (1 - tan^2 α).
  4. sin3α = 3sinα - 4sin^3 α.
  5. cos3α = 4cos^3 α - 3cosα.
  6. tg3α = (3tgα - tg^3 α) / (1-tg^2 α).

Transition from sum to product

Considering that 2sinx*cosy = sin(x+y) + sin(x-y), simplifying this formula, we obtain the identity sinα + sinβ = 2sin(α + β)/2 * cos(α − β)/2. Similarly sinα - sinβ = 2sin(α - β)/2 * cos(α + β)/2; cosα + cosβ = 2cos(α + β)/2 * cos(α − β)/2; cosα — cosβ = 2sin(α + β)/2 * sin(α − β)/2; tanα + tanβ = sin(α + β) / cosα * cosβ; tgα - tgβ = sin(α - β) / cosα * cosβ; cosα + sinα = √2sin(π/4 ∓ α) = √2cos(π/4 ± α).

Transition from product to sum

These formulas follow from the identities of the transition of a sum to a product:

  • sinα * sinβ = 1/2*;
  • cosα * cosβ = 1/2*;
  • sinα * cosβ = 1/2*.

Degree reduction formulas

In these identities, the square and cubic powers of sine and cosine can be expressed in terms of the sine and cosine of the first power of a multiple angle:

  • sin^2 α = (1 - cos2α)/2;
  • cos^2 α = (1 + cos2α)/2;
  • sin^3 α = (3 * sinα - sin3α)/4;
  • cos^3 α = (3 * cosα + cos3α)/4;
  • sin^4 α = (3 - 4cos2α + cos4α)/8;
  • cos^4 α = (3 + 4cos2α + cos4α)/8.

Universal substitution

Formulas for universal trigonometric substitution express trigonometric functions in terms of the tangent of a half angle.

  • sin x = (2tgx/2) * (1 + tan^2 x/2), with x = π + 2πn;
  • cos x = (1 - tan^2 x/2) / (1 + tan^2 x/2), where x = π + 2πn;
  • tg x = (2tgx/2) / (1 - tg^2 x/2), where x = π + 2πn;
  • cot x = (1 - tg^2 x/2) / (2tgx/2), with x = π + 2πn.

Special cases

Special cases of protozoa trigonometric equations are given below (k is any integer).

Quotients for sine:

Sin x value x value
0 πk
1 π/2 + 2πk
-1 -π/2 + 2πk
1/2 π/6 + 2πk or 5π/6 + 2πk
-1/2 -π/6 + 2πk or -5π/6 + 2πk
√2/2 π/4 + 2πk or 3π/4 + 2πk
-√2/2 -π/4 + 2πk or -3π/4 + 2πk
√3/2 π/3 + 2πk or 2π/3 + 2πk
-√3/2 -π/3 + 2πk or -2π/3 + 2πk

Quotients for cosine:

cos x value x value
0 π/2 + 2πk
1 2πk
-1 2 + 2πk
1/2 ±π/3 + 2πk
-1/2 ±2π/3 + 2πk
√2/2 ±π/4 + 2πk
-√2/2 ±3π/4 + 2πk
√3/2 ±π/6 + 2πk
-√3/2 ±5π/6 + 2πk

Quotients for tangent:

tg x value x value
0 πk
1 π/4 + πk
-1 -π/4 + πk
√3/3 π/6 + πk
-√3/3 -π/6 + πk
√3 π/3 + πk
-√3 -π/3 + πk

Quotients for cotangent:

ctg x value x value
0 π/2 + πk
1 π/4 + πk
-1 -π/4 + πk
√3 π/6 + πk
-√3 -π/3 + πk
√3/3 π/3 + πk
-√3/3 -π/3 + πk

Theorems

Theorem of sines

There are two versions of the theorem - simple and extended. Simple sine theorem: a/sin α = b/sin β = c/sin γ. In this case, a, b, c are the sides of the triangle, and α, β, γ are the opposite angles, respectively.

Extended sine theorem for an arbitrary triangle: a/sin α = b/sin β = c/sin γ = 2R. In this identity, R denotes the radius of the circle in which the given triangle is inscribed.

Cosine theorem

The identity is displayed as follows: a^2 = b^2 + c^2 - 2*b*c*cos α. In the formula, a, b, c are the sides of the triangle, and α is the angle opposite to side a.

Tangent theorem

The formula expresses the relationship between the tangents of two angles and the length of the sides opposite them. The sides are labeled a, b, c, and the corresponding opposite angles are α, β, γ. Formula of the tangent theorem: (a - b) / (a+b) = tan((α - β)/2) / tan((α + β)/2).

Cotangent theorem

Connects the radius of a circle inscribed in a triangle with the length of its sides. If a, b, c are the sides of the triangle, and A, B, C, respectively, are the angles opposite them, r is the radius of the inscribed circle, and p is the semi-perimeter of the triangle, the following identities are valid:

  • cot A/2 = (p-a)/r;
  • cot B/2 = (p-b)/r;
  • cot C/2 = (p-c)/r.

Application

Trigonometry is not only a theoretical science associated with mathematical formulas. Its properties, theorems and rules are used in practice by various industries. human activity- astronomy, aerial and sea ​​navigation, music theory, geodesy, chemistry, acoustics, optics, electronics, architecture, economics, mechanical engineering, measurement work, computer graphics, cartography, oceanography, and many others.

Sine, cosine, tangent and cotangent are the basic concepts of trigonometry, with the help of which one can mathematically express the relationships between the angles and lengths of the sides in a triangle, and find the required quantities through identities, theorems and rules.