Карбоновая кислота плюс водород. Химические свойства карбоновых кислот и методы получения

КАРБОНОВЫЕ КИСЛОТЫ

Карбоновыми кислотами называют производные углеводородов, содержащие одну или несколько карбоксильных групп.

Число карбоксильных групп характеризует основность кислоты.

В зависимости от количества карбоксильных групп карбоновые кислоты подразделяются на одноосновные карбоновые кислоты (содержат одну карбоксильную группу), двухосновные (содержат две карбоксильные группы) и многоосновные кислоты.

В зависимости от вида радикала, связанного с карбоксильной группой, карбоновые кислоты делятся на предельные, непредельные и ароматические. Предельные и непредельные кислоты объединяют под общим названием кислоты алифатического или жирного ряда.

    Одноосновные карбоновые кислоты

1.1 Гомологический ряд и номенклатура

Гомо­логический ряд одноосновных предельных карбоновых кислот (иногда их называют жирными кислотами) начинается с муравьиной кислоты

Формула гомологического ряда

Номенклатура ИЮПАК разрешает сохранять для многих кислот их тривиальные названия, которые обычно указывают на природный источник, из которого была выделена та или иная кислота, например, муравьиная, уксусная, масляная, валериановая и т.д.

Для более сложных случаев названия кислот производят от названия уг­леводородов с тем же числом атомов углерода, что и в молеку­ле кислоты, с добавлением окончания -овая и слова кислота. Муравьиная кислота Н-СООН называется метановой кисло­той, уксусная кислота СН 3 -СООН - этановой кислотой и т. д.

Таким образом, кислоты рассматриваются как производные углеводородов, одно звено которых превращено в карбоксил:

При составлении названий кислот с разветвленной цепью по рациональной номенклатуре их рассматривают как производные уксусной кислоты, в молекуле которой атомы водорода замещены радикалами, например, триметилуксусная кислота (СН 3) 3 С – СООН.

1.2 Физические свойства карбоновых кислот

Только с чисто формальных позиций можно рассматривать карбоксильную группу как комбинацию карбонильной и гидроксильной функций. Фактически их взаимное влияние друг на друга таково, что полностью изменяет их свойства.

Обычная для карбонила поляризация двойной связи С=0 сильно возрастает за счет дополнительного стягивания свобод­ной электронной пары с соседнего атома кислорода гидроксильной группы:

Следствием этого является значительное ослабление связи О-Н в гидроксиле и легкость отщепления атома водорода от него в виде протона (Н +). Появление пониженной электронной плотности (δ+) на центральном углеродном атоме карбоксила приводит также к стягиванию σ-электронов соседней связи С-С к карбоксильной группе и появлению (как у альдегидов и кетонов) пониженной электронной плотности (δ +) на α-углеродном атоме кислоты.

Все карбоновые кислоты обладают кислой реакцией (обна­руживается индикаторами) и образуют соли с гидроксидами, оксидами и карбонатами металлов и с активными метал­лами:

Карбоновые кислоты в большинстве случаев в водном растворе диссоциированы лишь в малой степени и являются слабыми кислотами, значительно уступая таким кислотам, как соляная, азотная и серная. Так, при растворении одного моля в 16 л воды степень диссоциации муравьиной кислоты равна 0,06, уксусной кислоты - 0,0167, в то время как соля­ная кислота при таком разбавлении диссоциирована почти полностью.

Для большинства одноосновных карбоновых кислот рК а = 4,8, только муравьиная кислота имеет меньшую величи­ну рК а (около 3,7), что объясняется отсутствием электронодонорного эффекта алкильных групп.

В безводных минеральных кислотах карбоновые кислоты протонируются по кислороду с образованием карбкатионов:

Сдвиг электронной плотности в молекуле недиссоцииро­ванной карбоновой кислоты, о котором говорилось выше, по­нижает электронную плотность на гидроксильном атоме кис­лорода и повышает ее на карбонильном. Этот сдвиг еще боль­ше увеличивается в анионе кислоты:

Результатом сдвига является полное выравнивание заря­дов в анионе, который фактически существует в форме А - резонанс карбоксилат-аниона.

Первые четыре представителя ряда карбоновых кислот - подвижные жидкости, смешивающиеся с водой во всех отно­шениях. Кислоты, в молекуле которых содержится от пяти до девяти атомов углерода (а также изомасляная кислота), - маслянистые жидкости, растворимость их в воде невелика.

Высшие кислоты (от С 10) - твердые тела, практически не­растворимы в воде, при перегонке в обычных условиях они разлагаются.

Муравьиная, уксусная и пропионовая кислоты имеют ост­рый запах; средние члены ряда обладают неприятным запа­хом, высшие кислоты запаха не имеют.

На физических свойствах карбоновых кислот сказывается значительная степень ассоциации вследствие образования во­дородных связей. Кислоты образуют прочные водород­ные связи, так как связи О-Н в них сильно поляризованы. Кроме того, карбоновые кислоты спо­собны образовывать водородные связи с участием атома кисло­рода карбонильного диполя, обладающего значительной электроотрицательностью. Действительно, в твердом и жидком со­стоянии карбоновые кислоты существуют в основном в виде циклических димеров:

Такие димерные структуры сохраняются в некоторой степе­ни даже в газообразном состоянии и в разбавленных растворах в неполярных растворителях.

      Химические свойства

Для кислот характерны три типа реакций: замещения иона водорода карбоксильной группы (образование солей); с участием гидроксильной группы (образование сложных эфиров, галогенангидридов, ангидридов кислот); замещения водорода в радикале.

Образование солей. Карбоновые кислоты легко образуют соли при взаимодействии с взаимодействии с металлами, их оксидами, со щелочами или основаниями, при действии аммиака или аминов:

Соли карбоновых кислот находят широкое применение в народном хозяйстве. Они используются в качестве катализаторов, стабилизаторов полимерных материалов, при изготовлении красок и т.д.

Образование сложных эфиров. Со спиртами кислоты дают сложные эфиры:

Образование галогенангидридов. При действии на кислоты галогенидов фосфора или SОС1 2 получаются галогенангидриды кислот:

Галогенангидриды – очень реакционноспособные вещества, которые применяются для разнообразных синтезов.

Образование ангидридов кислот. Если от двух молекул карбоновых кислот отнять одну молекулу воды (в присутствии водоотнимающих веществ Р 2 О 5 и др.), образуется ангидрид карбоновой кислоты:

Ангидриды кислот, подобно галогенангидридам, очень реакци-онноснособны; они разлагаются различными соединениями с активным водородом, образуя производные кислоты и свобод­ную кислоту:

Галогенирование карбоновых кислот. Водородные атомы углеводо­родных радикалов в кислотах по реакционной способности по­добны атомам водорода в алканах. Исключение составляют атомы водорода, расположенные у α-углеродного атома (непо­средственно связанного с карбоксилом). Так, при действии хлора и брома в присутствии переносчиков галогенов (РС1 3 , 1 2 и др.) на карбоновые кислоты или на их хлорангидриды проис­ходит замещение именно α -водородных атомов:

Действие окислителей. Одноосновные карбоновые кис­лоты, как правило, устойчивы к действию окислителей. Легко окисляются лишь муравьиная кислота (до СО 2 и Н 2 О) и кисло­ты с третичным атомом углерода в α -положении. При окисле­нии последних получаются α -оксикислоты:

В животных организмах одноосновные карбоновые кисло­ты также способны окисляться, причем атом кислорода на­правляется всегда в β-положение. Так, например, в организме больных диабетом масляная кислота переходит в β -оксимасляную кислоту:

Образование кетонов Сухая пе­регонка кальциевых и бариевых солей карбоновых кислот (кроме муравьиной кислоты) приводит к образованию кетонов. Так, при перегонке ацетата кальция, полученного из СаСО 3 и СН 3 СООН, образуется диметилкетон, при перегонке пропионовокислого кальция - диэтилкетон:

Образование амидов. При нагревании аммониевых солей кислот по­лучаются амиды:

Образование углеводородов. При сплавле­нии солей щелочных металлов карбоновых кислот со щелоча­ми (пиролиз) происходит расщепление углеродной цепи и декарбоксилирование, в результате чего из углеводородного радикала кис­лоты образуется соответствующий углеводород, например:

Важнейшие представители

Муравьиная кислота - бесцветная жидкость с резким запа­хом. Является сильным восстановителем и окисляется до уголь­ной кислоты. В природе свободная муравьиная кислота встреча­ется в выделениях муравьев, в соке крапивы, в поте животных. Применяют муравьиную кислоту при крашении тканей в качестве восстановителя, при дублении кож, в медицине, в различных органических синтезах.

Уксусная кислота - бесцветная жидкость с резким запахом. Водный раствор (70 - 80 %) уксусной кислоты называется уксусной эссенцией, а 3 -5%-ный водный раствор - столовым уксу­сом.

Уксусная кислота широко встречается в природе. Она содер­жится в моче, поте, желчи и коже животных, растениях. Образуется при уксуснокислом брожении жидкостей, содержащих спирт (вино, пиво и др.).

Широко используется в химической промышленности для производства ацетатного шелка, красителей, сложных эфиров, ацетона, уксусного ангидрида, солей и т.д. В пищевой промыш­ленности уксусная кислота используется для консервирования продуктов, некоторые сложные эфиры уксусной кислоты приме­няются в кондитерском производстве.

Масляная кислота представляет собой жидкость с неприят­ным запахом. Содержится в виде сложного эфира в коровьем масле. В свободном состоянии находится в прогоркшем масле.

2. Двухосновные карбоновые кислоты

Общая формула гомологического ряда предельных двухосновных кислот

Примерами могут служить:

Предельные двухосновные кислоты - твердые кристалли­ческие вещества. Подобно тому, как это отмечалось для одноосновных кислот, предельные двухосновные кислоты с четным числом атомов углерода плавятся при более высокой темпера­туре, чем соседние гомологи с нечетным числом атомов углерода. Растворимость в воде кислот с нечетным числом атомов угле­рода значительно выше растворимости кислот с четным чис­лом атомов углерода, причем с возрастанием длины цепи рас­творимость кислот в воде уменьшается.

Двухосновные кислоты диссоциируют последовательно:

Они сильнее соответствующих одноосновных кислот. Сте­пень диссоциации двухосновных кислот понижается с увели­чением их молекулярной массы.

В молекуле двухосновных кислот содержатся две карбок­сильные группы, поэтому они дают два ряда производных, на­пример средние и кислые соли, средние и кислые сложные эфиры:

При нагревании щавелевой и малоновой кислот легко от­щепляется СО 2:

Двухосновные кислоты с четырьмя и пятью атомами угле­рода в молекуле, т. е. янтарная и глутаровая кислоты, при на­гревании отщепляют элементы воды и дают внутренние цик­лические ангидриды:

3. Непредельные карбоновые кислоты

Состав непредельных одноосновных кислот с одной двой­ной связью можно выразить общей формулой С n Н 2 n -1 СООН. Как и для любых бифункциональных соединений, для них ха­рактерны реакции как кислот, так и олефинов. α.β-Непредельные кислоты несколько превосходят по силе соответст­вующие жирные кислоты, так как двойная связь, находящая­ся рядом с карбоксильной группой, усиливает ее кислотные свойства.

Акриловая кислота. Простейшая непредельная одноосновная кислота

Олеиновая, линолевая и линоленовая кислоты.

Олеиновая кислота С 17 Н 33 СООН в виде глицеринового эфира чрезвычайно распространена в природе. Ее строение выража­ется формулой

Олеиновая кислота - бесцветная маслянистая жидкость, легче воды, на холоду затвердевает в игольчатые кристаллы, плавящиеся при 14 °С. На воздухе она быстро окисляется и желтеет.

Молекула олеиновой кислоты способна присоединять два атома галогена:

В присутствии катализаторов, например Ni, олеиновая кислота присоединяет два атома водорода, переходя в стеари­новую кислоту.

Олеиновая кислота представляет собой цис-изомер (все природные непредельные высокомолекулярные кислоты, как правило, относятся к цис-ряду).

Линолевая С 17 Н 31 СООН и линоленовая С 17 Н 29 СООН кисло­ты еще более ненасыщены, чем олеиновая кислота. В виде сложных эфиров с глицерином - глицеридов - они являются главной составной частью льняного и конопляного масел:

В молекуле линолевой кислоты две двойные связи. Она может присоединять четыре атома водорода или галогена. В молекуле линолевой кислоты три двойные связи, поэтому она присоединяет шесть атомов водорода или галогена. Обе кислоты, присоединяя водород, переходят в стеариновую кис­лоту.

Сорбиновая кислота

Она имеет две сопряженные друг с другом и с карбоксильной группой двойные связи, имеющие транс-конфигурацию; является пре­красным консервантом для многих пищевых продуктов: овощ­ных консервов, сыра, маргарина, фруктов, рыбных и мясных продуктов.

Малеиновая и фумаровая кислоты. Простейшими из двухосновных кислот, содержащих этиленовую связь, являют­ся два структурных изомера:

Кроме того, для второй из этих кислот возможны две про­странственные конфигурации:

Фумаровая кислота содержится во многих растениях: осо­бенно часто она встречается в грибах. Малеиновая кислота в природе не найдена.

Обе кислоты обычно получают при нагревании яблочной (оксиянтарной) кислоты:

При медленном, осторожном нагревании получается главным образом фумаровая кислота; при более сильном нагревании и при перегонке яблочной кислоты получается малеиновая кис­лота.

Как фумаровая, так и малеиновая кислота при восстанов­лении дают одну и ту же янтарную кислоту.

Классификация

а) По основности (т. е. числукарбоксильных групп в молекуле):


Одноосновные (монокарбоновые) RCOOH; например:


СН 3 СН 2 СН 2 СООН;



НООС-СН 2 -СООН пропандиовая (малоновая) кислота



Трехосновные (трикарбоновые) R(COOH) 3 и т. д.


б) По строению углеводородного радикала:


Алифатические


предельные; например: СН 3 СН 2 СООН;


непредельные; например: СН 2 =СНСООН пропеновая(акриловая) кислота



Алициклические, например:



Ароматические, например:


Предельные монокарбоновые кислоты

(одноосновные насыщенные карбоновые кислоты) – карбоновые кислоты, в которых насыщенный углеводородный радикал соединен с одной карбоксильной группой -COOH. Все они имеют общую формулу C n H 2n+1 COOH (n ≥ 0); или CnH 2n O 2 (n≥1)

Номенклатура

Систематические названия одноосновных предельных карбоновых кислот даются по названию соответствующего алкана с добавлением суффикса - овая и слова кислота.


1. НСООН метановая (муравьиная) кислота


2. СН 3 СООН этановая (уксусная) кислота


3. СН 3 СН 2 СООН пропановая (пропионовая) кислота

Изомерия

Изомерия скелета в углеводородном радикале проявляется, начиная с бутановой кислоты, которая имеет два изомера:




Межклассовая изомерия проявляется, начиная с уксусной кислоты:


CH 3 -COOH уксусная кислота;


H-COO-CH 3 метилформиат (метиловый эфир муравьиной кислоты);


HO-CH 2 -COH гидроксиэтаналь (гидроксиуксусный альдегид);


HO-CHO-CH 2 гидроксиэтиленоксид.

Гомологический ряд

Тривиальное название

Название по ИЮПАК

Муравьиная кислота

Метановая кислота

Уксусная кислота

Этановая кислота

Пропионовая кислота

Пропановая кислота

Масляная кислота

Бутановая кислота

Валериановая кислота

Пентановая кислота

Капроновая кислота

Гексановая кислота

Энантовая кислота

Гептановая кислота

Каприловая кислота

Октановая кислота

Пеларгоновая кислота

Нонановая кислота

Каприновая кислота

Декановая кислота

Ундециловая кислота

Ундекановая кислота

Пальмитиновая кислота

Гексадекановая кислота

Стеариновая кислота

Октадекановая кислота

Кислотные остатки и кислотные радикалы

Кислотный остаток

Кислотный радикал (ацил)

НСООН
муравьиная


НСОО-
формиат


СН 3 СООН
уксусная

СН 3 СОО-
ацетат

СН 3 СН 2 СООН
пропионовая

СН 3 СН 2 СОО-
пропионат

СН 3 (СН 2) 2 СООН
масляная

СН 3 (СН 2) 2 СОО-
бутират

СН 3 (СН 2) 3 СООН
валериановая

СН 3 (СН 2) 3 СОО-
валериат

СН 3 (СН 2) 4 СООН
капроновая

СН 3 (СН 2) 4 СОО-
капронат

Электронное строение молекул карбоновых кислот


Показанное в формуле смещение электронной плотности в сторону карбонильного атома кислорода обусловливает сильную поляризацию связи О-Н, в результате чего облегчается отрыв атома водорода в виде протона - в водных растворах происходит процесс кислотной диссоциации:


RCOOH ↔ RCOO - + Н +


В карбоксилат-ионе (RCOO -) имеет место р, π-сопряжение неподеленной пары электронов атома кислорода гидроксильной группы с р-облаками, образующими π- связь, в результате происходит делокализация π- связи и равномерное распределение отрицательного заряда между двумя атомами кислорода:



В связи с этим для карбоновых кислот, в отличие от альдегидов, не характерны реакции присоединения.

Физические свойства


Температуры кипения кислот значительно выше температур кипения спиртов и альдегидов с тем же числом атомов углерода, что объясняется образованием циклических и линейных ассоциатов между молекулами кислот за счет водородных связей:


Химические свойства

I. Кислотные свойства

Сила кислот уменьшается в ряду:


НСООН → СН 3 СООН → C 2 H 6 COOH → ...

1. Реакции нейтрализации

СН 3 СООН + КОН → СН 3 СООК + н 2 O

2. Реакции с основными оксидами

2HCOOH + СаО → (НСОО) 2 Са + Н 2 O

3. Реакции с металлами

2СН 3 СН 2 СООН + 2Na → 2СН 3 СН 2 COONa + H 2

4. Реакции с солями более слабых кислот (в т. ч. с карбонатами и гидрокарбонатами)

2СН 3 СООН + Na 2 CO 3 → 2CH 3 COONa + CO 2 + Н 2 O


2НСООН + Mg(HCO 3) 2 → (НСОО) 2 Мg + 2СO 2 + 2Н 2 O


(НСООН + НСО 3 - → НСОО - + СO2 +Н2O)

5. Реакции с аммиаком

СН 3 СООН + NH 3 → CH 3 COONH 4

II. Замещение группы -ОН

1. Взаимодействие со спиртами (реакции этерификации)


2. Взаимодействие с NH 3 при нагревании (образуются амиды кислот)



Амиды кислот гидролизуются с образованием кислот:




или их солей:



3. Образование галогенангидридов

Наибольшее значение имеют хлорангидриды. Хлорирующие реагенты - PCl 3 , PCl 5 , тионилхлорид SOCl 2 .



4. Образование ангидридов кислот (межмолекулярная дегидратация)



Ангидриды кислот образуются также при взаимодействии хлорангидридов кислот с безводными солями карбоновых кислот; при этом можно получать смешанные ангидриды различных кислот; например:




III. Реакции замещения атомов водорода у α-углеродного атома



Особенности строения и свойств муравьиной кислоты

Строение молекулы


Молекула муравьиной кислоты, в отличие от других карбоновых кислот, содержит в своей структуре альдегидную группу.

Химические свойства

Муравьиная кислота вступает в реакции, характерные как для кислот, так и для альдегидов. Проявляя свойства альдегида, она легко окисляется до угольной кислоты:



В частности, НСООН окисляется аммиачным раствором Ag 2 O и гидроксидом меди (II) Сu(ОН) 2 , т. е. дает качественные реакции на альдегидную группу:




При нагревании с концентрированной H 2 SO 4 муравьиная кислота разлагается на оксид углерода (II) и воду:



Муравьиная кислота заметно сильнее других алифатических кислот, так как карбоксильная группа в ней связана с атомом водорода, а не с электроно-донорным алкильным радикалом.

Способы получения предельных монокарбоновых кислот

1. Окисление спиртов и альдегидов

Общая схема окисления спиртов и альдегидов:



В качестве окислителей используют KMnO 4 , K 2 Cr 2 O 7 , HNO 3 и другие реагенты.


Например:


5С 2 Н 5 ОН + 4KMnO 4 + 6H 2 S0 4 → 5СН 3 СООН + 2K 2 SO 4 + 4MnSO 4 + 11Н 2 O

2. Гидролиз сложных эфиров


3. Окислительное расщепление двойных и тройных связей в алкенах и в алкинах


Способы получения НСООН (специфические)

1. Взаимодействие оксида углерода (II) с гидроксидом натрия

СO + NaOH → HCOONa формиат натрия


2HCOONa + H 2 SO 4 → 2НСООН + Na 2 SO 4

2. Декарбоксилирование щавелевой кислоты


Способы получения СН 3 СООН (специфические)

1. Каталитическое окисление бутана


2. Синтез из ацетилена


3. Каталитическое карбонилирование метанола


4. Уксуснокислое брожение этанола


Так получают пищевую уксусную кислоту.

Получение высших карбоновых кислот

Гидролиз природных жиров


Непредельные монокарбоновые кислоты

Важнейшие представители

Общая формула алкеновых кислот: C n H 2n-1 COOH (n ≥ 2)


CH 2 =CH-COOH пропеновая (акриловая) кислота



Высшие непредельные кислоты

Радикалы этих кислот входят в состав растительных масел.


C 17 H 33 COOH - олеиновая кислота, или цис -октадиен-9-овая кислота


Транс -изомер олеиновой кислоты называется элаидиновой кислотой.


C 17 H 31 COOH - линолевая кислота, или цис, цис -октадиен-9,12-овая кислота




C 17 H 29 COOH - линоленовая кислота, или цис, цис, цис -октадекатриен-9,12,15-овая кислота

Кроме общих свойств карбоновых кислот, для непредельных кислот характерны реакции присоединения по кратным связям в углеводородном радикале. Так, непредельные кислоты, как и алкены, гидрируются и обесцвечивают бромную воду, например:



Отдельные представители дикарбоновых кислот

Предельные дикарбоновые кислоты HOOC-R-COOH


HOOC-CH 2 -COOH пропандиовая (малоновая) кислота, (соли и эфиры - малонаты)


HOOC-(CH 2) 2 -COOH бутадиовая (янтарная) кислота, (соли и эфиры - сукцинаты)


HOOC-(CH 2) 3 -COOH пентадиовая (глутаровая) кислота, (соли и эфиры - глутораты)


HOOC-(CH 2) 4 -COOH гексадиовая (адипиновая) кислота, (соли и эфиры - адипинаты)

Особенности химических свойств

Дикарбоновые кислоты во многом сходны с монокарбоновыми, однако являются более сильными. Например, щавелевая кислотасильнее уксусной почти в 200 раз.


Дикарбоновые кислоты ведут себя как двухосновные и образуют два ряда солей - кислые и средние:


HOOC-COOH + NaOH → HOOC-COONa + H 2 O


HOOC-COOH + 2NaOH → NaOOC-COONa + 2H 2 O


При нагревании щавелевая и малоновая кислоты легко декарбоксилируются:



Карбоновыми кислотами называют соединения, в которых содержится карбоксильная группа:

Карбоновые кислоты различают:

  • одноосновные карбоновые кислоты;
  • двухосновные (дикарбоновые) кислоты (2 группы СООН ).

В зависимости от строения карбоновые кислоты различают:

  • алифатические;
  • алициклические;
  • ароматические.

Примеры карбоновых кислот.

Получение карбоновых кислот.

1. Окисление первичных спиртов перманганатом калия и дихроматом калия:

2. Гибролиз галогензамещенных углеводородов, содержащих 3 атома галогена у одного атома углерода:

3. Получение карбоновых кислот из цианидов:

При нагревании нитрил гидролизуется с образованием ацетата аммония:

При подкисления которого выпадает кислота:

4. Использование реактивов Гриньяра:

5. Гидролиз сложных эфиров:

6. Гидролиз ангидридов кислот:

7. Специфические способы получения карбоновых кислот:

Муравьиная кислота получается при нагревании оксида углерода (II) с порошкообразным гидроксидом натрия под давлением:

Уксусную кислоту получают каталитическим окислением бутана кислородом воздуха:

Бензойную кислоту получают окислением монозамещенных гомологов раствором перманганата калия:

Реакция Каннициаро . Бензальдегид обрабатывают 40-60% раствором гидроксида натрия при комнатной температуре.

Химические свойства карбоновых кислот.

В водном растворе карбоновые кислоты диссоциируют:

Равновесие сдвинуто сильно влево, т.к. карбоновые кислоты являются слабыми.

Заместители влияют на кислотность вследствие индуктивного эффекта. Такие заместители оттягивают электронную плотность на себя и на них возникает отрицательный индуктивный эффект (-I). Оттягивание электронной плотности приводит к повышению кислотности кислоты. Электронодонорные заместители создают положительный индуктивный заряд.

1. Образование солей. Реагирование с основными оксидами, солями слабых кислот и активными металлами:

Карбоновые кислоты - слабые, т.к. минеральные кислоты вытесняют их из соответствующих солей:

2. Образование функциональных производных карбоновых кислот:

3. Сложные эфиры при нагревании кислоты со спиртом в присутствие серной кислоты - реакция этерификации:

4. Образование амидов, нитрилов:

3. Свойства кислот обуславливаются наличием углеводородного радикала. Если протекает реакция в присутствие красного фосфора, то образует следующий продукт:

4. Реакция присоединения.

8. Декарбоксилирование. Реакцию проводят сплавлением щелочи с солью щелочного металла карбоновой кислоты:

9. Двухосновная кислота легко отщепляет СО 2 при нагревании:

Дополнительные материалы по теме: Карбоновые кислоты.

Калькуляторы по химии

Химия онлайн на нашем сайте для решения задач и уравнений.

1. Классификация карбоновых кислот.

2. Номенклатура, получение.

3. Изомерия, строение.

4. Монокарбоновые кислоты (предельные, непредельные, ароматические).

5. Дикарбоновые кислоты.

6. Производные карбоновых кислот.

Производные углеводородов, содержащие карбоксильную группу -СООН,называются карбоновыми кислотами.

Карбоновые кислоты классифицируют по двум структурным признакам:

а) по природе радикала, различают - алифатические R(CООН)n (предельные, непредельные) и ароматические кислоты Аr(СООН)n;

б) по числу карбоксильных групп, различают - монокарбоновые (n =1), ди- и поликарбоновые (n ≥ 2) кислоты.

Номенклатура. По номенклатуре ИЮПАК названия кислот образуют от названия углеводорода, добавляя окончание -овая кислота, например, СН 3 СООН - этановая кислота. Широко распространены тривиальные названия кислот: уксусная, масляная, олеиновая, винная, щавелевая и т.д.

Получение.

а) Окисление алкенов, алкинов, первичных спиртов и альдегидов (см. «Химические свойства» соответствующих классов соединений):

R-СН = СН-СН 3 + [О] → R-СООН + СН 3 -СООН

R-СН 2 -ОН + [О] → R-СН=О + [О] → R-СООН

спирт альдегид кислота

Окислители - КМnО 4 , К 2 Сr 2 О 7 в кислой среде.

б) Окисление алканов: R-CH 2 -CH 2 -R" + [O] → R-COOH + R"-COOH + H 2 O Окисление осуществляют в присутствии катализаторов - солей кобальта или марганца.

в) Окисление алкилбензолов (см. «Химические свойства ароматических углеводородов»). г) Гидролиз нитрилов, производных карбоновых кислот в кислой или щелочной среде: R-C≡N + 2H 2 O + HСl → R-COOH + NH 4 Сl

R-C≡N + H 2 O + NaOH → R-COONa + NH 3

X: -OR, -Наl, -OCOR, -NH 2.

д) Металлорганический синтез:

Строение. Атомы углерода и кислорода карбоксильной группы находятся в состоянии sр 2 -гибридизации. σ- связь С-О образована перекрыванием sр 2 -sр 2 -гибридизованных орбиталей, σ- связь О-Н - перекрыванием sр 2 - s- орбиталей, π- связь С-О - перекрыванием негибридизованных р-р-орбиталей. Карбоксильная группа представляет собой плоскую р,π- сопряженную систему:

В результате сопряжения связь С-О становится короче по сравнению с аналогичной связью в спиртах, связь С=О - длиннее по сравнению с аналогичной связью в карбонильных соединениях, т.е. происходит заметное выравнивание длин связей в карбоксильной группе.

Межмолекулярное взаимодействие карбоновых кислот характеризуется сильными водородными связями, в результате чего образуются линейные ассоциаты и циклические димеры:

и

Водородная связь в карбоновых кислотах более прочная, чем в спиртах. Это обусловливает более высокие растворимость в воде, температуры кипения и плавления карбоновых кислот по сравнению со спиртами близкой молекулярной массы.

Взаимное влияние карбонильной и гидроксильной групп в составе карбоксильной группы обусловливает химические свойства, отличные от свойств карбонильных соединений и спиртов. Реакции с участием карбоксильной группы протекают по следующим основным направлениям: кислотно-основное взаимодействие, нуклеофильное замещение, декарбоксилирование.

Химические свойства карбоновых кислот рассмотрены далее на примере предельных монокарбоновых кислот.

Монокарбоновые кислоты (предельные, непредельные, ароматические кислоты).

Общая молекулярная формула предельных монокарбоновых кислот

Сn Н 2 nО 2 .

Таблица 4.

Гомологический ряд предельных монокарбоновых кислот

Т пл., С

Т кип. , С

Ацильный остаток - кислотный остаток

Муравьиная

(метановая)

формил - формиаты

Уксусная

(этановая)

ацетил - ацетаты

пропионовая

(пропановая)

CH 3- CH 2- COOH

пропионил - пропионаты

масляная

(бутановая)

CH 3- (CH 2) 2- COOH

бутирил - бутираты

валериановая

CH 3- (CH 2) 3- COOH

валерил - валераты

капроновая

CH 3- (CH 2) 4- COOH

капроноил

лауриновая

CH 3- (CH 2) 10- COOH

пальмитиновая

CH 3- (CH 2) 14- COOH

пальмитил-пальмитаты

стеариновая

CH 3- (CH 2) 16- COOH

стеарил - стеараты

В таблице приведены названия ацильных (R-СО-) и кислотных (R-СОО-) остатков некоторых монокарбоновых кислот предельного ряда.

Изомерия. Для предельных монокарбоновых кислот характерна структурная изомерия (различное строение углеродной цепи и различное расположение функциональной группы). Например, молекулярной формуле С 4 Н 8 О 2 соответствуют изомеры: СН 3 -СН 2 -СН 2 -СООН (бутановая кислота), (СН 3) 2 СН-СООН (2-метилпропановая или изобутановая кислота), СН 3 -СН 2 -СООСН 3 (метилпропаноат) (подробно см. раздел «Изомерия»).

Физические свойства. Кислоты с числом атомов углерода от 1 до 9 - бесцветные жидкости с неприятными запахами, с С≥ 10 - твердые вещества без запаха. Кислоты с числом атомов углерода от 1 до 3 хорошо растворяются в воде, с С≥ 4 - не растворимые в воде вещества, но хорошо растворимые в органических растворителях (спирт, эфир).

Химические свойства.

а) кислотные свойства

Водные растворы карбоновых кислот имеют кислую реакцию:

кислота карбоксилат-ион

Делокализация электронной плотности (р,π- сопряжение) в карбоксилат-ионе приводит к полному выравниванию порядков длин обеих связей С-О, увеличению его стабильности по сравнению с алкоголят- и фенолят-ионами. Поэтому карбоновые кислоты по силе превосходят спирты и фенолы, угольную кислоту, но уступают таким минеральным кислотам, как соляная, серная, азотная и фосфорная.

На силу карбоновых кислот существенное влияние оказывает природа радикала при карбоксильной группе: электронодонорные группы дестабилизируют карбоксилат-ион и, следовательно, уменьшают кислотные свойства, электроноакцепторные - стабилизируют карбоксилат-ион и увеличивают кислотные свойства.

В гомологическом ряду предельных монокарбоновых кислот с увеличением числа атомов углерода в составе кислоты кислотные свойства понижаются. Самая сильная кислота - муравьиная.

Карбоновые кислоты образуют соли при взаимодействии с активными металлами, оксидами металлов, основаниями, солями. Например, СН 3 -СООН + Nа 2 СО 3 → СН 3 -СООNа + СО 2 + Н 2 О

Соли низших карбоновых кислот хорошо растворимы в воде, высших - растворимы только натриевые и калиевые соли. Соли карбоновых кислот и щелочных металлов подвергаются гидролизу и их водные растворы имеют щелочную среду:

R-COO - Na + + HOH ↔ R-COOH + NaOH

Соли карбоновых кислот используют для получения производных карбоновых кислот, углеводородов, поверхностно-активных веществ.

Огромное значение в народном хозяйстве имеют натриевые и калиевые соли высших жирных кислот - мыла. Обычное твердое мыло представляет собой смесь натриевых солей различных кислот, главным образом пальмитиновой и стеариновой: С 15 Н 31 СООNa (пальмитат натрия) и С 17 Н 35 СООNa (стеарат натрия). Калиевые мыла - жидкие.

Мыло в глубокой древности получали из жира и буковой золы. В эпоху Возраждения вернулись к забытому ремеслу, рецепты держали в секрете. Сейчас получают мыла главным образом исходя из растительных и животных жиров.

Мыла являются поверхностно-активными веществами (ПАВ), химическим гибридом, состоящим из гидрофильного (карбоксилат-ион) и гидрофобного (страх, боязнь) конца (углеводородный радикал). Мыла резко снижают поверхностное натяжение воды, вызывают смачивание частиц или поверхностей, обладающих водоотталкивающим действием, способствуют образованию устойчивой пены.

В жесткой воде моющая способность мыла резко снижается, растворимые натриевые или калиевые соли высших жирных кислот вступают в обменную реакцию с имеющимися в жесткой воде растворимыми кислыми карбонатами щелочноземельных металлов, главным образом кальция:

2C 15 H 31 COONa + Ca(HCO 3) 2 → (C 15 H 31 COO) 2 Ca + 2NaHCO 3

Получающиеся при этом нерастворимые кальциевые соли высших жирных кислот образуют осадки.

Огромные количества мыла применяют в быту для гигиенических целей, для стирки и т.д., а также в различных отраслях промышленности, особенно для мытья шерсти, тканей и других текстильных материалов.

б) нуклеофильное замещение - S N (образование функциональных производных карбоновых кислот)

Основной тип реакций карбоновых кислот - нуклеофильное замещение у sр 2 -гибридизованного атома углерода карбоксильной группы, в результате которого гидроксильная группа замещается на другой нуклеофил. Вследствие р,π-с опряжения в карбоксильной группе подвижность гидроксильной группы по сравнению со спиртами значительно меньше, поэтому реакции нуклеофильного замещения проводят в присутствии катализатора - минеральной кислоты или щелочи.

Реакции сопровождаются образованием функциональных производных карбоновых кислот - галогенангидридов (1), ангидридов (2), сложных эфиров (3), амидов (4):

в) д екарбоксилирование

Декарбоксилирование - это удаление карбоксильной группы в виде СО 2 . В зависимости от условий реакции образуются соединения разных классов. Электроноакцепторые группы в составе радикала при карбоксильной группе облегчают протекание реакций этого типа.

Примеры реакций декарбоксилирования:

1) термический распад натриевых или калиевых солей в присутствии натронной извести

R-COONa + NaOH → R-Н + Na 2 СО 3

2) термический распад кальциевых или бариевых солей

R-COO-Са-ООС-R → R-СО-R + СаСО 3

3) электролиз натриевых или калиевых солей (синтез Кольбе)

2R-COONa + 2НОН → R-R + 2NaОН +2CO 2 + Н 2

г) замещение атомов водорода у α-углеродного атома

Атом галогена в α -галогензамещенных кислотах легко замещается под действием нуклеофильных реагентов. Поэтому α-галогензамещенные кислоты являются исходными веществами в синтезе широкого круга замещенных кислот, в том числе α-амино- и α-гидроксикислот:

пропионовая к-та α-хлорпропионовая к-та

Врезультате влияния атома галогена на карбоксильную группу галогенпроизводные кислоты (например, трихлоруксусная кислота) являются во много раз более сильными кислотами и приближаются в этом отношении к сильным неорганическим кислотам.

д) специфические свойства муравьиной кислоты

В составе муравьиной кислоты наряду с карбоксильной группой можно выделить карбонильную группу, поэтому муравьиная кислота проявляет свойства как карбоновых кислот, так и альдегидов:

1. окисление

НСООН + [O]→ СО 2 + Н 2 О

окислители: Сu(ОН) 2 , ОН (реакция «серебряного зеркала»)

2. дегидратация

НСООН + Н 2 SО 4 (конц.) →СО + Н 2 О

Нахождение в природе и применение кислот:

а) муравьиная кислота - бесцветная жидкость с острым запахом, смешивается с водой. Впервые выделена в ХVII веке из красных муравьев перегонкой с водяным паром. В природе свободная муравьиная кислота встречается в выделениях муравьев, в соке крапивы, в поте животных. В промышленности муравьиную кислоту получают, пропуская оксид углерода через нагретую щелочь:

NaOH + CO → H-COONa

H-COONa + H 2 SO 4 → H-COOH + NaHSO 4

Применяют муравьиную кислоту при крашении тканей, в качестве восстановителя, в различных органических синтезах.

б) уксусная кислота

Безводная уксусная кислота (ледяная уксусная кислота) - бесцветная жидкость с характерным острым запахом и кислым вкусом, замерзает при температуре +16 0 С, образуя кристаллическую массу, напоминающую лед. 70-80 % водный раствор кислоты называется уксусной эссенцией.

Она широко распространена в природе, содержится в выделениях животных, в растительных организмах, образуется в результате процессов брожения и гниения в кислом молоке, в сыре, при скисании вина, прогаркании масла и т.п. Используют в пищевой промышленности в качестве вкусовой приправы и консерванта, широко - в производстве искусственных волокон, растворителей, в получении лекарственных препаратов.

в) масляная кислота - бесцветная жидкость, растворы кислоты имеют неприятный запах старого сливочного масла и пота. Встречается в природе в виде сложных эфиров, эфиры глицерина и масляной кислоты входят в состав жиров и сливочного масла. Используют в органическом синтезе для получения ароматных сложных эфиров.

в) изовалериановая кислота - бесцветная жидкость с острым запахом, в разбавленных растворах имеет запах валерианы. Встречается в корнях валерианы, используют для получения лекарственных веществ и эссенций.

г) пальмитиновая, стеариновая кислоты

Это твердые вещества со слабыми запахами, плохо растворимые в воде. Широко распространены в природе, в виде сложных эфиров с глицерином входят в состав жиров. Используют для получения свечей, поверхностно-активных веществ.

Непредельные кислоты

Непредельные кислоты - карбоновые кислоты, содержащие в углеводородном радикале кратные связи (двойные или тройные). Наибольшее значение имеют непредельные моно- и дикарбоновые кислоты с двойными связями.

Номенклатура и изомерия.

Названия для непредельных кислот составляют по номенклатуре ИЮПАК, однако чаще всего применяют тривиальные названия:

СH 2 =CH-CОOH - 2-пропеновая или акриловая кислота

CH 3 -CH=CH-CОOH - 2-бутеновая или кротоновая кислота

СH 2 =C(СH 3)-CОOH - 2-метилпропеновая или метакриловая кислота

CH 2 =CH-CH 2 -CОOH - 3-бутеновая или винилуксусная кислота

CH 3 -(СН 2) 7 -CH=CH-(СН 2) 7 -CОOH - олеиновая кислота

СН 3 -(СН 2) 4 -CH=CH-СН 2 -CH=CH-(СН 2) 7 -CОOH - линолевая кислота

СН 3 -СН 2 -CH=CH-СН 2 -CH=CH-СН 2 -CH=CH-(СН 2) 7 -CОOH- линоленовая кислота.

Структурная изомерия непредельных кислот обусловлена изомерией углеродного скелета (например,кротоновая и метакриловая кислоты) и изомерией положения двойной связи (например, кротоновая и винилуксусная кислоты).

Непредельным кислотам с двойной связью, так же как и этиленовым углеводородам, свойственна и геометрическая или цис-транс изомерия.

Химические свойства. По химическим свойствам непредельные кислоты аналогичны моно- и дикарбоновым кислотам, но имеют ряд отличительных особенностей, обусловленных наличием в молекуле кратных связей и карбоксильной группы и их взаимным влиянием.

Непредельные кислоты, особенно содержащие кратную связь в α-положении к карбоксильной группе, являются более сильными кислотами, чем предельные. Так, непредельная акриловая кислота (К=5,6*10 -5) в четыре раза сильнее пропионовой кислоты (К=1,34*10 -5).

Непредельные кислоты вступают во все реакции по месту кратных связей, свойственные непредельным углеводородам.

а) Э лектрофильной присоединение:

1. галогенирование

β CH 2 = α CH-COOH + Br 2 → СH 2 Br- CHBr-COOH

пропеновая кислота α,β-дибромпропионовая к-та

Это качественная реакция на непредельные кислоты, по количеству израсходованного галогена (брома или иода) можно определить количество кратных связей.

2. гидрогалогенирование

α CH 2 δ+ = β CH δ- →COOH+ Н δ+ - Br δ- → СH 2 Br-CH 2 -COOH

У α,β-непредельных кислот реакция присоединения протекает против правила Марковникова.

б) Г идрирование

В присутствии катализаторов (Pt, Ni) водород присоединяется по месту двойной связи и непредельные кислоты переходят в предельные:

CH 2 =CH-COOH + Н 2 → CH 3 -CH 2 -COOH

акриловая кислота пропионовая кислота

Процесс гидрирования (гидрогенизация) имеет большое практическое значение, особенно для превращения высших непредельных жирных кислот в предельные; на этом основано превращение жидких масел в твердые жиры.

в) О кисление

В условиях реакции Вагнера (см. «Алкены») непредельные кислоты окисляются до дигидроксикислот, при энергичном окислении - до карбоновых кислот.

а) акриловая CH 2 =CH-COOH и метакриловая CH 2 =C(СH 3 )-COOH кислоты - бесцветные жидкости с острыми запахами. Кислоты и их сложные (метиловые) эфиры легко полимеризуются, на этом основано их использование в промышленности полимерных материалов (органического стекла).

Нитрил акриловой кислоты - акрилонитрил CH 2 =CH-C≡N применяют в производстве синтетического каучука и высокомолекулярной смолы полиакрилонитрила (ПАН), из которой получают синтетическое волокно нитрон (или орлон) - один из видов искусственной шерсти.

б) высшие непредельные кислоты

-цис -олеиновая кислота в виде эфира с глицерином входит в состав почти всех жиров животного и растительного происхождения, особенно высоко содержание олеиновой кислоты в оливковом («прованском») масле - до 80 % , калиевые и натриевые соли олеиновой кислоты являются мылами;

-цис, цис -линолевая и цис, цис- линоленовая кислоты в виде эфира с глицерином входят в состав многих растительных масел, например в соевое, конопляное, льняное масло. Линолевая и линоленовая кислоты называются незаменимыми кислотами, поскольку не синтезируются в организме человека. Именно эти кислоты обладают наибольшей биологической активностью: они участвуют в переносе и обмене холестерина, синтезе простагландинов и других жизненно важных веществ, поддерживают структуру клеточных мембран, необходимы для работы зрительного аппарата и нервной системы, влияют на иммунитет. Отсутствие в пище этих кислот тормозит рост животных, угнетает их репродуктивную функцию, вызывает различные заболевания.

Сложные эфиры кислот используют в производстве лаков и красок (высыхающие масла).

Ароматические монокарбоновые кислоты

Кислоты являются бесцветными кристаллическими веществами, некоторые из них имеют слабый приятный запах. Для них характерна сопряженная (π, π) система:

Важнейшие представители:

бензойная кислота

фенилуксусная кислота

транс -коричная кислота

Ароматические кислоты являются более сильными кислотами, чем предельные кислоты (кроме муравьиной кислоты). Для кислот этого типа характерны все реакции насыщенных карбоновых кислот в карбоксильной группе и реакции электрофильного замещения в бензольном кольце (карбоксильная группа - заместитель 2 рода, м -ориентант).

Нахождение в природе и применение кислот:

Ароматические кислоты используют для получения красителей, душистых и лекарственных веществ; сложные эфиры кислот содержатся в эфирных маслах, смолах и бальзамах. Бензойная кислота и ее натриевая соль содержатся в плодах калины, рябины, бруснике, клюкве, придают им горьковатый вкус, обладают бактерицидными свойствами, широко используются в консервировании пищевых продуктов.

Амид о-сульфобензойной кислоты называют сахарином, он слаще сахара в 400 раз.

Производные карбоновых кислот.

Общая формула производных карбоновых кислот:

Где Х: - Hal, -ООС-R, -OR, -NH 2.

Для производных карбоновых кислот наиболее характерны реакции нуклеофильного замещения (S N). Поскольку продукты этих реакций содержат ацильную группу R-С=О, реакции называют ацилированием, а карбоновые кислоты и их производные - ацилирующими реагентами.

В общем виде процесс ацилирования может быть представлен следующей схемой:

По ацилирующей способности производные карбоновых кислот располагаются в следующий ряд:

соли < амиды < сложные эфиры <ангидриды <галогенангидриды

В этом ряду предыдущие члены могут быть получены из последующих ацилированием соответствующего нуклеофила (например, спирта, аммиака и т.д.). Все функциональные производные могут быть получены непосредственно из кислот и превращаются в них при гидролизе.

Амиды, в отличии от других производных карбоновых кислот, образуют межмолекулярные водородные связи и являются твердыми веществами (амид муравьиной кислоты HCONH 2 - жидкость).

Сложные эфиры

Методы получения. Основной способ получения сложных эфиров - реакции нуклеофильного замещения:

а) реакция этерификации R-СООН + R О -Н ↔ R-СО-ОR + Н 2 О

Реакцию проводят в присутствии катализатора - минеральной кислоты. Реакции этерификации обратимы. Для смешения равновесия в сторону образования сложного эфира используют избыток одного из реагентов или удаление продуктов из сферы реакции.

б) ацилирование спиртов галогенангидридами и ангидридами

в) из солей карбоновых кислот и алкилгалогенидов

R-COONa + RCl → RCOOR + NaCl Номенклатура. По номенклатуре ИЮПАК название сложных эфиров составляют следующим образом:

СН 3 -СН 2 -СН 2 О-ОСН 3

углеводород радикал

радикал+углеводород+оат - метилбутаноат.

Если указывают тривиальные названия ацильных остатков, то название данного эфира - метилбутират. Эфиры можно называть по радикально-функциональной номенклатуре - метиловый эфир масляной кислоты .

Физические свойства. Сложные эфиры представляют собой бесцветные жидкости, нерастворимые в воде и обладающие по сравнению с исходными кислотами и спиртами низкими температурами кипения и плавления, что обусловлено отсутствием в эфирах межмолекулярных водородных связей. Многие сложные эфиры обладают приятным запахом, часто запахом ягод или фруктов (фруктовые эссенции).

Химические свойства . Для сложных эфиров наиболее характерны реакции нуклеофильного замещения (S N), протекающие в присутствии кислотного или основного катализатора. Важнейшими S N -реакциями являются гидролиз, аммонолиз и переэтерификация.

Кислотный гидролиз сложных эфиров - реакция обратимая, щелочной гидролиз протекает необратимо.

RCOOR + Н 2 О(Н +) ↔ RCOOН + ROH

RCOOR + NaOH → RCOO - Na + + ROH

Жиры

Жиры (триглицериды) - сложные эфиры, образованные глицерином и высшими предельными и непредельными кислотами.

Из жиров выделено несколько десятков разнообразных предельных и непредельных кислот; почти все они содержат неразветвленные цепи углеродных атомов, число которых, как правило, четное и колеблется от 4 до 26. Однако именно высшие кислоты, преимущественно с 16 и 18 углеродными атомами - главная составная часть всех жиров. Из предельных высших жирных кислот наиболее важны пальмитиновая С 15 Н 31 СООН и стеариновая С 17 Н 35 СООН, из непредельных - олеиновая С 17 Н 33 СООН (с одной двойной связью), линолевая С 17 Н 31 СООН (с двумя двойными связями) и линоленовая С 17 Н 29 СООН (с тремя двойными связями). Непредельные кислоты, содержащие в радикале фрагмент (-СН 2 -СН=СН-), называются незаменимыми.

Простые триглицериды содержат остатки одинаковых, смешанные - разных жирных кислот. Названия составляют на основе названий ацильных остатков, входящих в их состав жирных кислот:

трипальмитин диолеостеарин

Значение жиров исключительно велико. Прежде всего они - важнейшая составная часть пищи человека и животных наряду с углеводами и белковыми веществами. Наибольшей пищевой ценностью обладают растительные масла, которые наряду с незаменимыми жирными кислотами содержат необходимые для организма фосфолипиды, витамины, полезные фитостерины (предшественники витамина D). Суточная потребность взрослого человека в жирах 80-100г.

Жиры практически не растворимы в воде, но хорошо растворимы в спирте, эфире и других органических растворителях. Температура плавления жиров зависит от того, какие кислоты входят в их состав. Жиры, содержащие преимущественно остатки предельных кислот (животные жиры - говяжье, баранье или свиное сало), имеют наиболее высокие Т пл. и представляют собой твердые или мазеобразные вещества. Жиры, содержащие преимущественно остатки непредельных кислот (растительные масла - подсолнечное, оливковое, льняное и т.д.), жидкости с более низкими температурами плавления.

Химические свойства триглицеридов определяются наличием сложноэфирной связи и ненасыщенностью:

а) гидрогенизация (гидрирование) жиров

Присоединение водорода по месту двойных связей в остатках кислот ведут в присутствии катализатора - мелкораздробленного металлического никеля при 160-240 0 С и давлении до 3 атм. При этом жидкие жиры и масла превращаются в твердые насыщенные жиры - саломас, который широко применяют в производстве маргарина, мыла, глицерина.

б) гидролиз жиров

При щелочном гидролизе (омылении) жиров образуются соли жирных кислот (мыла) и глицерин, при кислотном - жирные кислоты и глицерин.

в) присоединение и окисление

Трилглицериды, содержащие остатки ненасыщенных жирных кислот, вступают в реакции присоединения по двойной связи (бромирование, иодирование) и окисления перманганатом калия. Обе реакции позволяют определить степень ненасыщенности жиров.

Все жиры являются горючими веществами. При их горении выделяется большое количество тепла: 1г жира при горении дает 9300кал.

Знаетели вы, что

В 1906году русским ученым С.А. Фокиным разработан, а в 1909г. им же осуществлен в промышленном масштабе метод гидрогенизации (отверждение) жиров.

Маргарин (с греч. - «жемчуг») получен в 1869 году. Различные его сорта получают, смешивая саломас с молоком, а в некоторых случаях - с яичным желтком. Получается продукт, по внешнему виду напоминающий сливочное масло, приятный запах маргарина достигается введением в его состав специальных ароматизаторов – сложных композиций различных веществ, непременной составной частью которых является диацетил (бутандион) - жидкость желтого цвета, содержится в коровьем масле.

Однако встречаются и животные жиры, содержащие значительное количество непредельных кислот и представляющие собой жидкие вещества (ворвань, тресковый жир или рыбий жир).

Растительные жиры- масла добывают из семян и мякоти плодов различных растений. Они отличаются высоким содержанием олеиновой и других непредельных кислот и содержат лишь незначительное количество стеариновой и пальмитиновой кислот (подсолнечное, оливковое, хлопковое, льняное и др. масла). Лишь в некоторых растительных жирах преобладают предельные кислоты, и они являются твердыми веществами (кокосовое масло, масло какао и др.).

Сложные эфиры фруктовых эссенций обладают приятным запахом фруктов, цветов, например изоамилацетат - запахом груш, амилформиат - вишен, этилформиат - рома, изоамилбутират - ананасов и т.д. Их применяют в кондитерском производстве, при изготовлении безалкогольных напитков, в парфюмерии.

Из полиметилметакрилата готовят исключительно ценный синтетический материал - органическое стекло (плексиглас). Последнее превосходит силикатное стекло по прозрачности и по способности пропускать УФ-лучи. Его используют в машино- и приборостроении, при изготовлении различных бытовых и санитарных предметов, посуды, украшений, часовых стекол. Благодаря физиологической индифферентности полиметилметакрилат нашел применение для изготовления зубных протезов и т.п.

Винилацетат - эфир винилового спирта и уксусной кислоты. Его получают, например, при пропускании смеси паров уксусной кислоты и ацетилена над ацетатами кадмия и цинка при 180-220 о С:

СН 3 -СООН + СН≡СН → СН 3 -СО-О-СН=СН 2

Винилацетат – бесцветная жидкость, легко полимеризуется, образуя синтетический полимер - поливинилацетат (ПВА), применяется для изготовления лаков, клеев, искусственной кожи.

Дикарбоновые кислоты

Дикарбоновые кислоты содержат две карбоксильные группы. Наиболее известными являются кислоты линейного строения, содержащие от 2 до 6 атомов углерода:

НООС-СООН - этандиовая (номенклатура ИЮПАК) или щавелевая кислота (тривиальная номенклатура)

НООС-СН 2 -СООН - пропандиовая или малоновая кислота

НООС-СН 2 -СН 2 -СООН - бутандиовая или янтарная кислота

НООС-СН 2 -СН 2 -СН 2 -СООН - пентандиовая или глутаровая кислота

НООС-СН 2 -СН 2 -СН 2 -СООН - адипиноавя кислота

Физические свойства. Двухосновные кислоты - кристаллические вещества с высокими температурами плавления, причем у кислот с четным числом атомов углерода она выше; низшие кислоты растворимы в воде.

Химические свойства . По химическим свойствам двухосновные кислоты аналогичны монокарбоновым кислотам, но имеют ряд отличительных особенностей, обусловленных наличием в молекулах двух карбоксильных групп и их взаимным влиянием.

Дикарбоновые кислоты более сильные кислоты, чем монокарбоновые кислоты с тем же числом атомов углерода: Кион. щавелевой кислоты (Н 2 С 2 О 4) - 5,9 10 -2 , 6,4 10 -5 , уксусной кислоты - 1,76 10 -5 . По мере увеличения расстояния между карбоксильными группами кислотные свойства дикарбоновых кислот уменьшаются. Дикарбоновые кислоты могут образовывать два ряда солей - кислые, например НООС-СООNa и средние - NaООС-СООNa.

Дикарбоновые кислоты имеют ряд специфических свойств, которые определяются наличием в молекуле двух карбоксильных групп. Например, отношение дикарбоновых кислот к нагреванию.

Превращения дикарбоновых кислот при нагревании зависят от числа атомов углерода в их составе и определяются возможностью образования термодинамически стабильных пяти- и шестичленных циклов.

При нагревании щавелевой и малоновой кислот происходит декарбоксилирование с образованием монокарбоновых кислот:

НООС-СН 2 -СООН → СН 3 -СООН + СО 2

Янтарная, глутаровая кислоты при нагревании легко отщепляют воду с образованием пяти- и шестичленных циклических ангидридов:

Адипиновая кислота при нагревании декарбоксилирует с образованием циклического кетона - циклопентанона:

Дикарбоновые кислоты взаимодействуют с диаминами и диолами с образованием соответственно полиамидов и полиэфиров, которые используются в производстве синтетических волокон.

Наряду с насыщенными дикарбоновыми кислотами известны непредельные, ароматические дикарбоновые кислоты.

Нахождение в природе и применение кислот:

Щавелевая кислота широко распространена в растительном мире. В виде солей содержится в листьях щавеля, ревеня, кислицы. В организме человека образует труднорастворимые соли (оксалаты), например оксалат кальция, которые отлагаются в виде камней в почках и мочевом пузыре. Применяют как отбеливающее средство: удаление ржавчины, красок, лака, чернил; в органическом синтезе.

Малоновая кислота (сложные эфиры и соли - малоноаты) содержится в некоторых растениях, например сахарной свекле. Широко используется в органическом синтезе для получения карбоновых кислот.

Янтарная кислота (соли и сложные эфиры называются сукцинатами) участвует в обменных процессах, протекающих в организме. Является промежуточным соединением в цикле трикарбоновых кислот. В 1556 году немецким алхимиком Агриколой впервые выделена из продуктов сухой перегонки янтаря. Кислота и ее ангидрид широко используются в органическом синтезе.

Фумаровая кислота (НООС-СН=СН-СООН - транс- бутендиовая кислота) , в отличие от цис- малеиновой, широко распространена в природе, содержится во многих растениях, много - в грибах, участвует в процессе обмена веществ, в частности в цикле трикарбоновых кислот.

Малеиновая кислота(цис- бутендиовая кислоты) в природе не встречается. Кислота и ее ангидрид широко используются в органическом синтезе.

Орто -фталевая кислота, широкое применение имеют производные кислоты - фталевый ангидрид, сложные эфиры - фталаты (репелленты).

Терефталевая кислота- крупнотоннажный промышленный продукт, применяют для получения целого ряда полимеров - например, волокно лавсан, полиэтилентерефталат (ПЭТФ), из которого изготавливают пластиковые посуду, бутыли и т.д.

Карбонильные соединения. Строение ихимические свойства карбоновых кислот. Липиды.

Карбоновые кислоты. Строение карбоксильной группы. Номенклатура.

Неспелые фрукты, щавель, барбарис, клюква, лимон. Что общего между ними. Даже дошкольник, не задумываясь, ответит: они кислые. А вот обусловлен кислый вкус плодов и листьев многих растений различными карбоновыми кислотами, в состав которых входит одна или несколько карбоксильных групп - СООН.

Название кислот "карбоновые" происходит от латинского названия угольной кислоты acidum carbonicum, которая была первой изученной в истории химии углеродсодержащей кислотой. Их часто называют жирными кислотами, так как высшие гомологи впервые были получены из природных жиров.

Карбоновые кислоты можно рассматривать как производные углеводородов, содержащие в молекуле одну или несколько функциональных карбоксильных групп:

Термин "карбоксильная" является составным, образовавшимся в соответствии с названиями двух групп: и гидроксил -ОН, входящих в состав карбоксильной группы.

Классификация карбоновых кислот.

Карбоновые кислоты в зависимости от природы радикала делятся на

предельные,

непредельные,

ациклические,

циклические.

По числу карбоксильных групп различают

одноосновные (с одной группой -СООН)

многоосновные (содержат две и более групп -СООН).

Алкановые кислоты - производные предельных углеводородов, содержащие одну функциональную карбоксильную группу. Их общая формула R - COOH, где R - радикал алкана. Гомологический ряд простейших низкомолекулярных кислот:

Изомерия, номенклатура .

Изомерия предельных кислот, так же как и предельных углеводородов, определяется изомерией радикала. Простейшие три кислоты с одним, двумя и тремя атомами углерода в молекуле изомеров не имеют. Изомерия кислот начинается с четвертого члена гомологического ряда. Так, масляная кислота C 3 H 7 - COOH имеет два изомера, валериановая кислота C 4 H 9 - COOH - четыре изомера.

Наиболее распространенными являются тривиальные названия кислот. Многие из них связаны с наименованием продуктов, из которых они первоначально были выделены или в которых были обнаружены. Например, муравьиную кислоту получили из муравьев, уксусную - из уксуса, масляную - из прогоршего масла.

По номенклатуре ИЮПАК к названию предельного углеводорода, соответствующего главной углеродной цепи, включая углерод карбоксила добавляется окончание -овая кислота . Так, например, муравьиная кислота - метановая кислота, уксусная - этановая, пропионовая - пропановая и т. д. Нумерацию атомов углерода главной цепи начинают от карбоксильной группы.

Остаток молекулы карбоной кислоты, образованный отнятием гидроксильной группы от карбоксила, имеющей строение, называется кислотным остатком или ацилом (от лат. acidum - кислота). Ацил муравьиной кислоты (лат. acidum formicum) называется формил , уксусной (acidum aceticum) - ацетил .

Физические и химические свойства .

Физические свойства.

Первые три кислоты гомологического ряда (муравьиная, уксусная, пропионовая) - жидкости, хорошо растворимые в воде. Следующие представители - маслянистые жидкости, слабо растворимые в воде. Кислоты, начиная с каприновой С 9 Н 19 СООН, - твердые вещества, нерастворимые в воде, но растворимые в спирте, эфире.

Все жидкие кислоты отличаются своеобразным запахами.

Высокомолекулярные твердые кислоты запаха не имеют. С увеличением молекулярной массы кислот повышается их температура кипения и уменьшается плотность.

Химические свойства.

Диссоциация кислот:

Степень диссоциации карбоновых кислот различна. Самой сильной кислотой является муравьиная, в которой карбоксил не связан с радикалом. Степень диссоциации органических кислот по сравнению с неорганическими значительно меньшая. Поэтому они являются слабыми кислотами. Органические кислоты, так же как и неорганические, дают характерные реакции на индикаторы.


Образование солей .

При взаимодействии с активными металлами (а), оксидами металлов (б), основаниями (в) водород карбоксильной группы кислоты замещается на металл и образуются соли:


Образование галогенагидридов кислот .

При замещении гидроксила карбоксильной группы кислот галогеном образуются производные кислот - галогенагидриды:

Образование ангидридов кислот.

При отнятии воды от двух молекул кислоты в присутствии катализатора образуются ангидриды кислот:

Образование сложных эфиров .

Так называемая реакция этерификации:

Образование амидов:

Реакции хлорангидридов карбоновых кислот с аммиаком

СН 3 -СО-Сl + CН 3 → СН 3 -СО-CН 2 + HCl.

Галогены способны замещать водород радикала кислоты, образуя галогенокислоты . Это замещение происходит постепенно:


Галогенозамещенные кислоты - более сильные кислоты, чем исходные. Например, трихлоруксусная кислота примерно в 10 тыс. раз сильнее уксусной. Они используются для получения оксикислот, аминокислот и других соединений.

Дикарбоновые кислоты.

Дикарбоновые кислоты - это кислоты в которых есть два или три карбоксильные группы.

Например.

НООС - СООН- этандиовая кислота (щавлевая кислота)

НООС - СН 2 - СООН- пропандиовая кислота (малоновая кислота)

НООС - СН 2 - СН 2 - СООН-бутандиовая кислота (янтарная кислота)

Для дикарбоновых кислот свойственны реакции декарбоксилирования (отщепления СО 2) при нагревании:

t °

НООС-СН 2 -СООН→СН 3 СООН + CO 2

Физиологически важным конечным продуктом преобразований в организме белков и нуклеиновых кислот является мочевина.

Липиды. Классификация.

Липиды - являются сложными эфирами, образованными высшими одноосновными карбоновыми кислотами, главным образом пальмитиновой , стеариновой (насыщенные кислоты) и олеиновой (ненасыщенная кислота) и трехатомным спиртом - глицерином . Общее название таких соединений - триглицериды

Природные жиры представляют собой не индивидуальное вещество, а смесь различных триглицеридов.

Классификация липидов.

Липиды делят на:

Простые:

а) ацилглицериды

б) воски

Сложные:

а) фосфолипиды

б) гликолипиды

Высшие жирные кислоты.

В состав липидов организма человека и животных входят жирные кислоты с парным количеством атомов углерода от 12 до 24.

Высшие жирные кислоты бывают насыщенные (предельные)

пальмитиновая кислота- С 15 Н 31 СООН


стеариновая- С 17 Н 35 СООН

Ненасыщенные (непредельные)

олеиновая- С 17 Н 33 СООН

линолевая-С 17 Н 31 СООН

линоленовая-С 17 Н 29 СООН

арахидоновая-С 19 Н 31 СООН

Простые липиды - это липиды которые при гидролизе образуют спирты и жирные кислоты.

Ацилглицериды – это липиды которые есть сложными эфирами глицерина и высших жирных кислот.

Образование одного из триглицеридов, например триглицерида стеариновой кислоты, можно изобразить уравнением


глицерин стеариновая кислота стеариновый триглицерид

В состав молекул триглицеридов могут входить разнородные кислотные радикалы, что особенно характерно для природных жиров, однако остаток глицерина является составной частью всех жиров:

Все жиры легче воды и в ней нерастворимы. Они хорошо растворяются в бензине, эфире, тетрахлориде углерода, сероуглероде, дихлорэтане и других растворителях. Хорошо впитываются бумагой и кожей. Жиры содержатся во всех растениях и животных. Жидкие жиры обычно называются маслами . Твердые жиры (говяжий, бараний и др) состоят главным образом из триглицеридов предельных (твердых) кислот, жидкие (подсолнечное масло и др.) - из триглицеридов непредельных (жидких) кислот.

Жидкие жиры превращаются в твердые путем реакции гидрогенизации . Водород присоединяется по месту разрыва двойной связи в углеводородных радикалах молекул жиров:


Реакция протекает при нагревании под давлением и в присутствии катализатора - мелко раздробленного никеля. Продукт гидрогенизации - твердый жир (искусственное сало), называется саломасом идет на производство мыла, стеарина и глицерина. Маргарин - пищевой жир, состоит из смеси гидрогенизованных масел (подсолнечного, хлопкового и др.), животных жиров, молока и некоторых других веществ (соли, сахара, витаминов и др.).

Важное химическое свойство жиров, как и всех сложных эфиров, - способность подвергаться гидролизу (омылению). Гидролиз легко протекает при нагревании в присутствии катализаторов - кислот, щелочей, оксидов магния, кальция, цинка:


Реакция гидролиза жиров обратима. Однако при участии щелочей она доходит практически до конца - щелочи превращают образующиеся кислоты в соли и тем самым устраняют возможность взаимодействия кислот с глицерином (обратную реакцию).

Жиры - необходимая составная часть пищи. Они широко использу­ются в промышленности (получение глицерина, жирных кислот, мыла).

Мыла и моющие средства

Мыла - это соли высших карбоновых кислот. Обычные мыла состоят главным образом из смеси пальмитиновой, стеариновой и олеиновой кислот. Натриевые соли образуют твердые мыла , калиевые соли - жидкие мыла .

Мыла получаются при гидролизе жиров в присутствии щелочей:


триглицерид стеариновой Глицерин Стеарат натрия

Кислоты (тристеарин) (мыло)

Отсюда реакция, обратная этерификации получила названия реакции омыления ,

Омыление жиров может протекать и в присутствии серной кислоты (кислотное омыление). При этом получаются глицерин и высшие карбоновые кислоты. Последние действием щелочи или соды переводят в мыла.

Исходным сырьем для получения мыла служат растительные масла (подсолнечное, хлопковое и др.), животные жиры, а также гидроксид натрия или кальцинированная сода. Растительные масла предварительно подвергаются гидрогенизации, т. е. их превращают в твердые жиры. Применяются также заменители жиров - синтетические карбоновые жирные кислоты с большой молекулярной массой.

Производство мыла требует больших количеств сырья, поэтому поставлена задача получения мыла из непищевых продуктов. Необходимые для производства мыла карбоновые кислоты получают окислением парафина. Нейтрализацией кислот, содержащих от 10 до 16 углеродных атомов в молекуле, получают туалетное мыло, а из кислот, содержащих от 17 до 21 атома углерода, - хозяйственное мыло и мыло для технических целей. Как синтетическое мыло, так и мыло, получаемое из жиров, плохо моет в жесткой воде. Поэтому наряду с мылом из синтетических кислот производят моющие средства из других видов сырья, например из алкилсульфатов - солей сложных эфиров высших спиртов и серной кислоты.

Эти соли содержат в молекуле от 12 до 14 углеродных атомов и обла­дают очень хорошими моющими свойствами. Кальциевые и магниевые соли растворимы в воде, а потому такие мыла моют и в жесткой воде. Алкилсульфаты содержатся во многих стиральных порошках.

Синтетические моющие средства высвобождают сотни тысяч тонн пищевого сырья - растительных масел и жиров.

Сложные липиды.

Это липиды которые при гидролизе освобождают спирт и фосфорную кислоту, аминоспирты, углеводы..

Фосфолипиды - основой фосфолипидов является фосфатидная кислота.

Фосфолипиды образуют липидный матрикс биологических мембран.

Гетерофункциональные соединения.

К гетерофункциональным соединениям принадлежат гидрокси – и оксокислоты.

Гидроксикислоты

Гидроксикислоты характеризуются наличием в молекуле кроме карбоксильной еще гидроксильной группы О–Н, их общая формула R(OH) n (COOH). Первым представителем органических гидроксикислот будет оксиэтановая кислота (оксиуксусная, оксиметанкарбоновая, гликолевая кислота).

Наиболее важными из гидроксикислот, участвующих в процессах жизнедеятельности, являются:

молочная (2-окси-этанкарбоновая, 2-оксипропановая кислота, оксипропионовая кислота)

яблочная (2-окси-1,2-этандикарбоновая кислота, оксиянтарная кислота)

винная (1,2-диокси-1,2-этандикарбоновая кислота, диоксиянтарная кислота)

лимонная (2-окси-1,2,3-пропантрикарбоновая кислота)