Техническая механика. Что такое инерция? Значение слова "инерция"

СИЛА ИНЕРЦИИ

СИЛА ИНЕРЦИИ

Векторная величина, численно равная произведению массы m материальной точки на её w и направленная противоположно ускорению. При криволинейном движении С. и. можно разложить на касательную, или тангенциальную составляющую Jt, направленную противоположно касат. ускорению wt , и на нормальную составляющую Jn, направленную вдоль нормали к траектории от центра кривизны; численно Jt=mwt, Jn=mv2/r, где v - точки, r - радиус кривизны траектории. При изучении движения по отношению к инерциальной системе отсчёта С. и. вводят для того, чтобы иметь формальную возможность составлять ур-ния динамики в форме более простых ур-ний статики (см. ). Понятие о С. и. вводится также при изучении относительного движения. В этом случае присоединение к действующим на материальную точку силам взаимодействия с др. телами С. и.- переносной Jпер и Кориолиса силы Jкор - позволяет составлять ур-ния движения этой точки в подвижной (неинерциальной) системе отсчёта так же, как и в инерциальной.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

СИЛА ИНЕРЦИИ

Векторная величина, численно равная произведениюмассы т материальной точки на её ускорение w и направленнаяпротивоположно ускорению. При криволинейном движении С. и. можно разложитьна касательную, или тангенциальную, составляющую ,направленную противоположно касат. ускорению ,и на нормальную, или центробежную, составляющую ,направленную вдоль гл. нормали траектории от центра кривизны; численно , , где v- скорость точки,- радиус кривизны траектории. При изучении движения по отношению к инерциальнойсистеме отсчёта С. и. вводят для того, чтобы иметь формальную возможностьсоставлять ур-ния динамики в форме более простых ур-ний статики (см. Д"Аламберапринцип, Кинетостатика).

Понятие о С. и. вводится также при изучении относительного движения. Вэтом случае, присоединив к действующим на материальную точку силам взаимодействияс др. телами переносную силу J nep и Кориолиса силу инерции, Тарг.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "СИЛА ИНЕРЦИИ" в других словарях:

    - (также инерционная сила) термин, широко применяемый в различных значениях в точных науках, а также, как метафора, в философии, истории, публицистике и художественной литературе. В точных науках сила инерции обычно представляет собой понятие … Википедия

    Современная энциклопедия

    Векторная величина, численно равная произведению массы m материальной точки на модуль ее ускорения? и направленная противоположно ускорению … Большой Энциклопедический словарь

    сила инерции - Векторная величина, модуль которой равен произведению массы материальной точки на модуль ее ускорения и направленная противоположно этому ускорению. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет… … Справочник технического переводчика

    Сила инерции - СИЛА ИНЕРЦИИ, векторная величина, численно равная произведению массы m материальной точки на ее ускорение u и направленная противоположно ускорению. Возникает вследствие неинерциальности системы отсчета (вращения или прямолинейного движения с… … Иллюстрированный энциклопедический словарь

    сила инерции - inercijos jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Vektorinis dydis, lygus materialiojo taško arba kūno masės ir pagreičio sandaugai; kryptis priešinga pagreičiui. atitikmenys: angl. inertia force vok. Trägheitskraft, f;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    Векторная величина, численно равная произведению массы т материальной точки на модуль её ускорения w и направленная противоположно ускорению. * * * СИЛА ИНЕРЦИИ СИЛА ИНЕРЦИИ, векторная величина, численно равная произведению массы m материальной… … Энциклопедический словарь

    сила инерции - inercijos jėga statusas T sritis automatika atitikmenys: angl. inertial force vok. Trägheitskraft, f rus. сила инерции, f pranc. force d inertie, f … Automatikos terminų žodynas

    сила инерции - inercijos jėga statusas T sritis fizika atitikmenys: angl. inertial force vok. Trägheitskraft, f rus. сила инерции, f pranc. force d’inertie, f … Fizikos terminų žodynas

    сила инерции - величина, численно равная произведению массы тела на его ускорение и направленная противоположно ускорению; Смотри также: Сила сила трения сила света сила волочения сила внутреннего трения … Энциклопедический словарь по металлургии

Законы Ньютона выполняются только в инерциальных системах отсчета. Относительно всех инерциальных систем данное тело движется с одинаковым ускорением w. Любая неинерциальная система отдчета движется относительно инерциальных систем с некоторым ускорением, поэтому ускорение тела в неинерциальной системе отсчета будет сдлично от Обозначим разность ускорений тела и инерциальной и неинерциальной системах символом а:

Для поступательно движущейся неинерциальной системы а одинаково для всех точек пространства и представляет собой ускорение неинерциальной системы отсчета. Для вращающейся неинерциальной системы а в разных точках пространства будет различным , где - радиус-вектор, определяющий положение точки относительно неинерциальной системы отсчета).

Пусть результирующая всех сил, обусловленных действием на данное тело со стороны других тел, равна F. Тогда согласно второму закону Ньютона ускорение тела относительно любой инерциальной системы отсчета равно

Ускорение же тела относительно некоторой неинерциальной системы можно в соответствии с (32.1) представить в виде.

Отсюда следует, что даже при тело будет двигаться по отношению к неинерциальной системе отсчета с ускорением - а, т. е. так, как если бы на него действовала сила, равная .

Сказанное означает, что при описании движения в неинерциальных системах отсчета можно пользоваться уравнениями Ньютона, если наряду с силами, обусловленными воздействием тел друг на друга, учитывать так называемые сил и инерции которые следует полагать равными произведению массы тела на взятую с обратным знаком разность его ускорений по отношению к инерциальной и неинерциальной системам отсчета:

Соответственно уравнение второго закона Ньютона в неинерциальной системе отсчета будет иметь вид

Поясним наше утверждение следующим примером. Рассмотрим тележку с укрепленным на ней кронштейном, к которому подвешен на нити шарик (рис. 32.1). Пока тележка покоится или движется без ускорения, нить расположена вертикально и сила тяжести Р уравновешивается реакцией нити Теперь приведем тележку в поступательное движение и ускорением а. Нить отклонится от вертикали на такой угол, чтобы результирующая сил , сообщала шарику ускорение, равное . Относительно системы отсчета, связанной с тележкой, шарик покоится, несмотря на то, что результирующая сил отлична от Ъуля. Отсутствие ускорения шарика по отношению к этой системе отсчета можно формально объяснить тем, что, кроме сил Р и F, равных, в сумме та, на шарик действует еще и сила инерции

Введение сил инерции дает возможность описывать движение тел в любых (как инерциальных, так и неинерциальных) системах отсчета с помощью одних я тех уравнений движения.

Следует отчетливо понимать, что силы инерции нельзя ставить в один ряд с такими силами, как упругие, гравитационные силы и силы трения, т. е. силами, обусловленными воздействием на тело со стороны других, тел. Сиды инерции обусловлены свойствами той системы отсчета, в которой рассматриваются механические явления. В этом смысле их можно назвать фиктивными силами.

Введение в рассмотрение сил инерции не является принципиально необходимым. В принципе любое движение можно всегда рассмотреты по отношению к инерциальной системе отсчета. Однако практически часто представляет интерес как раз движение тел по отношению к неинерциальным системам отсчета, например по отношению к земной новерхности.

Использование сил инерции даёт возможность решить соответствующую задачу непосредственно по отношению к такой системе отсчета, что часто оказывается значительно проще, чем рассмотрение движения в инерциальной системе.

Характерным свойством сил инерции является их пропорциональность массе тела. Благодаря этому свойству силы инерции оказываются аналогичными силам тяготения. Представим себе, что мы находимся в удаленной от всех внешних тел закрытой кабине, которая движется с ускорением g в направлении, которое мы назовем «верхом» (рис. 32.2). Тогда все тела, находящиеся внутри кабины, будут вести себя так, как если бы на них действовала сила инерции -mg. В частности, пружина, к концу которой подвешено тело массы , растянется так, чтобы упругая сила уравновесила силу инерции -mg. Однако такие же явлений наблюдались бы и в том случае, если бы кабина была неподвижной и находилась вблизи, поверхности Земли. Не имея возможности «выглянуть» за пределы кабины, никакими опытами, проводимыми внутри кабины, Мы не смогли бы установить чем обусловлена сила -mg ускоренным движением кабины или действием гравитационного поля Земли. На этом основании сворят об эквивалентности сил инерции и тяготения. Эта эквивалентность лежит в обиове общей теории относительности Эйнштейна.

force d"inertie . В других языках название силы более явно указывает на её фиктивность: в немецком нем. Scheinkräfte («мнимая», «кажущаяся», «видимая», «ложная», «фиктивная» сила), в английском англ. pseudo force («псевдо-сила») или англ. fictitious force («фиктивная сила»). Реже в английском используются названия «сила д’Аламбера » (англ. d’Alembert force ) и «инерционная сила» (англ. inertial force ).

Многообразие названий объясняется тем, что в русском языке термин «сила инерции» применяется для описания трёх различных сил:

В результате многозначности термина «возникла путаница, которая продолжается и по сей день, и ведутся непрекращаюшиеся споры о том, реальны или нереальны (фиктивны) силы инерции и имеют ли они противодействие» .

Кроме названия, все значения термина объединяет также векторная величина. Она равна произведению массы тела на его ускорение и направлена противоположно ускорению. Краткие определения силы инерции иногда отражают это общее свойство всех значений термина:

Векторная величина, равная произведению массы материальной точки на её ускорение и направленная противоположно ускорению, называется силой инерции .

Реальные и фиктивные силы

В литературе также употребляются термины «фиктивные» и «реальные» силы (последний термин в русскоязычной литературе употребляется редко). Разные авторы вкладывают в эти слова разный смысл:

В зависимости от избранного определения, силы инерции оказываются реальными или фиктивными, поэтому употребление такой терминологии некоторые авторы считают неудачным и рекомендуют просто избегать её в учебном процессе .

Силы

Си́ла - векторная физическая величина, являющаяся мерой интенсивности воздействия на данное тело других тел или полей. Приложенная к массивному телу сила является причиной изменения его скорости или возникновения в нём деформаций. Сила, как векторная величина, характеризуется модулем, направлением и «точкой» приложения силы.

Первый закон Ньютона

Первый закон Ньютона вводит понятие инерциальных систем отсчёта, и даёт повод говорить о неинерциальных:

Существуют такие системы отсчёта, относительно которых материальная точка при отсутствии внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения.

Второй закон Ньютона

Заключается в утверждении, что между силой и вызываемым ею ускорением существует прямая пропорциональность, что записывается в виде:

Здесь входящий в коэффициент пропорциональности скаляр есть инертная масса .

Экспериментально доказано, что для любого тела масса, входящая в выражение Второго закона Ньютона и в его закон Всемирного тяготения, полностью эквивалентны:

Равенство инерционной и инертной масс является, как это рассматривается в Специальной теории относительности , фундаментальным свойством пространства-времени. Его рассмотрение выходит за рамки классической механики.

Поэтому ниже масса тела будет обозначаться без индексов как .

Рассматриваемое тело с массой (точнее - инертной массой) приобретает отличающееся от нуля ускорение в тот же момент , когда начинает действовать на него сила (Второй закон Ньютона : ). Однако справедливо и то, что для достижения отличающейся от нуля скорости требуется некоторое время в соответствии с определением импульса силы : . Или, иначе, скорость тела не изменяется сама по себе, без причины, но она начинает изменяться тотчас , как на него начинает действовать сила. Таким образом, нет никаких оснований для введения представлений о каком-либо сопротивлении воздействию или же о некоем «свойстве инертности» .

Повсеместно принято считать, что Второй закон справедлив только в инерциальных СО и не выполняется в системах неинерциальных. С учётом того, что инерциальные системы принципиально не реализуемы, Второй закон логично бы считать также никогда не выполняемым. Однако положенная в его основу идея пропорциональности получаемого телом ускорения всем , действующих на него силам, независимо от их происхождения , позволяет путём учёта «фиктивных» сил инерции распространить действие ньютонианской аксиоматики и на механику реальных движений реальных тел .

Как и другие утверждения, подлежащие экспериментальной проверке, Второй закон может быть справедлив только в том случае, когда входящие в него величины могут быть измерены независимо каждая по-отдельности. Современная экспериментальная техника обеспечивает достаточно высокую точность измерений как силы, так и массы и ускорения. Эти измерения неизменно экспериментально подтверждают (в рамках классической механики) справедливость упомянутой экстраполяции Второго закона .

Третий закон Ньютона

Утверждает, что силы, действующие со стороны одних тел на другие, всегда имеют характер взаимодействия, т.е если первое тело изменяет скорость второго, то и второе изменяет скорость первого. При этом, в любом виде силового взаимодействия и независимо от того, меняется ли расстояние между телами и вообще движутся ли они, всегда выполняется условие:

То есть ускорения, сообщаемые телами друг другу, при взаимодействии двух тел направлены навстречу друг другу, и обратно пропорциональны массам тел.

Вводя в выражение (4) определение для инертной массы тел из Второго закона, приходим к общепринятой записи третьего закона Ньютона в его собственной формулировке:

Действию всегда есть равное и противоположное противодействие, иначе: взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны

Механика Ньютона инвариантна по отношению к стреле времени - она допускает ход движения тел как в прямой, так и обратной по отношению ко времени последовательности. Это находит своё выражение и в Третьем законе, подразумевающем одновременное возникновение силы действия и силы противодействия, независимо от предыстории описываемого физического процесса.

Однако в природе существует причинно-следственный порядок между происходящими событиями, в силу которого они располагаются в определённой последовательности во времени (в космических масштабах причинно-следственной связи может и не быть ввиду конечной скорости распространения любого силового взаимодействия, что является исходным положением специальной теории относительности). И поэтому при взаимодействии двух тел представляется логичным, что то из них, которое испытало ускорение, порождённое действием другого, считать пассивным, то есть ускоряемым , а другое - активным, то есть ускоряющим . .

С точки зрения анализа динамики движения важно знать, в какой системе из рассматриваемых ниже двух систем находится наблюдатель (регистрирующее устройство) и, что самое важное, знать (в случае, если наблюдатель находится во второй, движущейся системе), является ли эта система инерциальной, или нет.

Ньютоновы силы инерции

Некоторые авторы используют термин «сила инерции» для обозначения силы-противодействия из третьего закона Ньютона . Понятие было введено Ньютоном в его «Математических началах натуральной философии» : «Врождённая сила материи есть присущая ей способность сопротивления, по которой всякое отдельно взятое тело, поскольку оно предоставлено самому себе, удерживает свое состояние покоя или равномерного прямолинейного движения», а собственно термин «сила инерции» был, по словам Эйлера , впервые употреблён в этом значении Кеплером ( , со ссылкой на Е. Л. Николаи).

Для обозначения этой силы-противодействия некоторые авторы предлагают использовать термин «ньютонова сила инерции» во избежание путаницы с фиктивными силами, применяемыми при вычислениях в неинерциальных системах отсчёта и при использовании принципа д’Аламбера.

Отголоском ньютоновского выбора слова «сопротивление» для описания инерции является также представление о некоей силе, якобы реализующей это свойство в форме сопротивления изменениям параметров движения. В связи с этим Максвелл заметил, что с таким же успехом можно было бы сказать, что кофе сопротивляется тому, чтобы стать сладким, так как сладким оно становится не само по себе, а лишь после того, что в него положен сахар .

Существование инерциальных систем отсчёта

Ньютон исходил из предположения, что инерциальные системы отсчёта существуют и среди этих систем существует наиболее предпочтительная (сам Ньютон связывал её с эфиром, заполняющим всё пространство). Дальнейшее развитие физики показало, что такой системы нет, но это привело к необходимости выйти за пределы классической физики. Более того, наличие вездесущего гравитационного поля, от которого нет защиты, исключает в принципе возможность реализации указанных в Первом законе систем отсчёта, которые остаются лишь абстракцией, принятие которой связано с сознательным допущением ошибок в получаемом результате.

Движение в инерциальной СО

Выполнив тривиальную математическую операцию в выражении третьего закона Ньютона (5) и перенеся член из правой части в левую, получаем безупречную математически запись:

С физической точки зрения, сложение векторов сил имеет своим результатом получение равнодействующей силы.

В таком случае, прочтённое с точки зрения второго закона Ньютона выражение (6) означает, с одной стороны, что равнодействующая сил равна нулю и, следовательно, система из этих двух тел не двигается ускоренно. С другой стороны здесь не высказаны никакие запреты на ускоренное движение самих тел.

Дело в том, что понятие о равнодействующей возникает лишь в случае оценки совместного действия нескольких сил на одно и то же тело. В данном же случае, хотя силы равны по модулю и противоположны по направлению, но приложены к разным телам и потому, касательно каждого их рассматриваемых тел по отдельности, не уравновешивают друг друга, поскольку на каждое из взаимодействующих тел действует лишь одна из них. Равенство (6) не указывает на взаимную нейтрализацию их действия для каждого из тел, оно говорит о системе в целом.

Материальная точка в двух декартовых системах координат: неподвижной O, считающейся инерциальной, и подвижной O"

Повсеместно используется запись уравнения, выражающего второй закон Ньютона в инерциальной системе отсчёта:

Если есть результирующая всех реальных сил, действующих на тело, то это выражение, представляющее собой каноническую запись Второго закона, является просто утверждением, что получаемое телом ускорение пропорционально этой силе и массе тела. Оба выражения, стоящие в каждой части этого равенства относятся к одному и тому же телу.

Но выражение (7) может быть, подобно (6), переписано в виде:

Для постороннего наблюдателя, находящегося в инерциальной системе и анализирующего ускорение тела, на основании сказанного выше такая запись имеет физический смысл только в том случае, если члены в левой части равенства относятся к силам, возникающим одновременно, но относящимся к разным телам. И в (8) второй член слева представляет собой такую же по величине силу, но направленную в противоположную сторону и приложенную к другому телу, а именно силу , то есть

В случае, когда оказывается целесообразным разделение взаимодействующих тел на ускоряемое и ускоряющее и, чтобы отличить действующие тогда на основании Третьего закона силы, те из них, которые действуют со стороны ускоряемого тела на ускоряющее называют силами инерции или «ньютоновыми силами инерции» , что соответствует записи выражения (5) для Третьего закона в новых обозначениях:

Существенно, что сила действия ускоряющего тела на ускоряемое и сила инерции имеют одно и то же происхождение и, если массы взаимодействующих тел близки друг другу настолько, что и получаемые ими ускорения сравнимы по величине, то введение особого наименования «сила инерции» является лишь следствием достигнутой договорённости. Оно так же условно, как и само деление сил на действие и противодействие.

Иначе обстоит дело, когда массы взаимодействующих тел несравнимы между собой (человек и твёрдый пол, отталкиваясь от которого он идёт). В этом случае деление тел на ускоряющие и ускоряемые становится вполне отчётливым, а ускоряющее тело может рассматриваться как механическая связь , ускоряющая тело, но не ускоряемая сама по себе.

В инерциальной системе отсчёта сила инерции приложена не к ускоряемому телу, а к связи.

Эйлеровы силы инерции

Движение в неинерциальной СО

Дважды продифференцировав по времени обе части равенства , получаем:

есть ускорение тела в инерциальной СО, далее называемое абсолютным ускорением. есть ускорение неинерциальной СО в инерциальной СО, далее называемое переносным ускорением. есть ускорение тела в неинерциальной СО, далее называемое относительным ускорением.

Существенно, что это ускорение зависит не только от действующей на тело силы, но и от ускорения системы отсчёта, в которой это тело движется, и потому при произвольном выборе этой СО может иметь соответственно произвольное значение.

Относительное ускорение вполне реально в неинерциальной СО, поскольку разница двух реальных величин по (11) не может быть не реальной.

Умножим обе части уравнения (11) на массу тела и получим:

В соответствии со вторым законом Ньютона, сформулированным для инерциальных систем, член слева является результатам умножения массы на вектор, определяемый в инерциальной системе, и потому с ним можно связать реальную силу:

Это сила, действующая на тело в первой (инерциальной) СО, которая будет здесь названа «абсолютной силой». Она продолжает действовать на тело с неизменными направлением и величиной в любой системе координат.

Следующая сила, определяемая как:

по принятым для наименования происходящих движений правилам , должна быть названа «переносной».

Важно, что ускорение в общем случае никакого отношения к изучаемому телу не имеет, поскольку вызвано теми силами, которые действуют лишь на тело, выбранное в качестве неинерциальной системы отсчёта. Но масса, входящая в выражение, есть масса изучаемого тела. Ввиду искусственности введения такой силы, её нужно считать фиктивной силой.

Перенося выражения для абсолютной и переносной силы в левую часть равенства:

и применяя введённые обозначения, получаем:

Отсюда видно, что вследствие ускорения в новой системе отсчёта на тело действует не полная сила , но лишь её часть , оставшаяся после вычитания из неё переносной силы так, что:

тогда из (15) получаем:

по принятым для наименования происходящих движений , эта сила должна быть названа «относительной». Именно эта сила вызывает движение тела в неинерциальной системе координат.

Полученный результат в разнице между «абсолютной» и «относительной» силами объясняется тем, что в неинерциальной системе, кроме силы , на тело дополнительно подействовала некая сила таким образом, что:

Эта сила представляет собой силу инерции, применительно к движению тел в неинерциальных СО. Она никак не связана с действием реальных сил на тело.

Тогда из (17) и (18) получаем:

То есть, сила инерции в неинерциальной СО равна по величине и противоположна по направлению силе, вызывающей ускоренное движение этой системы. Она приложена к ускоряемому телу.

Сила эта не является по своему происхождению результатом действия окружающих тел и полей, и возникает исключительно за счёт ускоренного движения второй системы отсчёта относительно первой.

Все входящие в выражение (18) величины могут быть независимым друг от друга образом измерены, и поэтому поставленный здесь знак равенства означает не что иное, как признание возможности распространения ньютоновской аксиоматики при учёте таких «фиктивных сил» (сил инерции) и на движение в неинерциальных системах отсчёта, и потому требует экспериментального подтверждения. В рамках классической физики это действительно и подтверждается.

Различие между силами и состоит лишь в том, что вторая наблюдается при ускоренном движении тела в неинерциальной системе координат, а первая соответствует его неподвижности в этой системе. Поскольку неподвижность есть лишь предельный случай движения с малой скоростью, принципиальной разницы между этими фиктивными силами инерции нет.

Пример 2

Пусть вторая СО движется с постоянной скоростью или просто неподвижна в инерциальной СО. Тогда и сила инерции отсутствует. Движущееся тело испытывает ускорение, вызываемое действующими на него реальными силами.

Пример 3

Пусть вторая СО движется с ускорением то есть эта СО фактически совмещена с движущимся телом. Тогда в этой, неинерциальной, СО тело неподвижно вследствие того, что действующая на него сила полностью скомпенсирована силой инерции:

Пример 4

Пассажир едет в авто с постоянной скоростью. Пассажир - тело, авто - его система отсчёта (пока инерциальная), то есть .

Авто начинает тормозить, и превращается для пассажира во вторую рассмотренную выше неинерциальную систему, к которой навстречу её движения приложена сила торможения . Тут же возникает сила инерции, приложенная к пассажиру, направленная в противоположном направлении (то есть по движению): . Эта сила вызывает непроизвольное движение тела пассажира к ветровому стеклу .

В неинерциальной системе (для наблюдателя, стоящего на поверхности Земли) на тело действуют следущие силы: центробежная сила инерции (синий вектор), сила гравитации (красный), в сумме дающие реальную силу тяжести , которая уравновешивается реакцией опоры (чёрный).

Пример

При движении тела по окружности под действием центростремительной силы , являющейся результатом наложенной на движение тела связи, действующая на эту связь сила будет одновременно и силой противодействия, и «центробежной силой инерции»

Общий подход к нахождению сил инерции

Сравнивая движение тела в инерциальной и неинерциальной СО можно прийти к следующему выводу :

Пусть есть сумма всех сил, действующих на тело в неподвижной (первой) системе координат, которая вызывает его ускорение . Эта сумма находится путём измерения ускорения тела в этой системе, если известна его масса.

Аналогично, есть сумма сил, измеренная в неинерциальной системе координат (второй), вызывающая ускорение , в общем случае отличающееся от вследствие ускоренного движения второй СО относительно первой.

Тогда сила инерции в неинерциальной системе координат будет определяться разницей:

В частности, если тело покоится в неинерциальной системе, то есть , то

Если в выражении (20) считать, что ускорение измерено не в абсолютной, но в другой неинерциальной системе координат, то найденная сила инерции будет представлять собой силу, соответствующую относительному движению двух неинерциальных СО. Если учесть, что все тела во Вселенной взаимодействуют друг с другом в силу всепроникающей гравитации, и потому инерциальных СО в принципе не существует, то именно этот случай является действительно реализуемым на практике.

Движение тела по произвольной траектории в неинерциальной СО

Положение материального тела в условно неподвижной и инерциальной системе задаётся здесь вектором , а в неинерциальной системе - вектором . Расстояние между началами координат определяется вектором . Угловая скорость вращения системы задаётся вектором , направление которого устанавливается по оси вращения по правилу правого винта . Линейная скорость тела по отношению к вращающейся СО задаётся вектором .

В данном случае инерционное ускорение, в соответствии с (11), будет равно сумме:

Первый член - переносное ускорение второй системы относительно первой; второй член - ускорение, возникающее из-за неравномерности вращения системы вокруг своей оси; третий член - Кориолисово ускорение , вызванное той составляющей вектора скорости, которая не параллельна оси вращения неинерциальной системы; последний член, взятый без знака, представляет собой вектор, направленный в противоположную сторону от вектора , что можно получить, раскрывая двойное векторное произведение, когда получаем, что этот член равен () и потому представляет собой центростремительное ускорение тела в системе отсчёта неподвижного наблюдателя, принимаемой за ИСО, в которой сил инерции быть не может по определению. Однако формула (22) относится к ускорениям, наблюдаемым в неинерциальной (поворачивающей) системе отсчёта, и последние три члена в (11) представляют собой относительное ускорение, то есть ускорение, испытываемое телом в неинерциальной системе отсчёта под действием центробежной силы инерции (см. синюю стрелку на рисунке). Последний член должен представлять (вместе со знаком) центробежное ускорение, и потому перед ним должен стоять знак минус.

Работа фиктивных сил инерции

В классической физике силы инерции встречаются в трёх различных ситуациях в зависимости от системы отсчёта, в которой производится наблюдение . Это сила, приложенная к связи при наблюдении в инерциальной СО или к движущемуся телу при наблюдении в неинерциальной системе. Обе эти силы реальны и могут совершать работу. Так, примером работы, совершаемой Кориолисовой силой в планетарном масштабе является эффект Бэра

При решении задач на бумаге, когда искусственно сводят динамическую задачу движения к задаче статики, вводят третий вид сил называемый силами Даламбера, работы не совершающих, поскольку работа и неподвижность тел, несмотря на действие на него сил в физике есть понятия несовместимые.

Эквивалентность сил инерции и гравитации

Приложения

  1. В. Самолётов. Физика. Словарь-справочник . Издательский дом «Питер», 2005. С. 315.
  2. Сила инерции - статья из Большой советской энциклопедии
  3. Пример: В истории, как и в природе велика сила инерции , из П. Гвоздев. Образованность и литературные нравы в римском обществе времен Плиния младшего . // Журнал Министерства народного просвещения. Т. 169. Министерство народнаго просвещения, 1873. С. 119.
  4. Walter Greiner Klassische Mehanik II.Wissenschaftlicher VerlagHarri Deutsch GmbH. Frankfurt am Main.2008 ISBN 978-3-8171-1828-1
  5. ^Richard Phillips Feynman, Leighton R. B. & Sands M. L. (2006). The Feynman Lectures on Physics. San Francisco: Pearson/Addison-Wesley. Vol. I, section 12-5.

Инерциальные и неинерциальные системы отсчета

Законы Ньютона выполняются только в инерциальных системах отсчета. Относительно всех инерциальных систем данное тело движется с одинаковым ускорением $w$. Любая неинерциальная система отсчета движется относительно инерциальных систем с некоторым ускорением, поэтому ускорение тела в неинерциальной системе отсчета $w"$ будет отлично от $w$. Обозначим разность ускорений тела и инерциальной и неинерциальной системах символом $a$:

Для поступательно движущейся неинерциальной системы $a$ одинаково для всех точек пространства $a=const$ и представляет собой ускорение неинерциальной системы отсчета.

Для вращающейся неинерциальной системы $a$ в разных точках пространства будет различным ($a=a(r")$, где $r"$ - радиус-вектор, определяющий положение точки относительно неинерциальной системы отсчета).

Пусть результирующая всех сил, обусловленных действием на данное тело со стороны других тел, равна $F$. Тогда согласно второму закону Ньютона ускорение тела относительно любой инерциальной системы отсчета равно:

Ускорение же тела относительно некоторой неинерциальной системы можно представить в виде:

Отсюда следует, что даже при $F=0$ тело будет двигаться по отношению к неинерциальной системе отсчета с ускорением $-a$, т. е. так, как если бы на него действовала сила, равная $-ma$.

Сказанное означает, что при описании движения в неинерциальных системах отсчета можно пользоваться уравнениями Ньютона, если наряду с силами, обусловленными воздействием тел друг на друга, учитывать так называемые силы инерции $F_{in} $, которые следует полагать равными произведению массы тела на взятую с обратным знаком разность его ускорений по отношению к инерциальной и неинерциальной системам отсчета:

Соответственно уравнение второго закона Ньютона в неинерциальной системе отсчета будет иметь вид:

Поясним наше утверждение следующим примером. Рассмотрим тележку с укрепленным на ней кронштейном, к которому подвешен на нити шарик.

Рисунок 1.

Пока тележка покоится или движется без ускорения, нить расположена вертикально и сила тяжести $P$ уравновешивается реакцией нити $F_{r} $. Теперь приведем тележку в поступательное движение и ускорением $a$. Нить отклонится от вертикали на такой угол, чтобы результирующая сил $P$ и $F_{r} $, сообщала шарику ускорение, равное $a$. Относительно системы отсчета, связанной с тележкой, шарик покоится, несмотря на то, что результирующая сил $P$ и $F_{r} $ отлична от нуля. Отсутствие ускорения шарика по отношению к этой системе отсчета можно формально объяснить тем, что, кроме сил $P$ и $F_{r} $, равных, в сумме $ma$, на шарик действует еще и сила инерции $F_{in} =-ma$.

Силы инерции и их свойства

Введение сил инерции дает возможность описывать движение тел в любых (как инерциальных, так и неинерциальных) системах отсчета с помощью одних я тех же уравнений движения.

Замечание 1

Следует отчетливо понимать, что силы инерции нельзя ставить в один ряд с такими силами, как упругие, гравитационные силы и силы трения, т. е. силами, обусловленными воздействием на тело со стороны других, тел. Силы инерции обусловлены свойствами той системы отсчета, в которой рассматриваются механические явления. В этом смысле их можно назвать фиктивными силами.

Введение в рассмотрение сил инерции не является принципиально необходимым. В принципе любое движение можно всегда рассмотреть по отношению к инерциальной системе отсчета. Однако, практически часто представляет интерес как раз движение тел по отношению к неинерциальным системам отсчета, например, по отношению к земной поверхности.

Использование сил инерции даёт возможность решить соответствующую задачу непосредственно по отношению к такой системе отсчета, что часто оказывается значительно проще, чем рассмотрение движения в инерциальной системе.

Характерным свойством сил инерции является их пропорциональность массе тела. Благодаря этому свойству силы инерции оказываются аналогичными силам тяготения. Представим себе, что мы находимся в удаленной от всех внешних тел закрытой кабине, которая движется с ускорением g в направлении, которое мы назовем «верхом».

Рисунок 2.

Тогда все тела, находящиеся внутри кабины, будут вести себя так, как если бы на них действовала сила инерции $F_{in} =-ma$. В частности, пружина, к концу которой подвешено тело массы $m$, растянется так, чтобы упругая сила уравновесила силу инерции $-mg$. Однако такие же явлений наблюдались бы и в том случае, если бы кабина была неподвижной и находилась вблизи поверхности Земли. Не имея возможности «выглянуть» за пределы кабины, никакими опытами, проводимыми внутри кабины, мы не смогли бы установить чем обусловлена сила $-mg$ - ускоренным движением кабины или действием гравитационного поля Земли. На этом основании говорят об эквивалентности сил инерции и тяготения. Эта эквивалентность лежит в основе общей теории относительности Эйнштейна.

Пример 1

Тело свободно падает с высоты $200$ м на Землю. Определить отклонение тела к востоку под влиянием кориолисовой силы инерции, вызванной вращением Земли. Широта места падения $60^\circ$.

Дано: $h=200$м, $\varphi =60$?.

Найти: $l-$?

Решение: В земной системе отсчета на свободно падающее тело действует кориолисова сила инерции:

\, \]

где $\omega =\frac{2\pi }{T} =7,29\cdot 10^{-6} $рад/с -- угловая скорость вращения Земли, а $v_{r} $- скорость движения тела относительно Земли.

Кориолисова сила инерции во много раз меньше силы тяготения тела к Земле. Поэтому в первом приближении при определении $F_{k} $можно считать, что скорость $v_{r} $ направлена вдоль радиуса Земли и численно равна:

где $t$$ $- продолжительность падения.

Рисунок 3.

Из рисунка видно направление действия силы, тогда:

Так как $a_{k} =\frac{dv}{dt} =\frac{d^{2} l}{dt^{2} } $,

где $v$ - численное значение составляющей скорости тела, касательной к поверхности Земли, $l$ - смещение свободно падающего тела к востоку, то:

$v=\omega gt^{2} \cos \varphi +C_{1} $ и $l=\frac{1}{3} \omega gt^{3} \cos \varphi +C_{1} t+C_{2} $.

В начале падения тела $t=0,v=0,l=0$, поэтому постоянные интегрирования равны нулю и тогда имеем:

Продолжительность свободного падения тела с высоты $h$:

так что искомое отклонение тела к востоку:

$l=\frac{2}{3} \omega h\sqrt{\frac{2h}{g} } \cos \varphi =0,3\cdot 10^{-2} $м.

Ответ: $l=0,3\cdot 10^{-2} $м.

Неинерциальной системой отсчёта называется система, движущаяся ускоренно относительно инерциальной.

Законы Ньютона справедливы только в инерциальных системах отсчета. Поэтому все рассматриваемые до сих пор вопросы относились к инерциальным системам. Однако на практике часто приходится иметь дело с неинерциальными системами отсчёта. Выясним, как должен записываться основной закон динамики в таких системах. Рассмотрим в начале движение материальной точки в инерциальной системе отсчёта:

Введём кроме неё неинерциальную систему отсчёта и договоримся первую называть неподвижной, а вторую подвижной:

На основании теоремы сложения ускорений:

Отсюда перепишем:

Мы видим, что в неинерциальной системе отсчёта ускорение точки определяется не только силой и массойm , но и характером движения самой подвижной системы отсчёта.

–фиктивные силы (они не обусловлены взаимодействием тел, а связаны с ускоренным движением неинерциальной системы относительно инерциальной) или силы инерции.

В инерциальных системах отсчёта единственной причиной ускоренного движения материальной точки являются силы, действующие со стороны материальных тел. В неинерциальных системах причиной ускоренного движения являются и силы инерции, не связанные ни с каким взаимодействием.

Необходимо подчеркнуть, что на точку, находящуюся в подвижной системе координат, силы инерции оказывают реальное действие, так как они входят в уравнение движения. Пример: движение человека в вагоне, при движении вагона с постоянной скоростью.

,

.

Пусть теперь вагон замедляет свой ход:

.

Таким образом, введение сил инерции приводит к удобной формулировке основных законов механики в относительном движении и придаёт им некоторую наглядность.

Рассмотрим два частных случая.

Пусть материальная точка совершает равномерное прямолинейное движение относительно движущейся системы координат, тогда с учетом
получим:

.

Таким образом, реальные силы уравновешиваются силами инерции.

Пусть материальная точка находится в покое по отношению к подвижной системе координат:

Тогда
,

Как уже отмечалось, законы Ньютона выполняются только в инерциальных системах отсчета. Системы отсчета, движущиеся относительно инерциальной системы с ускорением, называются н еинерциальными. В неинерциальных системах законы Ньютона, вообще говоря, уже несправедливы. Однако законы динамики можно применять и для них, если кроме сил, обусловленных воздействием тел друг на друга, ввести в рассмотрение силы особого рода – так называемые силы инерции.

Если учесть силы инерции, то второй закон Ньютона будет справедлив для любой системы отсчета: произведение массы тела на ускорение в рассматриваемой системе отсчета равно сумме всех сил, действующих на данное тело (включая и силы инерции). Силы инерции при этом должны быть такими, чтобы вместе с силами , обусловленными воздействием тел друг на друга, они сообщали телу ускорение , каким оно обладает в неинерциальных системах отсчета, т. е.

(1)

Так как
( – ускорение тела в инерциальной системе отсчета), то

Силы инерции обусловлены ускоренным движением системы отсчета относительно измеряемой системы, поэтому в общем случае нужно учитывать следующие случаи проявления этих сил:

1) силы инерции при ускоренном поступательном движении системы отсчета;

2) силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета;

3) силы инерции, действующие на тело, движущееся во вращающейся системе отсчета.

Рассмотрим эти случаи.

1. Силы инерции при ускоренном поступательном движение системы отсчета. Пусть на тележке к штативу на нити подвешен шарик массой т . Пока тележка покоится или движется равномерно и прямолинейно, нить, удерживающая шарик, занимает вертикальное положение и сила тяжести
уравновешивается силой реакции нити .

Если тележку привести в поступательное движение с ускорением , то нить начнет отклоняться от вертикали назад до такого угла α , пока результирующая сила
не обеспечит ускорение шарика, равное . Таким образом, результирующая сила направлена в сторону ускорения тележки и для установившегося движения шарика (шарик теперь движется вместе с тележкой с ускорением ) равна
, откуда
,т. е. угол отклонения нити от вертикали тем больше, чем больше ускорение тележки.

Относительно системы отсчета, связанной с ускоренно движущейся тележкой, шарик покоится, что возможно, если сила , которая является ничем иным, как силой инерции, так как на шарик никакие другие силы не действуют. Таким образом,

(2)

Проявление сил инерции при поступательном движении наблюдается в повседневных явлениях. Например, когда поезд набирает скорость, то пассажир, сидящий по ходу поезда, под действием силы инерции прижимается к спинке сиденья. Наоборот, при торможении поезда сила инерции направлена в противоположную сторону, и пассажир удаляется от спинки сиденья. Особенно эти силы заметны при внезапном торможении поезда. Силы инерции проявляются в перегрузках, которые возникают при запуске и торможении космических кораблей.

2. Силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета. Пусть диск равномерно вращается с угловой скоростью ω (ω =const ) вокруг вертикальной оси, проходящей через его центр. На диске, на разных расстояниях от оси вращения, установлены маятники (на нитях подвешены шарики массой m ). При вращении маятников вместе с диском шарики отклоняются от вертикали на некоторый угол.

В инерциальной системе отсчета, связанной, например, с помещением, где установлен диск, шарик равномерно вращается по окружности радиусом R (расстояние от центра вращающегося шарика до оси вращения). Следовательно, на него действует сила, модуль которой равен F = 2 R и направлена сила перпендикулярно оси вращения диска. Она является равнодействующей силы тяжести
и силы натяжения нити :
. Когда движение шарика установится, то
, откуда
,т. е. углы отклонения нитей маятников будут тем больше, чем больше расстояние R от центра шарика до оси вращения диска и чем больше угловая скорость вращения ω .

Относительно системы отсчета, связанной с вращающимся диском, шарик покоится, что возможно, если сила уравновешивается равной и противоположно направленной ей силой , которая является ничем иным, как силой инерции, так как на шарик никакие другие силы не действуют. Сила , называемая центробежной силой инерции , направлена по горизонтали от оси вращения диска и её модуль равен

F ц = 2 R (3)

Действию центробежных сил инерции подвергаются, например, пассажиры в движущемся транспорте на поворотах, летчики при выполнении фигур высшего пилотажа; центробежные силы инерции используются во всех центробежных механизмах: насосах, сепараторах и т. д., где они достигают огромных значений. При проектировании быстро вращающихся деталей машин (роторов, винтов самолетов и т. д.) принимаются специальные меры для уравновешивания центробежных сил инерции.

Из формулы (3) вытекает, что центробежная сила инерции, действующая на тела во вращающихся системах отсчета в направлении радиуса от оси вращения, зависит от угловой скорости вращения ω системы отсчета и радиуса R , но не зависит от скорости тел относительно вращающихся систем отсчета. Следовательно, центробежная сила инерции действует во вращающихся системах отсчета на все тела, удаленные от оси вращения на конечное расстояние, независимо от того, покоятся ли они в этой системе (как мы предполагали до сих пор) или движутся относительно нее с какой-то скоростью.

3. Силы инерции, действующие на тело, движущееся во вращающейся системе отсчета. Пусть шарик массой т движется с постоянной скоростью вдоль радиуса равномерно вращающегося диска (). Если диск не вращается, то шарик, направленный вдоль радиуса, движется по радиальной прямой и попадает в точку А, если же диск привести во вращение в направлении, указанном стрелкой, то шарик катится по кривой ОВ , причем его скорость относительно диска изменяет свое направление. Это возможно лишь тогда, если на шарик действует сила, перпендикулярная скорости .

Для того чтобы заставить шарик катиться по вращающемуся диску вдоль радиуса, используем жестко укрепленный вдоль радиуса диска стержень, на котором шарик движется без трения равномерно и прямолинейно со скоростью .

При отклонении шарика стержень действует на него с некоторой силой . Относительно диска (вращающейся системы отсчета) шарик движется равномерно и прямолинейно, что можно объяснить тем, что сила уравновешивается приложенной к шарику силой инерции , перпендикулярной скорости . Эта сила называется кориолисовой силой инерции .

Можно показать, что сила Кориолиса

(4)

Вектор перпендикулярен векторам скорости тела и угловой скорости вращения системы отсчета в соответствии с правилом правого винта.

Сила Кориолиса действует только на тела, движущиеся относительно вращающейся системы отсчета, например, относительно Земли. Поэтому действием этих сил объясняется ряд наблюдаемых на Земле явлений. Так, если тело движется в северном полушарии на север, то действующая на него сила Кориолиса, как это следует из выражения (4), будет направлена вправо по отношению к направлению движения, т. е. тело несколько отклонится на восток. Если тело движется на юг, то сила Кориолиса также действует вправо, если смотреть по направлению движения, т. е. тело отклонится на запад. Поэтому в северном полушарии наблюдается более сильное подмывание правых берегов рек; правые рельсы железнодорожных путей по движению изнашиваются быстрее, чем левые, и т. д. Аналогично можно показать, что в южном полушарии сила Кориолиса, действующая на движущиеся тела, будет направлена влево по отношению к направлению движения.

Благодаря силе Кориолиса падающие на поверхность Земли тела отклоняются к востоку (на широте 60° это отклонение должно составлять 1 см при падении с высоты 100 м). С силой Кориолиса связано поведение маятника Фуко, явившееся в свое время одним из доказательств вращения Земли. Если бы этой силы не было, то плоскость колебаний качающегося вблизи поверхности Земли маятника оставалась бы неизменной (относительно Земли). Действие же сил Кориолиса приводит к вращению плоскости колебаний вокруг вертикального направления.

,

где силы инерции задаются формулами (2) – (4).

Обратим еще раз внимание на то, что силы инерции вызываются не взаимодействием тел, а ускоренным движением системы отсчета . Поэтому они не подчиняются третьему закону Ньютона, так как если на какое-либо тело действует сила инерции, то не существует противодействующей силы, приложенной к данному телу. Два основных положения механики, согласно которым ускорение всегда вызывается силой, а сила всегда обусловлена взаимодействием между телами, в системах отсчета, движущихся с ускорением, одновременно не выполняются.

Для любого из тел, находящихся в неинерциальной системе отсчета, силы инерции являются внешними; следовательно, здесь нет замкнутых систем. Это означает, что в неинерциальных системах отсчета не выполняются законы сохранения импульса, энергии и момента импульса. Таким образом, силы инерции действуют только в неинерциальных системах. В инерциальных системах отсчета таких сил не существует.

Возникает вопрос о «реальности» или «фиктивности» сил инерции. В ньютоновской механике, согласно которой сила есть результат взаимодействия тел, на силы инерции можно смотреть как на «фиктивные», «исчезающие» в инерциальных системах отсчета. Однако возможна и другая их интерпретация. Так как взаимодействия тел осуществляются посредством силовых полей, то силы инерции рассматриваются как воздействия, которым подвергаются тела со стороны каких-то реальных силовых полей, и тогда их можно считать «реальными». Независимо от того, рассматриваются ли силы инерции в качестве «фиктивных» или «реальных», многие явления, о которых упоминалось выше, объясняются с помощью сил инерции.

Силы инерции, действующие на тела в неинерциальной системе отсчета, пропорциональны их массам и при прочих равных условиях сообщают этим телам одинаковые ускорения. Поэтому в «поле сил инерции» эти тела движутся совершенно одинаково, если только одинаковы начальные условия. Тем же свойством обладают тела, находящиеся под действием сил поля тяготения.

При некоторых условиях силы инерции и силы тяготения невозможно различить. Например, движение тел в равноускоренном лифте происходит точно так же, как и в неподвижном лифте, висящем в однородном поле тяжести. Никакой эксперимент, выполненный внутри лифта, не может отделить однородное поле тяготения от однородного поля сил инерции.

Аналогия между силами тяготения и силами инерции лежит в основе принципа эквивалентности гравитационных сил и сил инерции (принципа эквивалентности Эйнштейна): все физические явления в поле тяготения происходят совершенно так же, как и в соответствующем поле сил инерции, если напряженности обоих полей в соответствующих точках пространства совпадают, а прочие начальные условия для рассматриваемых тел одинаковы. Этот принцип является основой общей теории относительности.