Интересные физические опыты. Опыты и эксперименты по физике (7 класс) на тему: Научная работа «Занимательные физические опыты из подручных материалов

Опыт 1 Четыре этажа Приборы и материалы: бокал, бумага, ножницы, вода, соль, красное вино, подсолнечное масло, крашенный спирт. Этапы проведения опыта ПОПРОБУЕМ НАЛИТЬ В СТАКАН ЧЕТЫРЕ РАЗНЫХ ЖИДКОСТИ ТАК, ЧТОБЫ ОНИ НЕ СМЕШАЛИСЬ И СТОЯЛИ ОДНА НАД ДРУГОЙ В ПЯТЬ ЭТАЖЕЙ. ВПРОЧЕМ, НАМ УДОБНЕЕ БУДЕТ ВЗЯТЬ НЕ СТАКАН, А УЗКИЙ, РАСШИРЯЮЩИЙСЯ К ВЕРХУ БОКАЛ. 1. НАЛИТЬ НА ДНО БОКАЛА СОЛЁНОЙ ПОДКРАШЕННОЙ ВОДЫ. 2. СВЕРНУТЬ ИЗ БУМАГИ ФУНТИК И ЗАГНУТЬ ЕГО КОНЕЦ ПОД ПРЯМЫМ УГЛОМ; КОНЧИК ЕГО ОТРЕЗАТЬ. ОТВЕРСТИЕ В ФУНТИКЕ ДОЛЖНО БЫТЬ ВЕЛИЧИНОЙ С БУЛАВОЧНУЮ ГОЛОВКУ. НАЛИТЬ В ЭТОТ РОЖОК КРАСНОГО ВИНА; ТОНКАЯ СТРУЙКА ДОЛЖНА ВЫТЕКАТЬ ИЗ НЕГО ГОРИЗОНТАЛЬНО, РАЗБИВАТЬСЯ О СТЕНКИ БОКАЛА И ПО НЕМУ СТЕКАТЬ НА СОЛЁНУЮ ВОДУ. КОГДА СЛОЙ КРАСНОГО ВИНА ПО ВЫСОТЕ СРАВНЯЕТСЯ С ВЫСОТОЙ СЛОЯ ПОДКРАШЕННОЙ ВОДЫ, ПРЕКРАТИТЬ ЛИТЬ ВИНО. 3. ИЗ ВТОРОГО РОЖКА НАЛЕЙ ТАКИМ ЖЕ ОБРАЗОМ В БОКАЛ ПОДСОЛНЕЧНОГО МАСЛА. 4. ИЗ ТРЕТЬЕГО РОЖКА НАЛИТЬ СЛОЙ КРАШЕННОГО СПИРТА.




Опыт 2 Удивительный подсвечник Приборы и материалы: свеча, гвоздь, стакан, спички, вода. Этапы проведения опыта Утяжелить конец свечи гвоздём. Рассчитать величину гвоздя так, чтобы свеча вся погрузилась в воду, только фитиль и самый кончик парафина должны выступать над водой. Зажечь фитиль. - Позволь, - скажут тебе, - ведь через минуту свеча догорит до воды и погаснет! - В том-то и дело, - ответишь ты, - что свеча с каждой минутой короче. А раз короче, значит и легче. Раз легче, значит, она всплывёт. И, правда, свеча будет понемножку всплывать, причём охлаждённый водой парафин у края свечи будет таять медленней, чем парафин, окружающий фитиль. Поэтому вокруг фитиля образуется довольно глубокая воронка. Эта пустота, в свою очередь, облегчает свечу, потому- то наша свеча и догорит до конца. Не правда ли, удивительный подсвечник – стакан воды? А этот подсвечник совсем не плох.


Опыт 3 Свеча за бутылкой Приборы и материалы: свеча, бутылка, спички Этапы проведения опыта Поставить зажженную свечу позади бутылки, а самому стань так, чтобы лицо отстояло от бутылки на см. Стоит теперь дунуть, и свеча погаснет, будто между тобой и свечёй нет никакой преграды. Объяснение опыта Свеча гаснет потому, что бутылка воздухом Обтекается: струя воздуха разбивается бутылкой на два потока; один обтекает её справа, а другой – слева; а встречаются они примерно там, где стоит пламя свечи.


Опыт 4 Вертящаяся змейка Приборы и материалы: плотная бумага, свеча, ножницы. Этапы проведения опыта 1. Из плотной бумаги вырезать спираль, растянуть её немного и посадить на конец изогнутой проволоки. 2. Держать эту спираль над свечкой в восходящем потоке воздуха, змейка будет вращаться. Объяснение опыта Змейка вращается, т.к. происходит расширение воздуха под действием тепла и о превращении теплой энергии в движение.


Опыт 5 Извержение Везувия Приборы и материалы: стеклянный сосуд, пузырёк, пробку, спиртовая тушь, вода. Этапы проведения опыта В широкий стеклянный сосуд, наполненный водой, поставить пузырёк спиртовой туши. В пробке пузырька должно быть небольшое отверстие. Объяснение опыта Вода имеет большую плотность, чем спирт; она постепенно будет входить в пузырёк, вытесняя оттуда тушь. Красная, синяя или черная жидкость тоненькой струйкой будет подниматься из пузырька кверху.


Опыт 6 Пятнадцать спичек на одной Приборы и материалы: 15 спичек. Этапы проведения опыта Положить одну спичку на стол, а на неё поперёк 14 спичек так, чтобы головки их торчали кверху, а концы касались стола. Как поднять первую спичку, держа её за один конец, и вместе с нею все остальные спички? Объяснение опыта Для этого нужно только поверх всех спичек, в ложбинку между ними, положить ещё одну, пятнадцатую спичку


Опыт 8 Парафиновый мотор Приборы и материалы: свеча, спица, 2 стакана, 2 тарелки, спички. Этапы проведения опыта Чтобы сделать это мотор, нам не нужно ни электричества, ни бензина. Нам нужно для этого только … свеча. 1. Раскалить спицу и воткнуть её их головками в свечку. Это будет ось нашего двигателя. 2. Положить свечу спицей на края двух стаканов и уравновесить. 3. Зажечь свечу с обоих концов. Объяснение опыта Капля парафина упадёт в одну из тарелок, подставленных под концы свечи. Равновесие нарушится, другой конец свечи перетянет и опустится; при этом с него стечёт несколько капель парафина, и он станет легче первого конца; он поднимается к верху, первый конец опустится, уронит каплю, станет легче, и наш мотор начнёт работать вовсю; постепенно колебания свечи будут увеличиваться всё больше и больше.


Опыт 9 Свободный обмен жидкостями Приборы и материалы: апельсин, бокал, красное вино или молоко, воду, 2 зубочистки. Этапы проведения опыта Осторожно разрезать апельсин пополам, очистить так, чтобы кожица снялась целой чашечкой. Проткнуть в дне этой чашечки два отверстия рядом и положить её в бокал. Диаметр чашечки должен быть немного больше диаметра центральной части бокала, тогда чашечка удержится на стенках, не падая на дно. Опустить апельсинную чашечку в сосуд на одну треть высоты. Налить в апельсинную корку красного вина или подкрашенного спирта. Оно будет проходить через дырку, пока уровень вина не дойдёт до дна чашечки. Затем налить воды почти до края. Можно увидеть, как струя вина поднимается через одно из отверстий до уровня воды, между тем как вода, более тяжёлая, пройдет через другое отверстие и станет опускаться ко дну бокала. Через несколько мгновений вино очутится на верху, а вода внизу.


Диффузия жидкостей и газов Диффузия (от лат. diflusio - распространение, растекание, рассеивание), перенос частиц разной природы, обусловленный хаотическим тепловым движением молекул (атомов). Различают диффузию в жидкостях, газах и твёрдых телах Демонстрационный эксперимент «Наблюдение диффузии» Приборы и материалы: вата, нашатырный спирт, фенолфталеин, установка для наблюдения диффузии. Этапы проведения эксперимента Возьмём два кусочка ватки. Смочим один кусочек ватки фенолфталеином, другой – нашатырным спиртом. Приведём ветки в соприкосновение. Наблюдается окрашивание ваток в розовый цвет вследствие явления диффузии.



Толстый воздух Мы живём благодаря воздуху, которым мы дышим. Если тебе не кажется это достаточно волшебным, проделай этот эксперимент, чтобы узнать, на какую ещё магию способен воздух. Реквизит Защитные очки Сосновая дощечка 0,3 х 2,5 х 60 см (можно приобрести в любом магазине пиломатериалов) Газетный лист Линейка Подготовка Разложи всё необходимое на столе Начинаем научное волшебство! Надень защитные очки. Объяви зрителям: « В мире есть два вида воздуха. Один из них – тощий, а другой – жирный. Сейчас я с помощью жирного воздуха совершу волшебство ». Положи на стол дощечку так, чтобы примерно 6 дюймов (15 см) выступало на край стола. Произнеси: « Толстый воздух садись на дощечку ». Ударь по концу дощечки, который выступает за край стола. Дощечка подпрыгнет в воздух. Скажи зрителям, что на дощечку сел должно быть тощий воздух. Опять положи дощечку на стол как в пункте 2. Положи на дощечку газетный лист, как показано на рисунке, чтобы дощечка была посередине листа. Разгладь газету, чтобы между ней и столом не осталось воздуха. Снова скажи: « Толстый воздух, садись на дощечку ». Ударь по выступающему концу ребром ладони. Результат Когда ты ударяешь по дощечке в первый раз, она подпрыгивает. Но если ударить по дощечке, на которой лежит газета, дощечка ломается. Объяснение Когда ты разглаживаешь газету, ты удаляешь из-под неё почти весь воздух. Вместе с тем большое количество воздуха сверху газеты давит на неё с большой силой. Когда ты ударяешь по дощечке, она ломается, потому что давление воздуха на газету не даёт дощечке подняться вверх в ответ на приложенную тобой силу.


Непромокаемая бумага Реквизит Бумажное полотенце Стакан Пластиковая миска или ведёрко, в которое можно налить достаточное количество воды, чтобы она полностью покрыла стакан Подготовка Разложи всё необходимое на столе Начинаем научное волшебство! Объяви зрителям: "C помощью своего магического мастерства я смогу сделать так, чтобы кусочек бумаги остался сухим ». Сомни бумажное полотенце и положи его на дно стакана. Переверни стакан и убедись, что комок бумаги остаётся на месте. Произнеси над стаканом какие-нибудь волшебные слова, например: « магические силы, оградите бумагу от воды ». Потом медленно опусти перевёрнутый стакан в миску с водой. Старайся держать стакан как можно ровнее, пока он не скроется под водой полностью. Вытащи стакан из воды и стряхни с него воду. Переверни стакан дном книзу и достань бумагу. Дай зрителям пощупать её и убедиться, что она осталась сухой. Результат Зрители обнаруживают, что бумажное полотенце осталось сухим. Объяснение Воздух занимает определённый объём. В стакане есть воздух, в каком бы положении он не находился. Когда ты переворачиваешь стакан кверху дном и медленно опускаешь в воду, воздух остаётся в стакане. Вода из-за воздуха не может попасть в стакан. Давление воздуха оказывается больше, чем давление воды, стремящейся проникнуть внутрь стакана. Полотенце на дне стакана остаётся сухим. Если стакан под водой перевернуть набок, воздух в виде пузырьков будет выходить из него. Тогда сможет попасть в стакан.


Прилипчивый стакан Из этого эксперимента ты узнаешь, как благодаря воздуху предметы могут прилипать друг к другу. Реквизит 2 больших воздушных шарика 2 пластиковых стакана по 250 мл Помощник Подготовка Разложи всё необходимое на столе Начинаем научное волшебство! Вызови кого-нибудь из зрителей в качестве ассистента. Дай ему шарик и стаканчик, а другой шарик и стаканчик оставь себе. Пусть твой ассистент надует твой шарик примерно наполовину, и завяжет его. Теперь попроси его попытаться прилепить к шарику стаканчик. Когда он не сможет выполнить это, наступает твоя очередь. Надуй свой шарик примерно на треть. Приложи стаканчик к шарику сбоку. Удерживая стаканчик на месте, продолжай надувать шарик, пока он не будет надут по крайней мере на 2/3. Теперь отпусти стаканчик. Советы учёному волшебнику Докажи зрителям, что твой стаканчик не намазан клеем. Выпусти из шарика некоторое количество воздуха, и стаканчик отваливается. Что ещё можно сделать Попробуй одновременно прикрепить к шарику одновременно 2 стаканчика. Это потребует некоторой тренировки и помощи ассистента. Попроси его приложить к шарику два стаканчика, а потом надуй шарик, как было описано. Результат Когда ты надуешь шарик, стаканчик « прилипнет » к нему. Объяснение Когда ты прикладываешь стаканчик к шарику и надуваешь его, вокруг края стаканчика стенка шарика становится плоской. При этом объём воздуха внутри стаканчика слегка увеличивается, однако количество молекул воздуха остаётся прежним, поэтому давление воздуха внутри стаканчика уменьшается. Следовательно, атмосферное давление внутри стаканчика становится слегка меньшим, чем снаружи. Благодаря этой разницы в давлении стаканчик и удерживается на месте.


Упорная воронка Может ли воронка « отказываться » пропускать воду в бутылку? Проверь сам! Реквизит 2 воронки Две одинаковые чистые сухие пластиковые бутылки по 1 литру Пластилин Кувшин с водой Подготовка Вставь в каждую бутылку по воронке. Замажь горлышко одной из бутылок вокруг воронки пластилином,чтобы не осталось щели.Замажь горлышко одной из бутылок вокруг воронки пластилином,чтобы не осталось щели. Начинаем научное волшебство! Объяви зрителям: « У меня есть волшебная воронка, которая не пускает воду в бутылку »Объяви зрителям: « У меня есть волшебная воронка, которая не пускает воду в бутылку » Возьми бутылку без пластилина и налей в неё через воронку немного воды. Обясни зрителям: « Вот так ведёт себя большинство воронок ».Возьми бутылку без пластилина и налей в неё через воронку немного воды. Обясни зрителям: « Вот так ведёт себя большинство воронок ». Поставь на стол воронку с пластилином. Налей воды в воронку до верха. Посмотри, что будет. Результат Из воронки в бутылку протечёт несколько капель воды, а затем она прекратит течь совсем. Объяснение Это ещё один пример действия атмосферного давления. В первую бутылку вода течёт свободно. Вода, текущая через воронку в бутылку, замещает в ней воздух, который выходит через щели между горлышком и воронкой. В запечатанной пластилином бутылке тоже есть воздух, который обладает своим давлением. Вода в воронке тоже обладает давлением, которое возникает благодаря силе тяжести, тянущей воду вниз. Однако сила давления воздуха в бутылке превышает силу тяжести, действующую на воду. Поэтому вода не может попасть в бутылку. Если в бутылке или в пластилине будет хотя бы маленькая дырочка, воздух сможет выходить через неё. Из-за этого его давление в бутылке будет падать, и вода сможет течь в неё.


Разрушитель Как тебе уже должно быть известно из предыдущих опытов, настоящий волшебник может использовать силу давления воздуха в своих удивительных трюках. Из этого опыта ты узнаешь, как воздух может раздавить жестяную банку. Обратите внимание: для этого эксперимента понадобиться газовая или электрическая плита и помощь взрослых. Реквизит Форма для выпечки Водопроводная вода Линейка Газовая или электрическая лампа (пользоваться должен только взрослый помощник) Пустая жестяная банка Щипцы Взрослый ассистент Подготовка Налей в форму воды примерно на 2,5 см. Поставь её рядом с плитой. Налей немного воды в пустую банку от газированной воды – чтобы вода только прикрывала дно. После этого твой взрослый ассистент должен нагреть банку на плите. Вода должна сильно кипеть в течение примерно минуты, так, чтобы из банки шёл пар. Начинаем научное волшебство! Объяви зрителям, что сейчас ты раздавишь жестяную банку, не дотронувшись до неё. Попроси взрослого ассистента взять банку щипцами и быстро перевернуть её в форму с водой. Посмотри, что произойдёт. Советы учёному волшебнику Прежде чем твой помощник перевернёт банку, скажи какие-нибудь волшебные слова. Протяни руки над банкой и произнеси: « Жестянка, приказываю тебе расплющиться, как только тебя коснётся вода! » Что ещё можно сделать Попробуй повторить эксперимент с банкой большего размера, например, с литровой банкой из-под томатного сока. Открывая банку, сделай в крышке только небольшие отверстия. Перед проведением эксперимента вылей из банки содержимое и вымой её, но не открывай крышку полностью. Так же легко окажется раздавить такую банку, как банку из-под газировки? Результат Когда твой ассистент опустит перевёрнутую банку в форму с водой, банка тут же сплющится. Объяснение Банка сминается из-за изменения давления воздуха. Ты создаёшь внутри неё низкое давление, а затем более высоким давлением её сминает. В ненагретой банке содержится вода и воздух. Когда вода вскипает, она испаряется – превращается из жидкости в горячий водяной пар. Горячий пар замещает в банке воздух. Когда твой ассистент опускает перевёрнутую банку, воздух не может снова вернуться в неё. Холодная вода в форме охлаждает пар, оставшийся в банке. Он конденсируется-превращается из газа обратно в воду. Пар который занимал весь объём банки, превращается всего в несколько капель воды, которая занимает существенно меньше места, чем пар. В банке остаётся большое пустое пространство, практически не заполненное воздухом, поэтому давление там оказывается гораздо ниже, чем атмосферное давление снаружи. Воздух давит на банку снаружи, и она сминается.


Летающий мячик Видел ли ты, как на выступлении фокусника человек поднимается в воздух? Попробуй провести подобный эксперимент. Обрати внимание: Для этого эксперимента понадобиться фен и помощь взрослых. Реквизит Фен (пользоваться должен только взрослый помощник) 2 толстые книги или другие тяжёлые предметы Мячик для пинг-понга Линейка Взрослый ассистент Подготовка Установи фен на столе вверх отверстием, откуда дует горячий воздух. Чтобы установить его в таком положении, используй книги. Проверь, чтобы они не закрывали отверстие сбоку, где воздух засасывается в фен. Включи фен в розетку. Начинаем научное волшебство! Попроси кого-нибудь из взрослых зрителей стать твоим ассистентом. Объяви зрителям: « Сейчас я заставлю обыкновенный пинг-понговый шарик летать по воздуху ». Возьми шарик в руку и отпусти, чтобы он упал на стол. Скажи зрителям: « Ой! Я забыл сказать волшебные слова! » Произнеси над мячиком волшебные слова. Пусть твой ассистент включит фен на полную мощность. Аккуратно помести шарик над феном в струю воздуха, примерно в 45 см от выдувающего отверстия. Советы учёному волшебнику В зависимости от силы выдува, тебе, возможно, придётся поместить шарик немного выше или ниже, чем указано. Что ещё можно сделать Попробуй проделать тоже самое с мячиком разного размера и массы. Одинаково ли хорошо будет получаться опыт? Результат Шарик зависнет в воздухе над феном. Объяснение На самом деле этот трюк не противоречит силе тяжести. В нём демонстрируется важная способность воздуха, называемая принципом Бернулли. Принцип Бернулли – закон природы, согласно которому любое давление любого текучего вещества, в том числе воздуха, уменьшается с ростом скорости его движения. Иначе говоря при низкой скорости потока воздуха он имеет высокое давление. Воздух, выходящий из фена, движется очень быстро и следовательно его давление невелико. Мячик со всех сторон становится окружён областью низкого давления, которая образует конус у отверстия фена. Воздух вокруг этого конуса обладает более высоким давлением, и не даёт мячику выпасть из зоны низкого давления. Сила тяжести тянет его вниз, а сила воздуха тянет его вверх. Благодаря совместному действию этих сил, шарик и зависает в воздухе над феном.


Волшебный мотор В этом эксперименте ты сможешь заставить лист бумаги работать, как мотор – конечно, с помощью воздуха. Реквизит Клей Квадратный кусок дерева 2,5 х 2,5 см Швейная иголка Бумажный квадрат 7, 5 х 7,5 см Подготовка Нанеси каплю клея в центре деревяшки. Установи в клей иголку острым концом вверх, под прямым углом (перпендикулярно) к деревяшке. Держи её в таком положении, пока клей не застынет настолько, что иголка будет стоять самостоятельно. Сложи бумажный квадрат по диагонали (угол к углу). Разверни, и сложи по другой диагонали. Снова разверни бумагу. Там, где пересекаются линии сгиба, находится центр листа. Лист бумаги должен выглядеть как низкая, уплощённая пирамида. Начинаем научное волшебство! Объяви зрителям: « Теперь у меня есть волшебная сила, которая поможет мне запустить маленький бумажный моторчик ». Поставь на стол деревяшку с иголкой. Положи на иголку бумагу, так, чтобы её центр оказался на острие иголки. 4 стороны пирамиды должны свисать вниз. Произнеси волшебные слова, например: « Волшебная энергия, заведи мой мотор! » Потри ладони 5-10 раз, потом сложи их вокруг пирамиды на расстоянии около 2,5 см от краёв бумаги. Посмотри, что получиться. Результат Бумага сначала будет качаться, а затем начнёт вращаться по кругу. Объяснение Веришь или нет, но бумагу заставит двигаться тепло от твоих рук. Когда ты трёшь ладони друг о друга, между ними возникает трение – сила, которая тормозит движение соприкасающихся предметов. Из-за трения предметы разогреваются, значит, и трение твоих ладоней производит тепло. Тёплый воздух всегда движется от тёплого места к холодному. Воздух, соприкасающийся с твоими ладонями, нагревается. Тёплый воздух поднимается вверх, так как расширяется и становится мене плотным, следовательно, более лёгким. Двигаясь, воздух соприкасается с бумажной пирамидой, заставляя двигаться и её. Такое перемещение тёплого и холодного воздуха называется конвекцией. Конвекция – это такой процесс, при котором в жидкости или газе возникают потоки тепла.

1

1. Теория и методика обучения физике в школе. Общие вопросы. Под ред. С.Е. Каменецкого, Н.С. Пурышевой. М.: Издательский центр «Академия», 2000.

2. Опыты и наблюдения в домашних заданиях по физике. С.Ф. Покровский. Москва, 1963.

3. Перельман Я.И. сборник занимательных книг (29 шт.). Квант. Год издания: 1919-2011.

«Расскажи мне, и я забуду, покажи мне, и я запомню, дай мне попробовать, и я научусь».

Древняя китайская пословица

Одной из главных составляющих обеспечения информационно-образовательной среды предмета физики являются образовательные ресурсы и правильная организация учебной деятельности. Современному ученику, легко ориентирующемуся на просторах интернета, можно воспользоваться различными образовательными ресурсами: http://sites.google.com/site/physics239/poleznye-ssylki/sajty, http://www.fizika.ru, http://www.alleng.ru/edu/phys, http://www.int-edu.ru/index.php, http://class-fizika.narod.ru, http://www.globallab.ru, http://barsic.spbu.ru/www/edu/edunet.html, http://www.374.ru/index.php?x=2007-11-13-14 и др. Сегодня основная задача педагога научить учиться учащихся, укрепить их способность к саморазвитию в процессе образования в современной информационной среде.

Изучение учащимися физических законов и явлений всегда должно закрепляется практическим экспериментом. Для этого необходимо соответствующее оборудование, которое есть в кабинете физики. Использование современной техники в учебном процессе позволяет заменить наглядный практический эксперимент компьютерной моделью. На сайте http://www.youtube.com (поиск «опыты по физике») выложены опыты проведенные в реальных условиях.

Альтернативой использования интернета может стать самостоятельный учебный эксперимент, который учащийся может провести вне школы: на улице или дома. Однозначно, что опыты, задаваемые на дом, не должны использовать сложные учебные приборы, а так же вложения материальных затрат. Это могут быть опыты с воздухом, водой, с различными предметами которые доступны ребенку. Конечно научность и ценность таких опытов минимальна. Но если ребенок сам может проверить открытый за много лет до него закон или явление это для развития его практических навыков просто бесценно. Опыт это задание творческое и сделав что-либо самостоятельно, ученик, хочет он этого или нет, а задумается: как проще провести опыт, где встречался он с подобным явлением на практике, где еще может быть полезно данное явление.

Что необходимо ребенку, чтобы провести опыт дома? В первую очередь, это достаточно подробное описание опыта, с указанием необходимых предметов, где в доступной для ученика форме сказано, что надо делать, на что обратить внимание. В школьных учебниках физики на дом предлагается либо решать задачи, либо отвечать на поставленные в конце параграфа вопросы. Там редко можно встретить описание опыта, который рекомендуется школьникам для самостоятельного проведения дома. Следовательно, если учитель предлагает ученикам проделать что-либо дома, то он обязан дать им подробный инструктаж.

Впервые домашние опыты и наблюдения по физике стали проводиться в 1934/35 учебном году Покровским С.Ф. в школе No 85 Краснопресненского района города Москвы. Конечно, эта дата является условной, еще в древности учителя (философы) могли советовать своим ученикам понаблюдать за природными явлениями, проверить какой-либо закон или гипотезу на практике в домашних условиях. В своей книге С.Ф. Покровский показал, что домашние опыты и наблюдения по физике, проводимые самими учащимися: 1) дают возможность нашей школе расширить область связи теории с практикой; 2) развивают у учащихся интерес к физике и технике; 3) будят творческую мысль и развивают способность к изобретательству; 4) приучают учащихся к самостоятельной исследовательской работе; 5) вырабатывают у них ценные качества: наблюдательность, внимание, настойчивость и аккуратность; 6) дополняют классные лабораторные работы тем материалом, который никак не может быть выполнен в классе (ряд длительных наблюдений, наблюдение природных явлений и прочее); 7) приучают учащихся к сознательному, целесообразному труду.

В учебниках «Физика-7», «Физика-8» (авторы А.В. Перышкин), учащимся после изучения отдельных тем предлагаются экспериментальные задания для наблюдений, которые можно выполнить в домашних условиях, объяснить их результаты, составить краткий отчет о работе.

Так как одно из требований к домашнему опыту простота по выполнению, следовательно, их применение целесообразно проводить на начальном этапе обучения физике, когда в детях еще не угасло природное любопытство. Сложно придумать эксперименты для домашнего проведения по таким темам, как, например: большая часть темы «Электродинамика» (кроме электростатики и простейших электрических цепей), «Физика атома», «Квантовая физика». В сети интернет можно найти описание домашних экспериментов: http://adalin.mospsy.ru/l_01_00/op13.shtml, http://ponomari-school.ucoz.ru/index/0-52, http://ponomari-school.ucoz.ru/index/0-53, http://elkin52.narod.ru/opit/opit.htm, http://festival. 1september.ru/ articles/599512 и др. Мной подготовлена подборка домашних опытов c краткими инструкциями по выполнению.

Домашние опыты по физике представляют учебный вид деятельности учащихся, позволяющий не только решать учебно-методические образовательные задачи учителя, но и дает возможность школьнику увидеть, что физика это не только предмет школьной программы. Знания, полученные на уроке, то, что реально можно использовать в жизни и с точки зрения практичности, и для оценивания каких-то параметров тел или явлений, и для прогноза последствий каких-либо действий. Ну, вот 1 дм3 это много или мало? Большинству учащихся (да и взрослых тоже) трудно ответить на этот вопрос. Но стоит только вспомнить, что объем в 1 дм3 имеет обычный пакет молока, и сразу становится проще оценивать объемы тел: ведь 1 м3 это тысяча таких пакетиков! Именно на таких простых примерах приходит понимание физических величин. При выполнении лабораторных работ учащиеся отрабатывают вычислительные навыки, на собственном опыте убеждаются в справедливости законов природы. Недаром Галилео Галилей утверждал, что наука верна тогда, когда становится понятной даже непосвященному. Так что домашние опыты являются расширением информационно-образовательной среды современного школьника. Ведь и жизненный опыт, приобретаемый годами методом проб и ошибок, не что иное, как элементарные знания по физике.

Простейшие измерения.

Задание 1.

Научившись пользоваться линейкой и рулеткой или сантиметром в классе, измерьте при помощи этих приборов длины следующих предметов и расстояний:

а) длину указательного пальца; б) длину локтя, т.е. расстояние от конца локтя до конца среднего пальца; в) длину ступни от конца пятки до конца большого пальца; г) окружность шеи, окружность головы; д) длину ручки или карандаша, спички, иголки, длину и ширину тетради.

Полученные данные запишите в тетрадь.

Задание 2.

Измерьте свой рост:

1. Вечером, перед отходом ко сну, снимите обувь, встаньте спиной к косяку двери и плотно прислонитесь. Голову держите прямо. Попросите кого-нибудь с помощью угольника поставить на косяке небольшую черточку карандашом. Измерьте расстояние от пола до отмеченной черточки рулеткой или сантиметром. Выразите результат измерения в сантиметрах и миллиметрах, запишите его в тетрадь с указанием даты (год, месяц, число, час).

2. Проделайте то же самое утром. Снова запишите результат и сравните результаты вечернего и утреннего измерений. Запись принесите в класс.

Задание 3.

Измерьте толщину листа бумаги.

Возьмите книгу толщиной немного больше 1см и, открыв верхнюю и нижнюю крышки переплета, приложите к стопке бумаги линейку. Подберите стопку толщиной в 1 см = 10 мм = 10000 микрон. Разделив 10000 микрон на число листов, выразите толщину одного листа в микронах. Результат запишите в тетрадь. Подумайте, как можно увеличить точность измерения?

Задание 4.

Определите объем спичечной коробки, прямоугольного лас-тика, пакета из-под сока или молока. Измерьте длину, ширину и высоту спичечной коробки в миллиметрах. Перемножьте полученные числа, т.е. найдите объем. Выразите результат в кубических миллиметрах и в кубических дециметрах (литрах), запишите его. Проделайте измерения и вычислите объемы других предложенных тел.

Задание 5.

Возьмите часы с секундной стрелкой (можно воспользоваться электронными часами или секундомером) и, глядя на секундную стрелку, наблюдайте за ее движением в течение од-ной минуты (на электронных часах наблюдайте за цифровыми значениями). Далее попросите кого-нибудь отметить вслух начало и конец минуты по часам, а сами в это время закройте глаза, и с закрытыми глазами воспринимайте продолжительность одной минуты. Проделайте обратное: стоя с закрытыми глазами, попытайтесь установить продолжительность одной минуты. Пусть другой человек проконтролирует вас по часам.

Задание 6.

Научитесь быстро находить свой пульс, затем возьмите часы с секундной стрелкой или электронные и установите, сколько ударов пульса наблюдается в одну минуту. Затем проделайте обратную работу: считая удары пульса, установите продолжительность одной минуты (следить за часами поручите другому лицу)

Примечание. Великий ученый Галилей, наблюдая за качаниями паникадила во Флорентийском кафедральном соборе и пользуясь (вместо часов) биениями собственного пульса, установил первый закон колебания маятника, который лег в основу учения о колебательном движении.

Задание 7.

При помощи секундомера установите как можно точнее, за какое число секунд вы пробегаете расстояние 60 (100) м. Разделите путь на время, т.е. определите среднюю скорость в метрах в секунду. Переведите метры в секунду в километры в час. Результаты запишите в тетрадь.

Давление.

Задание 1.

Определите давление, производимое стулом. Подложите под ножку стула листок бумаги в клеточку, обведите ножку остро отточенным карандашом и, вынув листок, подсчитайте число квадратных сантиметров. Подсчитайте площадь опоры четырех ножек стула. Подумайте, как еще можно посчитать площадь опоры ножек?

Узнайте вашу массу вместе со стулом. Это можно сделать при помощи весов, предназначенных для взвешивания людей. Для этого надо взять в руки стул и встать на весы, т.е. взвесить себя вместе со стулом.

Если узнать массу имеющегося у вас стула по каким-либо причинам не получается, примите массу стула равной 7кг (средняя масса стульев). К массе собственного тела прибавьте среднюю массу стула.

Посчитайте ваш вес вместе со стулом. Для этого сумму масс стула и человека необходимо умножить примерно на десять (точнее на 9,81 м/с2). Если масса была в килограммах, то вы получите вес в ньютонах. Пользуясь формулой p = F/S, подсчитайте давление стула на пол, если вы сидите на стуле, не касаясь ногами пола. Все измерения и расчеты запишите в тетрадь и принесите в класс.

Задание 2.

Налейте в стакан воду до самого края. Прикройте стакан листком плотной бумаги и, придерживая бумагу ладонью, быстро переверните стакан кверху дном. Теперь уберите ладонь. Вода из стакана не выльется. Давление атмосферного воздуха на бумажку больше давления воды на нее.

На всякий случай проделывайте все это над тазом, потому что при незначительном перекосе бумажки и при еще недостаточной опытности на первых порах воду можно и разлить.

Задание 3.

«Водолазный колокол» - это большой металлический колпак, который открытой стороной опускают на дно водоема для производства каких-либо работ. После опускания его в воду содержащийся в колпаке воздух сжимается и не пускает воду внутрь этого устройства. Только в самом низу остается немного воды. В таком колоколе люди могут двигаться и выполнять порученную им работу. Сделаем модель этого устройства.

Возьмите стакан и тарелку. В тарелку налейте воду и поставьте в нее перевернутый вверх дном стакан. Воздух в стакане сожмется, и дно тарелки под стаканом будет очень немного залито водой. Перед тем как поставить в тарелку стакан, положите на воду пробку. Она покажет, как мало воды осталось на дне.

Задание 4.

Этому занимательному опыту около трехсот лет. Его приписывают французскому ученому Рене Декарту (по-латыни его фамилия - Картезий). Опыт был так популярен, что на его основе создали игрушку «Картезианский водолаз». Мы с вами можем проделать этот опыт. Для этого понадобится пластиковая бутылка с пробкой, пипетка и вода. Наполните бутылку водой, оставив два-три миллиметра до края горлышка. Возьмите пипетку, наберите в нее немного воды и опустите в горлышко бутылки. Она должна своим верхним резиновым концом быть на уровне или чуть выше уровня воды в бутылке. При этом нужно добиться, чтобы от легкого толчка пальцем пипетка погружалась, а потом сама медленно всплывала. Теперь закройте пробку и сдавите бока бутылки. Пипетка пойдет на дно бутылки. Ослабьте давление на бутылку, и она снова всплывет. Дело в том, что мы немного сжали воздух в горлышке бутылки и это давление передалось воде. Вода проникла в пипетку - она стала тяжелее и утонула. При прекращении давления сжатый воздух внутри пипетки удалил лишнюю воду, наш «водолаз» стал легче и всплыл. Если в начале опыта «водолаз» вас не слушается, значит, надо отрегулировать количество воды в пипетке.

Когда пипетка находится на дне бутылки, легко проследить, как от усиления нажима на стенки бутылки вода входит в пипетку, а при ослаблении нажима выходит из нее.

Задание 5.

Сделайте фонтан, известный в истории физики как фонтан Герона. Через пробку, вставленную в толстостенную бутылку, пропустите кусок стеклянной трубки с оттянутым концом. Налейте в бутылку столько воды, сколько потребуется для того, чтобы конец трубки был погружен в воду. Теперь в два-три приема вдуйте ртом в бутылку воздух, зажимая после каждого вдувания конец трубки. Отпустите палец и наблюдайте фонтан.

Если хотите получить очень сильный фонтан, то для накачивания воздуха воспользуйтесь велосипедным насосом. Однако помните, что более чем от одного-двух взмахов насоса пробка может вылететь из бутылки и ее нужно будет придерживать пальцем, а при очень большом количестве взмахов сжатый воздух может разорвать бутылку, поэтому пользоваться насосом нужно очень осторожно.

Закон Архимеда.

Задание 1.

Приготовьте деревянную палочку (прутик), широкую банку, ведро с водой, широкий пузырек с пробкой и резиновую нить длиной не менее 25 см.

1. Вталкивайте палочку в воду и наблюдайте, как она выталкивается из воды. Проделайте это несколько раз.

2. Вдвигайте банку в воду дном вниз и наблюдайте как она выталкивается из воды. Проделайте это несколько раз. Вспомните, как трудно вдвинуть ведро дном вниз в бочку с водой (если не наблюдали этого, проделайте при любом удобном случае).

3. Наполните пузырек с водой, закройте пробкой и привяжите к нему резиновую нить. Держа нить за свободный конец, наблюдайте, как она укорачивается при погружении пузырька в воду. Проделайте это несколько раз.

4. Жестяная пластинка на воде тонет. Загните края пластинки так, чтобы получилась коробочка. Поставьте ее на воду. Она плавает. Вместо жестяной пластинки можно использовать кусок фольги, желательно жесткой. Сделайте коробочку из фольги и поставьте на воду. Если коробочка (из фольги или металла) не протекает, то она будет плавать на поверхности воды. Если коробочка набирает воду и тонет, подумайте, как сложить ее таким образом, чтобы вода не попадала внутрь.

Опишите и объясните эти явления в тетради.

Задание 2.

Возьмите кусочек сапожного вара или воска величиной с обыкновенный лесной орех, сделайте из него правильный шарик и при помощи небольшой нагрузки (вложите кусочек проволоки) заставьте его плавно затонуть в стакане или пробирке с водой. Если шарик тонет без нагрузки, то нагружать его, конечно, не следует. При отсутствии вара или воска можно вырезать небольшой шарик из мякоти сырой картофелины.

Подливайте в воду понемногу насыщенного раствора чистой поваренной соли и слегка перемешивайте. Добейтесь сначала того, чтобы шарик держался в равновесии в середине стакана или пробирки, а затем того, чтобы он всплыл к поверхности воды.

Примечание. Предлагаемый опыт является вариантом известного опыта с куриным яйцом и имеет перед последним опытом ряд преимуществ (не требует наличия свежеснесенного куриного яйца, наличия большого высокого сосуда и большого количества соли).

Задание 3.

Возьмите резиновый мяч, шарик от настольного тенниса, кусочки дубового, березового и соснового дерева и пустите их плавать на воде (в ведре или тазу). Внимательно наблюдайте за плаванием этих тел и определите на глаз, какая часть этих тел при плавании погружается в воду. Вспомните, насколько глубоко погружается в воду лодка, бревно, льдина, корабль и прочее.

Силы поверхностного натяжения.

Задание 1.

Подготовьте для этого опыта стеклянную пластинку. Хорошо ее вымойте мылом и теплой водой. Когда она высохнет, протрите одну сторону ваткой, смоченной в одеколоне. Ничем ее поверхности не касайтесь, а брать пластинку теперь нужно только за края.

Возьмите кусочек гладкой белой бумаги и накапайте на него стеарин со свечи, чтобы на нем получилась ровная плоская стеариновая пластинка размером с донышко стакана.

Положите рядом стеариновую и стеклянную пластинки. Капните из пипетки на каждую из них по маленькой капле воды. На стеариновой пластинке получится полушарие диаметром примерно 3 миллиметра, а на стеклянной пластинке капля растечется. Теперь возьмите стеклянную пластинку и наклоните ее. Капля уже и так растеклась, а теперь она потечет дальше. Молекулы воды охотнее притягиваются к стеклу, чем друг к другу. Другая же капля будет кататься по стеарину при наклонах пластинки в разные стороны. Удержаться на стеарине вода не может, она его не смачивает, молекулы воды притягиваются друг к другу сильнее, чем к молекулам стеарина.

Примечание. В опыте вместо стеарина можно использовать сажу. Надо капнуть на закопченную поверхность металлической пластинки воды из пипетки. Капля превратится в шарик и быстро покатится по саже. Чтобы следующие капли сразу не скатывались с пластины, нужно держать ее строго горизонтально.

Задание 2.

Лезвие безопасной бритвы, не смотря на то, что оно стальное, может плавать по поверхности воды. Нужно только позаботится, чтобы оно не смачивалось водой. Для этого его нужно слегка смазать жиром. Положите осторожно лезвие на поверхность воды. Поперек лезвия положите иголку, а на концы лезвия - по одной кнопке. Груз получится довольно солидный, и даже можно увидеть, как бритва вдавилась в воду. Создается впечатление, будто на поверхности воды упругая пленка, которая и держит на себе такой груз.

Можно заставить плавать и иголку, смазав ее предварительно тонким слоем жира. Класть на воду ее надо очень осторожно, чтобы не проколоть поверхностный слой воды. Сразу это может и не получиться, понадобится некоторое терпение и тренировка.

Обратите внимание на то, как расположена иголка на воде. Если иголка намагничена, то это плавающий компас! А если взять магнит, можно заставить иглу путешествовать по воде.

Задание 3.

Положите на поверхность чистой воды два одинаковых кусочка пробки. Кончиками спички сблизьте их. Обратите внимание: как только расстояние между пробками уменьшится до половины сантиметра, этот водяной промежуток между пробками сам сократиться, и пробки быстро притянутся друг к другу. Но не только друг к другу стремятся пробки. Они хорошо притягиваются и к краю посуды, в которой они плавают. Для этого надо только их приблизить к нему на небольшое расстояние.

Попытайтесь дать объяснение увиденному явлению.

Задание 4.

Возьмите два стакана. Один из них наполните водой и поставьте повыше. Другой стакан, пустой, поставьте ниже. Опустите в стакан с водой конец полоски чистой материи, а ее второй конец - в нижний стакан. Вода, воспользовавшись узенькими промежутками между волокнами материи, начнет подниматься, а потом под действием силы тяжести будет стекать в нижний стакан. Так полоску материи можно использовать в качестве насоса.

Задание 5.

Этот опыт (опыт Плато) наглядно показывает, как под действием сил поверхностного натяжения жидкость превращается в шар. Для этого опыта смешивают спирт с водой в таком соотношении, чтобы смесь имела плотность масла. Наливают эту смесь в стеклянный сосуд и вводят в нее постное масло. Масло сразу располагается в середине сосуда, образуя красивый, прозрачный, желтый шар. Для шара созданы такие условия, как будто он в невесомости.

Чтобы проделать опыт Плато в миниатюре, надо взять очень маленький прозрачный пузырек. В нем должно помещаться немного подсолнечного масла - примерно две столовые ложки. Дело в том, что после опыта масло станет совершенно непригодным к употреблению, а продукты надо беречь.

Налейте немного подсолнечного масла в приготовленный пузырек. В качестве посуды возьмите наперсток. Капните в него несколько капель воды и столько же одеколона. Размешайте смесь, наберите ее в пипетку и выпустите одну каплю в масло. Если капля, став шариком, пойдет на дно, значит, смесь получилась тяжелее масла, ее надо облегчить. Для этого добавьте в наперсток одну или две капли одеколона. Одеколон состоит из спирта, он легче воды и масла. Если шарик из новой смеси начнет не опускаться, а, наоборот, подниматься, значит, смесь стала легче масла и в нее надо добавить каплю воды. Так, чередуя добавление воды и одеколона маленькими, капельными дозами, можно добиться, что шарик из воды и одеколона будет «висеть» в масле на любом уровне. Классический опыт Плато в нашем случае выглядит наоборот: масло и смесь спирта с водой поменялись местами.

Примечание. Опыт можно задавать на дом и при изучении темы «Закон Архимеда».

Задание 6.

Как изменить поверхностное натяжение воды? Налейте в две тарелки чистой воды. Возьмите ножницы и от листа бумаги в клеточку отрежьте две узкие полоски шириной в одну клеточку. Возьмите одну полоску и, держа ее над одной тарелкой, отрезайте от полоски кусочки по одной клеточке, стараясь делать это так, чтобы падающие в воду кусочки располагались на воде кольцом по середине тарелки и не прикасались ни друг к другу, ни к краям тарелки.

Возьмите кусочек мыла, заостренный на конце, и прикасайтесь заостренным концом к поверхности воды в средней части кольца из бумажек. Что наблюдаете? Почему кусочки бумаги начинают разбегаться?

Возьмите теперь другую полоску, так же отрежьте от нее несколько кусочков бумаги над другой тарелкой и, прикоснувшись кусочком сахара к середине поверхности воды внутри кольца, держите его некоторое время в воде. Кусочки бумаги будут приближаться друг к другу, собираясь.

Ответьте на вопрос: как изменилась величина поверхностного натяжения воды от примеси к ней мыла и от примеси сахара?

Задание 1.

Возьмите длинную тяжелую книгу, перевяжите ее тонкой ниткой и прикрепите к нитке резиновую нить длиной 20 см.

Положите книгу на стол и очень медленно начинайте тянуть за конец резиновой нити. Попытайтесь измерить длину растянувшейся резиновой нити в момент начала скольжения книги.

Измерьте длину растянувшейся книги при равномерном движении книги.

Положите под книгу две тонкие цилиндрические ручки (или два цилиндрических карандаша) и так же тяните за конец нити. Измерьте длину растянувшейся нити при равномерном движении книги на катках.

Сравните три полученных результата и сделайте выводы.

Примечание. Следующее задание является разновидностью предыдущего. Оно так же направлено на сравнение трения покоя, трения скольжения и трения качения.

Задание 2.

Положите на книгу шестигранный карандаш параллельно ее корешку. Медленно поднимайте верхний край книги до тех пор, пока карандаш не начнет скользить вниз. Чуть уменьшите наклон книги и закрепите ее в таком положении, подложив под нее что-нибудь. Теперь карандаш, если его снова положить на книгу, съезжать не будет. Его удерживает на месте сила трения - сила трения покоя. Но стоит эту силу чуть ослабить - а для этого достаточно щелкнуть пальцем по книге, - и карандаш поползет вниз, пока не упадет на стол. (Тот же опыт можно проделать, например, с пеналом, спичечным коробком, ластиком и т.п.)

Подумайте, почему гвоздь легче вытащить из доски, если вра-щать его вокруг оси?

Чтобы толстую книгу передвинуть по столу одним пальцем, надо приложить некоторое усилие. А если под книгу положить два круглых карандаша или ручки, которые будут в данном случае роликовыми подшипниками, книга легко передвинется от слабого толчка мизинцем.

Проделайте опыты и сделайте сравнение силы трения покоя, силы трения скольжения и силы трения качения.

Задание 3.

На этом опыте можно наблюдать сразу два явления: инерцию, опыты с которой будут описаны дальше, и трение.

Возьмите два яйца: одно сырое, а другое сваренное вкрутую. Закрутите оба яйца на большой тарелке. Вы видите, что вареное яйцо ведет себя иначе, чем сырое: оно вращается значительно быстрее.

В вареном яйце белок и желток жестко связаны со своей скорлупой и между собой т.к. находятся в твердом состоянии. А когда мы раскручиваем сырое яйцо, то мы раскручиваем сначала лишь скорлупу, только потом, за счет трения, слой за слоем вращение передается белку и желтку. Таким образом, жидкие белок и желток своим трением между слоями тормозят вращение скорлупы.

Примечание. Вместо сырого и вареного яиц можно закрутить две кастрюли, в одной из которых вода, а в другой находится столько же по объему крупы.

Центр тяжести.

Задание 1.

Возьмите два граненых карандаша и держите их перед собой параллельно, положив на них линейку. Начните сближать карандаши. Сближение будет происходить поочередными движениями: то один карандаш движется, тот другой. Даже если вы захотите вмешаться в их движение, у вас ничего не получится. Они все равно будут двигаться по очереди.

Как только на одном карандаше давление стало больше и трение настолько возросло, что карандаш дальше двигаться не может, он останавливается. Зато второй карандаш может теперь двигаться под линейкой. Но через некоторое время давление и над ним становится больше, чем над первым карандашом, и из-за увеличения трения он останавливается. А теперь может двигаться первый карандаш. Так, двигаясь по очереди, карандаши встретятся на самой середине линейки у ее центра тяжести. В этом легко убедится по делениям линейки.

Этот опыт можно проделать и с палкой, держа ее на вытянутых пальцах. Сдвигая пальцы, вы заметите, что они, тоже двигаясь поочередно, встретятся под самой серединой палки. Правда, это лишь частный случай. Попробуйте проделать то же самое с обычной половой щеткой, лопатой или граблями. Вы увидите, что пальцы встретятся не на середине палки. Попытайтесь объяснить, почему так происходит.

Задание 2.

Это старинный, очень наглядный опыт. Перочинный нож (складной) у вас, наверное, карандаш тоже. Заточите карандаш, чтобы у него был острый конец, и немного выше конца воткните полураскрытый перочинный нож. Поставьте острие карандаша на указательный палец. Найдите такое положение полураскрытого ножа на карандаше, при котором карандаш будет стоять на пальце, слегка покачиваясь.

Теперь вопрос: где находится центр тяжести карандаша и перочинного ножа?

Задание 3.

Определите положение центра тяжести спички с головкой и без головки.

Поставьте на стол спичечный коробок на длинную узкую его грань и положите на коробок спичку без головки. Эта спичка будет служить опорой для другой спички. Возьмите спичку с головкой и уравновесьте ее на опоре так, чтобы она лежала горизонтально. Ручкой отметьте положение центра тяжести спички с головкой.

Соскоблите головку со спички и положите спичку на опору так, чтобы отмеченная вами чернильная точка лежала на опоре. Это теперь вам не удастся: спичка не будет лежать горизонтально, так как центр тяжести спички переместился. Определите положение нового центра тяжести и заметьте, в какую сторону он переместился. Отметьте ручкой центр тяжести спички без головки.

Спичку с двумя точками принесите в класс.

Задание 4.

Определите положение центра тяжести плоской фигуры.

Вырежьте из картона фигуру произвольной (какой-либо причудливой) формы и проколите в разных произвольных местах несколько отверстий (лучше, если они будут расположены ближе к краям фигуры, это увеличит точность). Вбейте в вертикальную стену или стойку маленький гвоздик без шляпки или иглу и повесьте на него фигуру через любое отверстие. Обрати внимание: фигура должна свободно качаться на гвоздике.

Возьмите отвес, состоящий из тонкой нити и груза, и перекиньте его нить через гвоздик, чтобы он указывал вертикальное направление не подвешенной фигуре. Отметьте на фигуре карандашом вертикальное направление нити.

Снимите фигуру, повесьте ее за любое другое отверстие и снова при помощи отвеса и карандаша отметьте на ней вертикальное направление нити.

Точка пересечения вертикальных линий укажет положение центра тяжести данной фигуры.

Пропустите через найденный вами центр тяжести нить, на конце которой сделан узелок, и подвесьте фигуру на этой нити. Фигура должна держаться почти горизонтально. Чем точнее проделан опыт, тем горизонтальнее будет держаться фигура.

Задание 5.

Определите центр тяжести обруча.

Возьмите небольшой обруч (например, пяльцы) или сделайте кольцо из гибкого прутика, из узкой полоски фанеры или жесткого картона. Подвесьте его на гвоздик и из точки привешивания опустите отвес. Когда нить отвеса успокоится, отметьте на обруче точки ее прикосновения к обручу и между этими точками натяните и закрепите кусок тонкой проволоки или лески (натягивать надо достаточно сильно, но не настолько чтобы обруч менял свою форму).

Подвесьте обруч на гвоздик за любую другую точку и проделайте то же самое. Точка пересечения проволок или лесок и будет центром тяжести обруча.

Заметьте: центр тяжести обруча лежит вне вещества тела.

К месту пересечения проволок или лесок привяжите нить и подвесьте на ней обруч. Обруч будет находится в безразличном равновесии, так как центр тяжести обруча и точка его опоры (подвеса) совпадают.

Задание 6.

Вы знаете, что устойчивость тела зависит от положения центра тяжести и от величины площади опоры: чем ниже центр тяжести и больше площадь опоры, тем тело устойчивее.

Помня это, возьмите брусок или пустой коробок от спичек и, ставя его поочередно на бумагу в клеточку на самую широкую, на среднюю и на самую меньшую грань, обводите каждый раз каран-дашом, чтобы получить три разных площади опоры. Подсчитайте размеры каждой площади в квадратных сантиметрах и проставьте их на бумаге.

Измерьте и запишите высоту положения центра тяжести коробка для всех трех случаев (центр тяжести спичечного коробка лежит на пересечении диагоналей). Сделайте вывод, при каком положении коробок является наиболее устойчивым.

Задание 7.

Сядьте на стул. Ноги поставьте вертикально, не подсовывая их под сиденье. Сидите совершенно прямо. Попробуйте встать, не нагибаясь вперед, не вытягивая руки вперед и не сдвигая ноги под сиденье. У вас ничего не получится - встать не удастся. Ваш центр тяжести, который находится где-то в середине вашего тела, не даст вам встать.

Какое же условие надо выполнить, чтобы встать? Надо наклониться вперед или поджать под сиденье ноги. Вставая, мы всегда проделываем и то и другое. При этом вертикальная линия, проходящая через ваш центр тяжести, должна обязательно пройти хотя бы через одну из ступней ваших ног или между ними. Тогда равновесие вашего тела окажется достаточно устойчивым, вы легко сможете встать.

Ну, а теперь попробуйте встать, взяв в руки гантели или утюг. Вытяните руки вперед. Возможно, удастся встать, не наклоняясь и не подгибая ноги под себя.

Задание 1.

Положите на стакан почтовую открытку, а на открытку положите монету или шашку так, чтобы монета находилась над стаканом. Ударьте по открытке щелчком. Открытка должна вылететь, а монета (шашка) упасть в стакан.

Задание 2.

Положите на стол двойной лист бумаги из тетради. На одну половину листа положите стопку книг высотой не ниже 25см.

Слегка приподняв над уровнем стола вторую половину листа обеими руками, стремительно дерните лист к себе. Лист должен освободиться из-под книг, а книги должны остаться на месте.

Снова положите на лист книги и тяните его теперь очень медленно. Книги будут двигаться вместе с листом.

Задание 3.

Возьмите молоток, привяжите к нему тонкую нить, но чтобы она выдерживала тяжесть молотка. Если одна нитка не выдерживает, возьмите две нитки. Медленно поднимите молоток вверх за нитку. Молоток будет висеть на нитке. А если вы захотите его снова поднять, но уже не медленно, а быстрым рывком, нитка оборвется (предусмотрите, чтобы молоток, падая, не разбил ничего под собой). Инертность молотка настолько велика, что нитка не выдержала. Молоток не успел быстро последовать за вашей рукой, остался на месте, и нить порвалась.

Задание 4.

Возьмите небольшой шарик из дерева, пластмассы или стекла. Сделайте из плотной бумаги желобок, положите в него шарик. Быстро двигайте по столу желобок, а затем внезапно его остановите. Шарик по инерции продолжит движение и покатится, выскочив из желобка. Проверьте, куда покатится шарик, если:

а) очень быстро потянуть желоб и резко остановить его;

б) тянуть желоб медленно и резко остановить.

Задание 5.

Разрежьте яблоко пополам, но не до самого конца, и оставьте его висеть на ноже.

Теперь ударьте тупой стороной ножа с висящим сверху на нем яблоком по чему - нибудь твердому, например по молотку. Яблоко, продолжая движение по инерции, окажется перерезанным и распадется на две половинки.

Точно то же самое получается, когда колют дрова: если не удалось расколоть чурбак, его обычно переворачивают и что есть сил ударяют обухом топора о твердую опору. Чурбак, продолжая двигаться по инерции, насаживается глубже на топор и раскалывается надвое.

Задание 1.

Положите на столе, рядом, деревянную доску и зеркало. Между ними положите комнатный термометр. Спустя какое-то довольно долгое время можно считать, что температуры деревянной доски и зеркала сравнялись. Термометр показывает температуру воздуха. Такую же, какая, очевидно, и у доски и у зеркала.

Дотроньтесь ладонью до зеркала. Вы почувствуете холод стекла. Тут же дотроньтесь до доски. Она покажется значительно теплее. В чем дело? Ведь температура воздуха, доски и зеркала одинакова.

Почему же стекло показалось холоднее дерева? Попытайтесь ответить на этот вопрос.

Стекло - хороший проводник тепла. Как хороший проводник тепла, стекло сразу же начнет нагреваться от вашей руки, начнет с жадностью «выкачивать» из нее теплоту. От этого вы и ощущаете холод в ладони. Дерево хуже проводит тепло. Оно тоже начнет «перекачивать» в себя тепло, нагреваясь от руки, но делает это значительно медленнее, поэтому вы не ощущаете резкого холода. Вот дерево и кажется теплее стекла, хотя и у того и у другого температура одинаковая.

Примечание. Вместо дерева можно использовать пенопласт.

Задание 2.

Возьмите два одинаковых гладких стакана, налейте в один стакан кипятку до 3/4 его высоты и тотчас накройте стакан куском пористого (не ламинированного) картона. Поставьте на картон вверх дном сухой стакан и наблюдайте, как будут постепенно запотевать его стенки. Этот опыт подтверждает свойства паров диффундировать через перегородки.

Задание 3.

Возьмите стеклянную бутылку и хорошо остудите ее (например, выставив на мороз или поставив в холодильник). Налейте в стакан воды, отметьте время в секундах, возьмите холодную бутылку и, зажав ее в обеих руках, опустите горлом в воду.

Сосчитайте, сколько пузырьков воздуха выйдет из бутылки в течение первой минуты, в течение второй и в течение третьей минуты.

Запишите результаты. Отчет о работе принесите в класс.

Задание 4.

Возьмите стеклянную бутылку, хорошо прогрейте ее над парами воды и налейте в нее кипятку до самого верха. Поставьте бутылку так на подоконник и отметьте время. Через 1 час отметьте новый уровень воды в бутылке.

Отчет о работе принесите в класс.

Задание 5.

Установите зависимость быстроты испарения от площади свободной поверхности жидкости.

Наполните пробирку (небольшую бутылку или пузырек) водой и вылейте на поднос или плоскую тарелку. Снова наполните ту же емкость водой и поставьте рядом с тарелкой в спокойное место (например, на шкаф), предоставив воде спокойно испарятся. Запишите дату начала опыта.

Когда вода на тарелке испарится, снова отметьте и запишите время. Посмотрите, какая часть воды испарилась из пробирки (бутылки).

Сделайте вывод.

Задание 6.

Возьмите чайный стакан, наполните его кусочками чистого льда (например, от расколотой сосульки) и внесите стакан в комнату. Налейте в стакан до краев комнатной воды. Когда весь лед растает, посмотрите, как изменился уровень воды в стакане. Сделайте вывод об изменении объема льда при плавлении и о плотности льда и воды.

Задание 7.

Наблюдайте возгонку снега. Возьмите зимой в морозный день пол стакана сухого снега и поставьте его снаружи дома под каким-нибудь навесом, чтобы в стакан не попал снег из воздуха.

Запишите дату начала опыта и наблюдайте за возгонкой снега. Когда весь снег улетучится, снова запишите дату.

Напишите отчет.

Тема: «Определение средней скорости движения человека».

Цель: используя формулу скорости, определить быстроту движения человека.

Оборудование: мобильный телефон, линейка.

Ход работы:

1. Линейкой определить длину своего шага.

2. Пройти по всей квартире, считая количество шагов.

3. Используя секундомер мобильного телефона, определить время своего движения.

4. Используя формулу скорости, определить быстроту движения (все величины должны быть выражены в системе СИ).

Тема: «Определение плотности молока».

Цель: проверить качество продукта, сравнивая значение табличной плотности вещества с экспериментальной.

Ход работы:

1. Измерить массу пакета молока, воспользовавшись контрольными весами в магазине (на пакете должен быть маркировочный талон).

2. Линейкой определить размеры пакета: длину, ширину, высоту, - перевести данные измерения в систему СИ и вычислить объем пакета.

4. Сравнить полученные данные с табличным значением плотности.

5. Сделать вывод о результатах работы.

Тема: «Определение веса пакета молока».

Цель: используя значение табличной плотности вещества, рассчитать вес пакета молока.

Оборудование: пакет молока, таблица плотности вещества, линейка.

Ход работы:

1. Линейкой определить размеры пакета: длину, ширину, высоту,- перевести данные измерения в систему СИ и вычислить объем пакета.

2. Используя значение табличной плотности молока, определить массу пакета.

3. По формуле определить вес пакета.

4. Изобразить графически линейные размеры пакета и его вес (два чертежа).

5. Сделать вывод о результатах работы.

Тема: «Определение давления, производимого человеком на пол»

Цель: используя формулу, определить давление человека на пол.

Оборудование: напольные весы, тетрадный лист в клетку.

Ход работы:

1. Встать на тетрадный лист и обвести свою стопу.

2. Для определения площади своей стопы подсчитать число полных клеточек и отдельно - неполных клеточек. Число неполных клеточек уменьшить вдвое, к полученному результату прибавить число полных клеточек, сумму разделить на четыре. Это и есть площадь одной стопы.

3. Используя напольные весы, определить массу своего тела.

4. Используя формулу давления твердого тела, определите давление, производимое на пол (все величины должны быть выражены в системе СИ). Не забудьте, что человек стоит на двух ногах!

5. Сделать вывод о результатах работы. К работе приложите лист с контуром стопы.

Тема: «Проверка явления гидростатического парадокса».

Цель: используя общую формулу давления, определить давление жидкости на дно сосуда.

Оборудование: мерный сосуд, стакан с высокими стенками, ваза, линейка.

Ход работы:

1. Линейкой определить высоту налитой жидкости в стакан и вазу; она должна быть одинаковой.

2. Определить массу жидкости в стакане и вазе; для этого воспользуйтесь мерным сосудом.

3. Определите площади дна стакана и вазы; для этого измерьте линейкой диаметр дна и воспользуйтесь формулой площади круга.

4. Используя общую формулу давления, определите давление воды на дно в стакане и вазе (все величины должны быть выражены в системе СИ).

5. Ход эксперимента проиллюстрируйте рисунком.

Тема: «Определение плотности человеческого тела».

Цель: используя закон Архимеда и формулу расчета плотности, определить плотность человеческого тела.

Оборудование: литровая банка, напольные весы.

Ход работы:

4. Используя напольные весы, определите свою массу.

5. По формуле определите плотность своего тела.

6. Сделать вывод о результатах работы.

Тема: «Определение Архимедовой силы».

Цель: используя закон Архимеда, определить выталкивающую силу, действующую со стороны жидкости на человеческое тело.

Оборудование: литровая банка, ванна.

Ход работы:

1. Наполнить ванну водой, по краю пометить уровень воды.

2. Погрузиться в ванну. Уровень жидкости при этом увеличится. По краю сделать пометку.

3. Используя литровую банку, определите свой объем: он равен разности объемов, помеченных по краю ванны. Переведите полученный результат в систему СИ.

5. Проиллюстрируйте произведенный эксперимент, указав вектор силы Архимеда.

6. Сделайте вывод по результатам работы.

Тема: «Определение условий плавания тела».

Цель: используя закон Архимеда, определить местонахождение своего тела в жидкости.

Оборудование: литровая банка, напольные весы, ванна.

Ход работы:

1. Наполнить ванну водой, по краю пометить уровень воды.

2. Погрузиться в ванну. Уровень жидкости при этом увеличится. По краю сделать пометку.

3. Используя литровую банку, определите свой объем: он равен разности объемов, помеченных по краю ванны. Переведите полученный результат в систему СИ.

4. Используя закон Архимеда, определите выталкивающее действие жидкости.

5. С помощью напольных весов измерьте свою массу и рассчитайте свой вес.

6. Сравните свой вес с величиной Архимедовой силы и определите местонахождение своего тела в жидкости.

7. Проиллюстрируйте произведенный эксперимент, указав вектора веса и силы Архимеда.

8. Сделайте вывод по результатам работы.

Тема: «Определение работы по преодолению силы тяжести».

Цель: используя формулу работы, определить физическую нагрузку человека при совершении прыжка.

Ход работы:

1. Линейкой определить высоту своего прыжка.

3. Используя формулу, определить работу, необходимую для совершения прыжка (все величины должны быть выражены в системе СИ).

Тема: «Определение скорости приземления».

Цель: используя формулы кинетической и потенциальной энергии, закон сохранения энергии, определить скорость приземления при совершении прыжка.

Оборудование: напольные весы, линейка.

Ход работы:

1. Линейкой определить высоту стула, с которого будет производиться прыжок.

2. С помощью напольных весов определить свою массу.

3. Используя формулы кинетической и потенциальной энергии, закон сохранения энергии, вывести формулу для расчета скорости приземления при совершении прыжка и выполнить необходимые расчеты (все величины должны быть выражены в системе СИ).

4. Сделать вывод о результатах работы.

Тема: «Взаимное притяжение молекул»

Оборудование: картон, ножницы, миска с ватой, жидкость для мытья посуды.

Ход работы:

1. Вырезать из картона лодочку в виде треугольной стрелы.

2. Налить в миску воды.

3. Осторожно положить лодочку на поверхность воды.

4. Окунуть палец в жидкость для мытья посуды.

5. Осторожно погрузить палец в воду сразу за лодочкой.

6. Описать наблюдения.

7. Сделать вывод.

Тема: «Как впитывает влагу различные ткани»

Оборудование: разные лоскутки ткани, вода, столовая ложка, стакан, круглая резинка, ножницы.

Ход работы:

1. Вырезать из различных кусочков ткани квадрат размером 10x10 см.

2. Накрыть стакан этими кусочкам.

3. Закрепить их на стакане круглой резинкой.

4. Осторожно налить на каждый лоскуток ложку воды.

5. Снять лоскуты, обратить внимание на количество воды в стакане.

6. Сделать выводы.

Тема: «Смешиваем несмешивающиеся»

Оборудование: пластиковая бутылка или прозрачный одноразовый стакан, растительное масло, вода, ложка, жидкость для мытья посуды.

Ход работы:

1. Налить в стакан или бутылку немного масла и воды.

2. Тщательно перемешать масло и воду.

3. Добавить немного жидкости для мытья посуды. Размешать.

4. Описать наблюдения.

Тема: «Определение пройденного пути из дома в школу»

Ход работы:

1. Выбрать маршрут движения.

2. Приблизительно вычислить с помощью рулетки или сантиметровой ленты длину одного шага. (S1)

3. Вычислить количество шагов при движении по выбранному маршруту (n).

4. Вычислить длину пути: S = S1 · n, в метрах, километрах, заполнить таблицу.

5. Изобразить в масштабе маршрут движения.

6. Сделать вывод.

Тема: «Взаимодействие тел»

Оборудование: стакан, картон.

Ход работы:

1. Поставить стакан на картон.

2. Медленно потянуть за картон.

3. Быстро выдернуть картон.

4. Описать движение стакана в обоих случаях.

5. Сделать вывод.

Тема: «Вычисление плотности куска мыла»

Оборудование: кусок хозяйственного мыла, линейка.

Ход работы:

3. С помощью линейки определите длину, ширину, высоту куска (в см)

4. Вычислить объем куска мыла: V = a·b·c (в см3)

5. По формуле вычислить плотность куска мыла: p = m/V

6. Заполнить таблицу:

7. Перевести плотность, выраженную в г/см 3, в кг/м 3

8. Сделать вывод.

Тема: «Тяжел ли воздух?»

Оборудование: два одинаковых воздушных шара, проволочная вешалка, две прищепки, булавка, нить.

Ход работы:

1. Надуть два шарика до одиночного размера и завязать ниткой.

2. Повесить вешалку на поручень. (Можно положить палку или швабру на спинки двух стульев и прицепить вешалку к ней.)

3. К каждому концу вешалки прикрепить прищепкой воздушный шарик. Уравновесить.

4. Проткнуть один шарик булавкой.

5. Описать наблюдаемые явления.

6. Сделать вывод.

Тема: «Определение массы и веса в моей комнате»

Оборудование: рулетка или сантиметровая лента.

Ход работы:

1. С помощью рулетки или сантиметровой ленты определить размеры комнаты: длину, ширину, высоту, выразить в метрах.

2. Вычислить объем комнаты: V = a·b · c.

3. Зная плотность воздуха, вычислить массу воздуха в комнате: m = р·V.

4. Вычислить вес воздуха: P = mg.

5. Заполнить таблицу:

6. Сделать вывод.

Тема: «Почувствуй трение»

Оборудование: жидкость для мытья посуды.

Ход работы:

1. Вымыть руки и вытереть их насухо.

2. Быстро потереть ладони друг о друга в течение 1-2 мин.

3. Нанести на ладони немного жидкости для мытья посуды. Снова потереть ладони в течении 1-2 мин.

4. Описать наблюдаемые явления.

5. Сделать вывод.

Тема: «Определение зависимости давления газа от температуры»

Оборудование: воздушный шар, нить.

Ход работы:

1. Надуть шарик, завязать его нитью.

2. Повесить шарик на улице.

3. Через некоторое время обратить внимание на форму шарика.

4. Объяснить почему:

а) Направляя струю воздуха при надувании шара в одном направлении, мы заставляем его раздуваться сразу во все стороны.

б) Почему не все шары принимают сферическую форму.

в) Почему при понижении температуры шарик изменяет свою форму.

5. Сделать вывод.

Тема: «Вычисление силы с которой атмосфера давит на поверхность стола?»

Оборудование: сантиметровая лента.

Ход работы:

1. С помощью рулетки или сантиметровой ленты вычислить длину и ширину стола, выразить в метрах.

2. Вычислить площадь стола: S = a · b

3. Принять давление со стороны атмосферы равным Рат = 760 мм рт.ст. перевести Па.

4. Вычислить силу, действующую со стороны атмосферы на стол:

P = F/S; F = P ·S; F = P·a·b

5. Заполнить таблицу.

6. Сделать вывод.

Тема: «Плавает или тонет?»

Оборудование: большая миска, вода, скрепка, кусочек яблока, карандаш, монета, пробка, картофелина, соль, стакан.

Ход работы:

1. Налить в миску или таз воды.

2. Осторожно опустить в воду все перечисленные предметы.

3. Взять стакан с водой, растворить в нем 2 столовые ложки соли.

4. Опустить в раствор те предметы, которые утонули в первом.

5. Описать наблюдения.

6. Сделать вывод.

Тема: «Вычисление работы, совершаемой ученика при подъеме с первого на второй этаж школы или дома»

Оборудование: рулетка.

Ход работы:

1. С помощью рулетки измерить высоту одной ступеньки: Sо.

2. Вычислить число ступенек: n

3. Определить высоту лестницы: S = Sо·n.

4. Если это возможно, определить массу своего тела, если нет, взять приблизительные данные: m, кг.

5. Вычислить силу тяжести своего тела: F = mg

6. Определить работу: А = F·S.

7. Заполнить таблицу:

8. Сделать вывод.

Тема: «Определение мощности, которую ученик развивает, равномерно поднимаясь медленно и быстро с первого на второй этаж школы или дома»

Оборудование: данные работы «Вычисление работы, совершаемой ученика при подъеме с первого на второй этаж школы или дома», секундомер.

Ход работы:

1. Используя данные работы «Вычисление работы, совершаемой ученика при подъеме с первого на второй этаж школы или дома» определить работу, совершаемую при подъеме по лестнице: А.

2. С помощью секундомера определить время, затраченное на медленное поднятие по лестнице: t1.

3. С помощью секундомера определить время, затраченное на быстрое поднятие по лестнице: t2.

4. Вычислить мощность в обоих случаях: N1, N2, N1 = A/ t1, N2 = A/t2

5. Результаты записать в таблицу:

6. Сделать вывод.

Тема: «Выяснение условия равновесия рычага»

Оборудование: линейка, карандаш, резинка, монеты старого образца (1 к, 2 к, 3 к, 5 к).

Ход работы:

1. Положить под середину линейки карандаш, чтобы линейка находилась в равновесии.

2. Положить на один конец линейки резинку.

3. Уравновесить рычаг с помощью монет.

4. Учитывая, что масса монет старого образца 1 к - 1 г, 2 к - 2 г, 3 к - 3 г, 5 к - 5 г. Вычислить массу резинки, m1, кг.

5. Сместить карандаш к одному из концов линейки.

6. Измерить плечи l1 и l2, м.

7. Уравновесить рычаг с помощью монет m2, кг.

8. Определить силы, действующие на концы рычага F1 = m1g, F2 = m2g

9. Вычислите момент сил M1 = F1l1, М2 = Р2l2

10. Заполните таблицу.

11. Сделать вывод.

Библиографическая ссылка

Вихарева Е.В. ДОМАШНИЕ ОПЫТЫ ПО ФИЗИКЕ 7–9 КЛАССЫ // Старт в науке. – 2017. – № 4-1. – С. 163-175;
URL: http://science-start.ru/ru/article/view?id=702 (дата обращения: 21.02.2019).

Многие думают, что наука - это скучно и тоскливо. Так считает тот, кто не видел научные шоу от «Эврики». Что происходит у нас на «уроках»? Никакой зубрежки, нудных формул и кислого выражения лица соседа по парте. Наша наука, все опыты и эксперименты нравится детям, нашу науку любят, наша наука дарит радость и стимулирует дальнейшее познание сложных предметов.

Попробуйте и вы, провести дома занимательные опыты по физике для детей. Это будет весело, а главное, очень познавательно. Ваш ребенок в игровой форме познакомится с законами физики, а ведь доказано: в игре дети быстрее и легче усваивают материал и запоминают надолго.

Занимательные опыты по физике, которые стоит показать детям дома

Простые занимательные опыты по физике, которые дети запомнят на всю жизнь. Все что необходимо для проведения этих опытов - у вас под рукой. Итак, вперед к научным открытиям!

Шарик, который не горит!

Реквизит: 2 воздушных шарика, свеча, спички, вода.

Интересный опыт: Первый шарик надуваем и держит над свечкой, чтобы продемонстрировать детворе, что шарик от огня лопнет.

Во второй шарик наливаем простой воды из-под крана, завязываем и снова подносим к огню свечи. И о чудо! Что мы видим? Шарик не лопается!

Вода, которая находится в шарике, поглощает тепло, выделяемое свечой, а потому шарик не горит, следовательно, не лопается.

Чудо-карандаши

Реквизиты: полиэтиленовый пакет, обычные заточенные карандаши, вода.

Интересный опыт: В полиэтиленовый пакет наливаем воду - не полный, наполовину.

В том месте, где пакет заполнен водой, протыкаем пакет насквозь карандашами. Что видим? В местах прокола - пакет не протекает. Почему? А, если сделать наоборот: сначала проткнуть пакет, а затем налить в него воду, вода будет протекать через отверстия.

Как происходит «чудо»: объяснение: При разрыве полиэтилена его молекулы притягиваются ближе друг к другу. В нашем эксперименте, полиэтилен затягивается вокруг карандашей и не дает протекать воде.

Нелопающийся шарик

Реквизиты: воздушный шарик, деревянная шпажка и жидкость для мытья посуды.

Интересный опыт: Смазываем жидкостью для мытья посуды верх и низ шарика, протыкаем шпажкой, начиная снизу.

Как происходит «чудо»: объяснение: А секрет этого «фокуса» - прост. Для сохранения целого шарика, нужно знать, где протыкать - в точках наименьшего натяжения, которые и располагаются в нижней и в верхней части шарика.

«Цветная» капуста

Реквизиты: 4 обыкновенных стакана с водой, яркие пищевые красители, капустные листья или цветы белого цвета.

Интересный опыт: В каждый стакан добавляем пищевой краситель любого цвета и ставим в цветную воду по одному листку капусты или цветок. Оставляем «букет» на ночь. А утром… мы увидим, что листья капусты или цветы стали разных цветов.

Как происходит «чудо»: объяснение: Растения всасывают воду, питая свои цветы и листья. Это происходит благодаря капиллярному эффекту, при котором вода сама заполняет тоненькие трубочки внутри растений. Всасывая подкрашенную воду, листья и цвет меняют свой цвет.

Яйцо, которое умело плавать

Реквизиты: 2 яйца, 2 стакана с водой, соль.

Интересный опыт: Аккуратно кладем яйцо в стакан с обычной чистой водой. Мы видим: оно утонуло, опустилось на дно (если нет - яйцо тухлое и лучше его выбросить).
А вот во второй стакан наливаем теплую воду и размешиваем в ней 4-5 столовых ложек соли. Ждем пока вода остынет, затем опускаем в соленую воду второе яйцо. И что мы видим теперь? Яйцо плавает на поверхности и не тонет! Почему?

Как происходит «чудо»: объяснение: А дело все в плотности! Средняя плотность яйца гораздо больше, чем плотность простой воды, поэтому яйцо «тонет». А плотность соляного раствора больше, а потому яйцо «плавает».

Вкусный эксперимент: кристаллические леденцы

Реквизиты: 2 стакана воды, 5 стаканов сахара, деревянные палочки для мини-шашлычков, плотная бумага, прозрачные стаканы, кастрюля, пищевые красители.

Интересный опыт: Берем четверть стакана воды, добавляем 2 столовые ложки сахара, варим сироп. Одновременно высыпаем немного сахара на плотную бумагу. Затем деревянную шпажку обмакиваем в сироп и собираем ею сахаринки.

Оставляем палочки сушиться на ночь.

Утром растворяем в двух стаканах воды 5 стаканов сахара, оставляем сироп остывать минут на 15, но не сильно, иначе кристаллы не будут «расти». Затем разливаем сироп по банкам и добавляем разноцветные пищевые красители. Шпажки с сахаром опускаем в банки, чтобы они не касались ни стенок, ни дна (можно воспользоваться бельевой прищепкой). Что дальше? А дальше наблюдаем за процессом роста кристаллов, ждем результат, чтобы …съесть!

Как происходит «чудо»: объяснение: Как только вода начинает остывать, растворимость сахара снижается и он выпадает в осадок, оседая на стенках сосуда и на шпажке с затравкой из сахарных крупинок.

«Эврика»! Наука без скуки!

Есть еще один вариант мотивировать детей для изучения науки - заказать научное шоу в центре развития «Эврика». О, чего здесь только нет!

Шоу-программа «Веселая кухня»

Здесь детишек ждут увлекательные эксперименты с теми вещами и продуктами, которые имеются на любой кухне. Детишки попробуют утопить мандаринку; сделать рисунки на молоке, проверят яйцо на свежесть, а также узнают, почему полезно молоко.

«Фокусы»

В этой программе собраны эксперименты, которые на первый взгляд кажутся настоящими волшебными фокусами, но на самом деле все они объясняются при помощи науки. Детвора узнает: почему не лопается воздушный шарик над свечой; что заставляет яйцо плавать, почему воздушный шарик прилипает к стенке…и другие интересные опыты.

«Занимательная физика»

Весит ли воздух, почему греет ли шуба, что общего между экспериментом со свечой и формой крыла у птиц и самолетов, сможет ли кусок ткани держать воду, выдержит ли а яичная скорлупа целого слона на эти и другие вопросы детишки получат ответ, став участником шоу «Занимательная физика» от «Эврики».

Эти Занимательные опыты по физике для школьников можно провести на уроках, чтобы привлечь внимание учащихся к изучаемому явлению, при повторении и закреплении учебного материала: они углубляют и расширяют знания школьников, способствуют развитию логического мышления, прививают интерес к предмету.

Это важно: безопасность научного шоу

  • Основная часть реквизита и расходных материалов закупается напрямую в специализированных магазинах фирм-производителей в США, а потому вы можете быть уверенны в их качестве и безопасности;
  • Центр детского развития «Эврика» не научных шоу токсичных или других вредных для здоровья детей материалов, легко бьющихся предметов, зажигалок и прочего «вредного и опасного»;
  • Перед заказом научных шоу каждый клиент может узнать подробное описание проводимых экспериментов, а в случае необходимости толковые разъяснения;
  • Перед началом научных шоу детвора получает инструктаж о правилах поведения на Шоу, а профессиональные Ведущие следят, чтобы эти правила при проведении шоу не нарушались.

Введение

Без сомнения, все наше знание начинается с опытов.
(Кант Эммануил. Немецкий философ г. г)

Физические опыты в занимательной форме знакомят учащихся с разнообразными применениями законов физики. Опыты можно использовать на уроках для привлечения внимания учащихся к изучаемому явлению, при повторении и закреплении учебного материала, на физических вечерах. Занимательные опыты углубляют и расширяют знания учащихся, способствуют развитию логического мышления, прививают интерес к предмету.

Роль эксперимента в науке физике

О том, что физика наука молодая
Сказать определённо, здесь нельзя
И в древности науку познавая,
Стремились постигать её всегда.

Цель обучения физики конкретна,
Уметь на практике все знания применять.
И важно помнить – роль эксперимента
Должна на первом месте устоять.

Уметь планировать эксперимент и выполнять.
Анализировать и к жизни приобщать.
Строить модель, гипотезу выдвинуть,
Новых вершин стремиться достигнуть

Законы физики основаны на фактах, установленных опытным путем. Причем нередко истолкование одних и тех же фактов меняется в ходе исторического развития физики. Факты накапливаются в результате наблюдений. Но при этом только ими ограничиваться нельзя. Это только первый шаг к познанию. Дальше идет эксперимент, выработка понятий, допускающих качественные характеристики. Чтобы из наблюдений сделать общие выводы, выяснить причины явлений, надо установить количественные зависимости между величинами. Если такая зависимость получается, то найден физический закон. Если найден физический закон, то нет необходимости ставить в каждом отдельном случае опыт, достаточно выполнить соответствующие вычисления. Изучив экспериментально количественные связи между величинами, можно выявить закономерности. На основе этих закономерностей развивается общая теория явлений.

Следовательно, без эксперимента не может быть рационального обучения физике. Изучение физики предполагает широкое использование эксперимента, обсуждение особенностей его постановки и наблюдаемых результатов.

Занимательные опыты по физике

Описание опытов проводилось с использованием следующего алгоритма:

Название опыта Необходимые для опыта приборы и материалы Этапы проведения опыта Объяснение опыта

Опыт № 1 Четыре этажа

Приборы и материалы: бокал, бумага, ножницы, вода, соль, красное вино, подсолнечное масло, крашенный спирт.

Этапы проведения опыта

Попробуем налить в стакан четыре разных жидкости так, чтобы они не смешались и стояли одна над другой в пять этажей. Впрочем, нам удобнее будет взять не стакан, а узкий, расширяющийся к верху бокал.

Налить на дно бокала солёной подкрашенной воды. Свернуть из бумаги “Фунтик” и загнуть его конец под прямым углом; кончик его отрезать. Отверстие в “Фунтике” должно быть величиной с булавочную головку. Налить в этот рожок красного вина; тонкая струйка должна вытекать из него горизонтально, разбиваться о стенки бокала и по нему стекать на солёную воду.
Когда слой красного вина по высоте сравняется с высотой слоя подкрашенной воды, прекратить лить вино. Из второго рожка налей таким же образом в бокал подсолнечного масла. Из третьего рожка налить слой крашенного спирта.

https://pandia.ru/text/78/416/images/image002_161.gif" width="86 height=41" height="41">, самая маленькая у подкрашенного спирта .

Опыт № 2 Удивительный подсвечник

Приборы и материалы : свеча, гвоздь, стакан, спички, вода.

Этапы проведения опыта

Не правда ли, удивительный подсвечник – стакан воды? А этот подсвечник совсем не плох.

https://pandia.ru/text/78/416/images/image005_65.jpg" width="300" height="225 src=">

Рисунок 3

Объяснение опыта

Свеча гаснет потому, что бутылка воздухом “Обтекается”: струя воздуха разбивается бутылкой на два потока; один обтекает её справа, а другой – слева; а встречаются они примерно там, где стоит пламя свечи.

Опыт № 4 Вертящаяся змейка

Приборы и материалы : плотная бумага, свеча, ножницы.

Этапы проведения опыта

Из плотной бумаги вырезать спираль, растянуть её немного и посадить на конец изогнутой проволоки. Держать эту спираль над свечкой в восходящем потоке воздуха, змейка будет вращаться.

Объяснение опыта

Змейка вращается, т. к. происходит расширение воздуха под действием тепла и о превращении теплой энергии в движение.

https://pandia.ru/text/78/416/images/image007_56.jpg" width="300" height="225 src=">

Рисунок 5

Объяснение опыта

Вода имеет большую плотность, чем спирт; она постепенно будет входить в пузырёк, вытесняя оттуда тушь. Красная, синяя или черная жидкость тоненькой струйкой будет подниматься из пузырька кверху.

Опыт № 6 Пятнадцать спичек на одной

Приборы и материалы : 15 спичек.

Этапы проведения опыта

Положить одну спичку на стол, а на неё поперёк 14 спичек так, чтобы головки их торчали кверху, а концы касались стола. Как поднять первую спичку, держа её за один конец, и вместе с нею все остальные спички?

Объяснение опыта

Для этого нужно только поверх всех спичек, в ложбинку между ними, положить ещё одну, пятнадцатую спичку

https://pandia.ru/text/78/416/images/image009_55.jpg" width="300" height="283 src=">

Рисунок 7

https://pandia.ru/text/78/416/images/image011_48.jpg" width="300" height="267 src=">

Рисунок 9

Опыт № 8 Парафиновый мотор

Приборы и материалы: свеча, спица, 2 стакана, 2 тарелки, спички.

Этапы проведения опыта

Чтобы сделать это мотор, нам не нужно ни электричества, ни бензина. Нам нужно для этого только… свеча.

Раскалить спицу и воткнуть её их головками в свечку. Это будет ось нашего двигателя. Положить свечу спицей на края двух стаканов и уравновесить. Зажечь свечу с обоих концов.

Объяснение опыта

Капля парафина упадёт в одну из тарелок, подставленных под концы свечи. Равновесие нарушится, другой конец свечи перетянет и опустится; при этом с него стечёт несколько капель парафина, и он станет легче первого конца; он поднимается к верху, первый конец опустится, уронит каплю, станет легче, и наш мотор начнёт работать вовсю; постепенно колебания свечи будут увеличиваться всё больше и больше.

https://pandia.ru/text/78/416/images/image013_40.jpg" width="300" height="225 src=">

Рисунок 11

Демонстрационные эксперименты

1. Диффузия жидкостей и газов

Диффузия (от лат. diflusio - распространение, растекание, рассеивание), перенос частиц разной природы, обусловленный хаотическим тепловым движением молекул (атомов). Различают диффузию в жидкостях, газах и твёрдых телах

Демонстрационный эксперимент «Наблюдение диффузии»

Приборы и материалы: вата, нашатырный спирт, фенолфталеин, установка для наблюдения диффузии.

Этапы проведения эксперимента

Возьмём два кусочка ватки. Смочим один кусочек ватки фенолфталеином, другой – нашатырным спиртом. Приведём ветки в соприкосновение. Наблюдается окрашивание ваток в розовый цвет вследствие явления диффузии.

https://pandia.ru/text/78/416/images/image015_37.jpg" width="300" height="225 src=">

Рисунок 13

https://pandia.ru/text/78/416/images/image017_35.jpg" width="300" height="225 src=">

Рисунок 15

Докажем что явление диффузии зависит от температуры. Чем выше температура, тем быстрее протекает диффузия.

https://pandia.ru/text/78/416/images/image019_31.jpg" width="300" height="225 src=">

Рисунок 17

https://pandia.ru/text/78/416/images/image021_29.jpg" width="300" height="225 src=">

Рисунок 19

https://pandia.ru/text/78/416/images/image023_24.jpg" width="300" height="225 src=">

Рисунок 21

3.Шар Паскаля

Шар Паскаля – это прибор предназначен для демонстрации равномерной передачи давления, производимого на жидкость или газ в закрытом сосуде, а также подъёма жидкости за поршнем под влиянием атмосферного давления.

Для демонстрации равномерной передачи давления, производимого на жидкости в закрытом сосуде, необходимо, используя поршень, набрать в сосуд воды и плотно насадить на патрубок шар. Вдвигая поршень в сосуд, продемонстрировать истечение жидкости из отверстий в шаре, обратив внимание на равномерное истечение жидкости по всем направлениям.

Добрый день, гости сайта НИИ «Эврика»! Вы согласны, что знания, подкреплённые практикой, гораздо эффективнее теории? Занимательные опыты по физике не только отлично развлекут, но и вызовут у ребёнка интерес к науке, а также останутся в памяти гораздо дольше, чем параграф учебника.

Чему опыты научат детей?

Мы предлагаем вашему вниманию 7 экспериментов с объяснением, которые обязательно вызовут вопрос у малыша «А почему?» В результате ребёнок узнает, что:

  • Смешивая 3 основных цвета: красный, жёлтый и синий, - можно получить дополнительные: зелёный, оранжевый и фиолетовый. Вы подумали о красках? Мы вам предлагаем другой, необычный способ удостовериться в этом.
  • Свет отражается от белой поверхности и превращается в тепло, если попадает на чёрный предмет. К чему это может привести? Давайте разберёмся.
  • Все предметы подвержены гравитации, то есть стремятся к состоянию покоя. На практике это выглядит фантастически.
  • У предметов есть центр массы. И что? Давайте научимся извлекать из этого пользу.
  • Магнит - невидимая, но мощная сила некоторых металлов, способная наделить вас способностями мага.
  • Статическое электричество может не только притягивать ваши волосы, но и сортировать мелкие частички.

Итак, давайте сделаем наших детей опытными!

1. Творим новый цвет

Этот эксперимент будет полезен для дошкольников и младших школьников. Для проведения опыта нам пригодятся:

  • фонарик;
  • красный, синий и жёлтый целлофан;
  • ленточка;
  • белая стена.

Опыт проводим около белой стены:

  • Берём фонарь, покрываем его сначала красным, а затем жёлтым целлофаном, после чего зажигаем свет. Смотрим на стену и видим оранжевое отражение.
  • Теперь убираем жёлтый целлофан и поверх красного надеваем синий пакет. Наша стена освещается фиолетовым цветом.
  • А если фонарь накрыть синим, а затем жёлтым целлофаном, то на стене мы увидим зелёное пятно.
  • Этот эксперимент можно продолжить и с другими цветами.
2. Чёрный цвет и солнечный луч: взрывоопасное сочетание

Для проведения эксперимента понадобятся:

  • 1 прозрачный и 1 чёрный воздушный шарик;
  • лупа;
  • солнечный лучик.

Для этого опыта потребуется сноровка, но вы справитесь.

  • Сначала нужно надуть прозрачный воздушный шар. Держите его крепко, но не завязывайте кончик.
  • Теперь при помощи тупого конца карандаша протолкните чёрный воздушный шарик внутрь прозрачного до половины.
  • Надуйте чёрный шар внутри прозрачного, пока он не займёт примерно половину объёма.
  • Завяжите кончик чёрного шарика и протолкните его в середину прозрачного шара.
  • Прозрачный шарик надуйте ещё немного и завяжите конец.
  • Расположите лупу так, чтобы солнечный луч попал на чёрный шарик.
  • Через несколько минут чёрный шар лопнет внутри прозрачного.

Расскажите малышу, что прозрачные материалы пропускают солнечный свет, поэтому мы видим улицу через окно. А чёрная поверхность, наоборот, поглощает световые лучи и превращает их в тепло. Именно поэтому в жару рекомендуют носить светлую одежду, чтобы избежать перегрева. Когда чёрный шарик нагрелся, он начал терять свою эластичность и под давлением внутреннего воздуха лопнул.

3. Ленивый мяч

Следующий опыт - настоящее шоу, но для его проведения нужно будет потренироваться. Школа даёт объяснение этому явлению в 7 классе, но на практике это можно сделать ещё в дошкольном возрасте. Подготовьте следующие предметы:

  • пластиковый стакан;
  • металлическое блюдо;
  • картонную втулку из-под туалетной бумаги;
  • теннисный мячик;
  • метр;
  • метла.

Как провести этот эксперимент?

  • Итак, установите стаканчик на краю стола.
  • Поставьте на стаканчик блюдо так, чтобы его край с одной стороны оказался над полом.
  • Основу рулона туалетной бумаги установите по центру блюда прямо над стаканом.
  • Сверху положите мяч.
  • Встаньте за полметра от конструкции с метлой в руке так, чтобы её прутья были загнуты к вашим стопам. Встаньте на них сверху.
  • Теперь оттяните метлу и резко отпустите.
  • Рукоятка ударит по блюду, и оно вместе с картонной втулкой улетит в сторону, а мячик упадёт в стакан.

Почему он не улетел вместе с остальными предметами?

Потому что, согласно закону инерции, предмет, на который не действуют другие силы, стремится остаться в покое. В нашем случае на мячик подействовала только сила притяжения к Земле, поэтому он и упал вниз.

4. Сырое или варёное?

Давайте познакомим ребёнка с центром массы. Для этого возьмём:

· остывшее яйцо, сваренное вкрутую;

· 2 сырых яйца;

Предложите компании детей отличить варёное яйцо от сырого. При этом разбивать яйца нельзя. Скажите, что вы можете это сделать безошибочно.

  1. Раскрутите оба яйца на столе.
  2. Яйцо, которое вращается быстрее и с равномерной скоростью, - варёное.
  3. В подтверждение своих слов разбейте другое яйцо в миску.
  4. Возьмите второе сырое яйцо и бумажную салфетку.
  5. Попросите кого-то из зрителей сделать так, чтобы яйцо стояло на тупом конце. Никто не сможет так сделать, кроме вас, так как только вы знаете секрет.
  6. Просто энергично потрясите яйцо вверх-вниз полминуты, после чего без проблем установите его на салфетку.

Почему яйца ведут себя по-разному?

У них, как и у любого другого предмета, есть центр масс. То есть разные участки предмета могут весить не одинаково, но есть точка, которая делит его массу на равные части. У варёного яйца из-за более равномерной плотности центр масс при вращении остаётся на одном и том же месте, а у сырого яйца оно смещается вместе с желтком, что затрудняет его движение. У сырого яйца, которое потрясли, желток опускается к тупому концу и центр масс оказывается там же, поэтому его можно поставить.

5. «Золотая» середина

Предложите детям найти середину палки без линейки, а просто на глаз. Оцените результат при помощи линейки и скажите, что он не совсем верный. Теперь проделайте это сами. Лучше всего подойдёт ручка от швабры.

  • Поднимите палку до уровня талии.
  • Уложите её на 2 указательных пальца, держа их на расстоянии 60 см.
  • Сдвигайте пальцы ближе друг к другу и следите, чтобы палка не теряла равновесие.
  • Когда ваши пальцы сойдутся и палка будет располагаться параллельно полу, вы дошли до цели.
  • Положите палку на стол, держа палец на нужной отметке. Убедитесь при помощи линейки, что вы точно справились с заданием.

Расскажите ребёнку, что вы нашли не просто середину палки, а её центр масс. Если предмет симметричный, то он совпадёт с его серединой.

6. Невесомость в банке

Давайте заставим иголки зависнуть в воздухе. Для этого возьмём:

  • 2 нити по 30 см;
  • 2 иголки;
  • прозрачный скотч;
  • литровую банку и крышку;
  • линейку;
  • небольшой магнит.

Как провести опыт?

  • Вденьте нитки в иголки и завяжите концы двумя узелками.
  • Прикрепите узлы скотчем на дно банки, чтобы до её края оставалось около 2,5 см.
  • Изнутри крышки приклейте скотч в виде петли, липкой стороной наружу.
  • Положите крышку на стол и приклейте к петле магнит. Переверните банку и закрутите крышку. Иголки будут свисать и тянуться к магниту.
  • Когда вы перевернёте банку крышкой вверх, иголки всё равно будут тянуться к магниту. Возможно, придётся удлинить нитки, если магнит не удерживает иголки в вертикальном положении.
  • Теперь открутите крышку и положите её на стол. Вы готовы провести опыт перед зрителями. Как только вы закрутите крышку, иголки со дна банки устремятся вверх.

Расскажите ребёнку, что магнит притягивает железо, кобальт и никель, поэтому железные иголки подвержены его воздействию.

7. «+» и «-»: полезное притяжение

Ваш ребёнок наверняка замечал, как волосы магнитятся к некоторым тканям или расчёске. А вы рассказывали ему, что всему виной статическое электричество. Давайте проделаем опыт из этой же серии и покажем, к чему ещё может привести «дружба» отрицательных и положительных зарядов. Нам понадобятся:

  • бумажное полотенце;
  • 1 ч. л. соли и 1 ч. л. перца;
  • ложка;
  • воздушный шар;
  • шерстяная вещь.

Этапы эксперимента:

  • Положите на пол бумажное полотенце, высыпьте на него смесь соли и перца.
  • Спросите у ребёнка: как же теперь отделить соль от перца?
  • Надутый шарик потрите о шерстяную вещь.
  • Поднесите его к соли и перцу.
  • Соль останется на месте, а перец примагнитится к шарику.

Шарик после трения о шерсть приобретает отрицательный заряд, который притягивает к себе положительные ионы перца. Электроны соли не столь подвижны, поэтому они не реагируют на приближение шарика.

Опыты дома - это ценный жизненный опыт

Признайтесь, вам и самим было интересно наблюдать за происходящим, а ребёнку и подавно. Проделывая удивительные фокусы с самыми простыми веществами, вы научите малыша:

  • доверять вам;
  • видеть удивительное в обыденности;
  • увлекательно познавать законы окружающего мира;
  • развиваться разносторонне;
  • учиться с интересом и желанием.

Мы ещё раз напоминаем вам, что развивать ребёнка - это просто и для этого не нужно иметь много денег и времени. До скорых встреч!