Коммуникация между животными различных видов. Коммуникация у животных и насекомых Коммуникация у животных общая характеристика и особенности

Всем животным приходится добывать пищу, защищаться, охранять границы территории, искать брачных партнеров, заботиться о потомстве. Для нормальной жизни каждой особи необходима точная информация обо всем, что ее окружает. Получение этой информации происходит посредством систем и средств коммуникации. Животные принимают коммуникативные сигналы и другую информацию о внешнем мире с помощью физических и химических чувств.

У большинства таксономических групп животных присутствуют и одновременно функционируют все органы чувств, в зависимости от их анатомического строения и образа жизни различаются функциональные роли систем. Сенсорные системы хорошо дополняют друг друга и обеспечивают полную информацию живого организма о факторах внешней среды. В то же время, в случае полного или частичного выхода из строя одной или даже нескольких из них, оставшиеся системы усиливают и расширяют свои функции, чем компенсируют недостаток информации. Так, например, ослепшие и оглохшие животные оказываются способны ориентироваться в окружающей среде с помощью обоняния и осязания. Хорошо известно, что глухонемые люди легко научаются понимать речь собеседника по движению его губ, а слепые - читать при помощи пальцев.

В зависимости от степени развития у животных тех или иных органов чувств, при общении могут использоваться разные способы коммуникаций. Так, во взаимодействиях многих беспозвоночных, а также некоторых позвоночных, у которых отсутствуют глаза, доминирует тактильная коммуникация. У многих беспозвоночных имеются специализированные тактильные органы, например антенны насекомых, часто снабженные хеморецепторами. Благодаря этому их осязание тесно связано с химической чувствительностью. Из-за физических свойств водной среды, ее обитатели общаются между собой главным образом с помощью зрительных и звуковых сигналов. Достаточно разнообразны коммуникативные системы насекомых, особенно их химическая коммуникация. Самое большое значение они имеют для общественных насекомых, социальная организация которых может соперничать с организацией человеческого общества.



Рыбы используют по крайней мере три типа коммуникативных сигналов: звуковые, зрительные и химические, часто их комбинируя.

Хотя земноводные и пресмыкающиеся имеют все характерные для позвоночных органы чувств, формы их коммуникации сравнительно просты.

Коммуникации птиц достигают высокого уровня развития, за исключением хемокоммуникации, имеющейся буквально у единичных видов. Общаясь с особями своего, а также других видов, в том числе с млекопитающими и даже с человеком, птицы используют главным образом звуковые, а также зрительные сигналы. Благодаря хорошему развитию слухового и голосового аппарата, птицы имеют прекрасный слух и способны издавать множество разных звуков. Стайные птицы используют более разнообразные звуковые и зрительные сигналы, чем птицы одиночные. У них существуют сигналы, собирающие стаю, извещающие об опасности, сигналы "все спокойно" и даже призывы к трапезе. В общении наземных млекопитающих довольно много места занимает информация об эмоциональных состояниях - страхе, гневе, удовольствии, голоде и боли.

Однако этим далеко не исчерпывается содержание коммуникаций - даже у животных, не относящихся к приматам.

Кочующие группами животные посредством зрительных сигналов поддерживают цельность группы и предупреждают друг друга об опасности; медведи, в пределах своего участка, обдирают кору на стволах деревьев или трутся о них, информируя таким образом о размерах своего тела и половой принадлежности; скунсы и ряд других животных выделяют пахучие вещества для защиты или в качестве половых аттрактантов; самцы оленей устраивают ритуальные турниры для привлечения самок в период гона; волки выражают свое отношение агрессивным рычанием или дружелюбным помахиванием хвоста; тюлени на лежбищах общаются с помощью криков и особых движений; рассерженный медведь угрожающе кашляет.

Коммуникативные сигналы млекопитающих были выработаны для общения между особями одного вида, но нередко эти сигналы воспринимаются и особями других видов, оказавшимися неподалеку. В Африке один и тот же источник иногда используется для водопоя одновременно разными животными, например, гну, зеброй и водяным козлом. Если зебра с ее острым слухом и обонянием чует приближение льва или другого хищника, ее действия информируют об этом соседей по водопою, и они соответственно реагируют. В этом случае имеет место межвидовая коммуникация.

Человек использует для общения голос в неизмеримо большей степени, чем любой другой примат. Для большей экспрессивности слова сопровождаются жестами и мимикой. Остальные приматы используют в общении сигнальные позы и движения гораздо чаще, чем мы, а голос - гораздо реже. Эти компоненты коммуникативного поведения приматов не являются врожденными - животные обучаются различным способам общения по мере взросления.

Воспитание детенышей в дикой природе основано на подражании и выработке стереотипов; за ними ухаживают большую часть времени и наказывают, когда необходимо; они узнают о том, что съедобно, наблюдая за матерями, и учатся жестам и голосовому общению в основном методом проб и ошибок. Усвоение коммуникативных стереотипов поведения - процесс постепенный. Наиболее интересные особенности коммуникативного поведения приматов легче понять, если учесть обстоятельства, в которых используются разные типы сигналов - химические, тактильные, звуковые и зрительные.

6.3.1. ТАКТИЛЬНАЯ ЧУВСТВИТЕЛЬНОСТЬ. ОСЯЗАНИЕ

На поверхности тела животных находится огромное количество рецепторов, являющихся окончаниями чувствительных нервных волокон. По характеру чувствительности рецепторы разделяют на болевые, температурные (тепловые и холодовые) и осязательные (механорецепторы).

Осязание - это способность животных к восприятию внешних воздействий осуществляемая рецепторами кожи и опорно-двигательного аппарата.

Осязательное ощущение может быть разнообразным, так как возникает в результате комплексного восприятия различных свойств раздражителя, действующего на кожу и подкожные ткани. Посредством осязания определяется форма, величина, температура, консистенция раздражителя, положение и перемещение тела в пространстве и т.д. В основе осязания лежит раздражение специализированных рецепторов и преобразование в центральной нервной системе поступающих сигналов в соответствующий вид чувствительности (тактильную, температурную, болевую).

Но основными рецепторами, воспринимающими эти раздражения и отчасти положение тела в пространстве, у млекопитающих служат волосы, особенно вибриссы. Вибриссы реагируют не только на прикосновения к окружающим предметам, но и на колебания воздуха. У норников, имеющих широкую поверхность соприкосновения со стенками норы, вибриссы, кроме головы, разбросаны по всему туловищу. У лазающих форм, например, у белок, лемуров, они расположены также на брюшной поверхности и на частях конечностей, контактирующих с субстратом при передвижении по деревьям.

Тактильное чувство обусловлено раздражением механорецепторов (тельца Пачини и Мейснера, диски Меркеля и др.), расположенных в коже на некотором расстоянии друг от друга. Животные способны довольно точно определять место локализации раздражений: ползание насекомых по коже или их укусы вызывают резкую двигательную и оборонительную реакцию. Самая высокая концентрация рецепторов у большинства животных отмечается в области головы, соответственно участки кожи головы, слизистые оболочки ротовой полости губ, век и языка имеют наиболее высокую чувствительность к прикосновениям. В первые дни жизни детеныша млекопитающего главным осязательным органом является полость рта. Прикосновение к губам вызывает у него сосательные движения.

Непрерывное воздействие на механо- и терморецепторы приводит к понижению их чувствительности, т.е. они быстро адаптируются к этим факторам. Кожная чувствительность тесно связана и с внутренними органами (желудком, кишечником, почками и др.). Так достаточно нанести раздражение на кожу в области желудка, чтобы получить повышенную кислотность желудочного сока.

При раздражении болевых рецепторов возникшее возбуждение передается по чувствительным нервам в кору головного мозга. При этом поступающие импульсы идентифицируются как возникающая боль. Чувство боли имеет большое значение: боль сигнализирует о нарушениях в организме. Порог возбуждения болевых рецепторов видоспецифичен. Так, у собак он несколько ниже, чем, например, у человека. Раздражение болевых рецепторов вызывает рефлекторные изменения: усиленное выделение адреналина, повышение кровяного давления и другие явления. При действии некоторых веществ, например новокаина, болевые рецепторы выключаются. Этим пользуются для проведения местной анестезии при операциях.

Раздражение температурных рецепторов кожи является причиной возникновения ощущения тепла и холода. Можно выделить два вида терморецепторов: холодовые и тепловые. Температурные рецепторы распределены в различных участках кожи неравномерно. В ответ на раздражение температурных рецепторов, рефлекторно сужаются или расширяются просветы кровеносных сосудов, как следствие этого изменяется теплоотдача, соответственно меняется и поведение животных.

По всей видимости, коммуникативные системы, используемые живыми существами, почти универсальны. Для размножения многие растения привлекают внимание животных-опылителей (особенно насекомых) при помощи ярких цветов и приятных запахов. Когда размножение уже произошло, растения обращаются к животным, которые распространяют их семена. Чтобы привлечь их внимание, растения предлагают яркие съедобные плоды, которые животные съедают. Семена при этом проходят через их пищеварительную систему.

Если определить акт коммуникации как передачу и получение информации, то говорить об этом феномене можно только применительно к животному царству, так как у растений нет нервной системы и их коммуникативное восприятие можно в лучшем случае назвать ограниченным. Системы коммуникации у животных предполагают модальность во всех отношениях. Старейшие системы включают в себя химическое восприятие, например обоняние. Было доказано, что одноклеточные организмы, такие как бактерии, реагируют на химические следы, оставленные другими бактериями того же вида. Обоняние играет ключевую роль в ухаживании и спаривании многих видов, использующих феромоны. Феромонами называются химические сигналы, выделяемые животными, чтобы привлечь самку или самца и уведомить их о готовности к размножению. Обонятельные сигналы также играют ключевую роль при необходимости пометить территорию, что легко могут подтвердить владельцы собак. Собака, мочась на различные предметы, оставляет знаки, свидетельствующие о том, что эта территория принадлежит ей, и предупреждающие других собак, что им лучше держаться подальше.

В 1950-х годах этолог Карл фон Фриш открыл явление, которое ошибочно определили как «язык пчел» (von Frisch, 1971). Проведя серию сложных экспериментов, фон Фриш установил, что пчелы, разыскивающие нектар, передают своему рою информацию о местоположении новых источников нектара при помощи так называемого «танца вразвалку» - двигаясь «восьмеркой» по вертикальной поверхности сот.

При этом интенсивность покачивания указывает на богатство нового источника нектара, а наклон «восьмерки» по отношению к перпендикуляру обозначает расположение этого источника относительно солнца. Однако, невзирая на сложность такого способа, то, что делают пчелы, нельзя сравнивать с настоящим языком. В данном случае информация, передающаяся при коммуникативном акте, крайне ограничена. Более того, использование подобной символики не является произвольным и, по всей видимости, генетически закреплено в нервной системе пчел. Таким образом, можно сказать, что пчелы пользуются системой коммуникации, поданный тип поведения нельзя назвать языком в полном смысле этого слова.

Информация о сложных, высоко значимых типах поведения, например ухаживании или рефлексе защиты своего участка, передается различными путями. Птицы поют, чтобы обозначить границы своей территории и привлечь партнера. Это не значит, что они с умыслом используют такой тип поведения, чтобы достичь своих целей. Пение складывается из определенных сигналов, некоторые из которых физиологичны, и его адаптивная функция состоит в том, чтобы обозначить границы территории и привлечь партнеров. Птицы используют также визуальные сигналы, например пыжатся, чтобы передать ту же информацию. Так, краснокрылые дрозды отмечают границы территории при помощи пучков красных перышек на крыльях. Если эти пучки зачернить, птица быстро теряет все свои угодья. Что касается собак, визуальные сигналы важны для передачи информации о различном настроении, в котором они находятся. Собака, которая наступает на другую, подняв шерсть дыбом и не сгибая передних ног, демонстрирует агрессивную позицию.

Собака, склоняющаяся перед партнером, сгибая лапы, занимает, наоборот, приглашающую позицию - она демонстрирует послушание и готовность принять участие в игре. Ворчание и рычание у собак и других млекопитающих почти всегда сигнализирует об агрессии и предупреждении.

Дарвин (Darwin, 1872) осознавал, что выражение лица человека происходит непосредственно от этих, более ранних, сигналов агрессии или умиротворения. Выражение лица и сегодня служит для нас, людей, основным источником невербальной информации. Если мы сомневаемся в достоверности того, что нам говорят, то обычно стремимся увидеть выражение лица и глаза собеседника, чтобы подтвердить правильность информации, полученной нами вербально.

Коммуникативными системами, используемыми не человеком, но наиболее близкими к человеческой речи, являются системы с вокально оформленной коммуникацией. Еще раз повторим, что о слуховых формах коммуникации можно говорить лишь применительно к животному царству. Изучение приматов, наших ближайших родичей, предоставляет обилие информации о модели эволюции языка при его развитии. Обнаружилось, что африканские серые мартышки при встрече с различными видами хищников издают различные звуковые сигналы (Cheney & Seyfarth, 1990). Если животное замечает леопарда, оно издает особый возглас - биологи, изучающие этих обезьян, назвали его «возгласом леопарда», - который служит для всех остальных мартышек сигналом бежать к деревьям. Если прозвучит «возглас орла», реакция будет прямо противоположной - обезьянки вынырнут из кроны дерева и прижмутся к земле. Если мартышки услышат «возглас змеи», то они поднимутся на задние лапы и будут пристально всматриваться в траву. Эксперименты со звукозаписями доказывают также, что мартышки могут различать звуки, издаваемые отдельными особями. Они по-разному реагируют на записанные на пленку звуковые сигналы, издаваемые животными, занимающими подчиненную или главенствующую позицию. Например, если вскрикивает мартышка, занимающая подчиненную позицию, ее крик скорее проигнорируют, в отличие от такого же крика, изданного животным, занимающим главенствующую позицию. Обнаружилось, что звуковые сигналы играют незаметную, но значительную роль в социальном взаимодействии многих других видов приматов. Предположение, что эти животные обладают начатками языковых способностей, привело к серьезным попыткам обучить приматов языковым навыкам.

Коммуникации животных. Подобно человеку животные обитают в весьма сложном мире, наполненном множеством информации и контактов с разнообразными объектами живой и неживой природы. Абсолютно каждая популяция, будь то насекомые, рыбы, птицы или млекопитающие, это не случайное скопление особей, а совершенно определенным образом упорядоченная, организованная система. Поддержание порядка и организации возникает в результате столкновения интересов отдельных животных, каждое из которых определяет свое место и положение в общей системе, ориентируясь на своих собратьев. Для этого животные должны иметь возможность сообщать себе подобным о своих потребностях и о возможностях их достижения. Следовательно, у каждого вида должны существовать определенные способы передачи информации. Это различные способы сигнализации, которые, по аналогии с нашими собственными, могут быть условно названы «языком».

Язык животных представляет собой достаточно сложное понятие и не ограничивается только звуковым каналом связи. Важную роль в обмене информацией играет язык поз и телодвижений. Оскаленная пасть, вздыбленная шерсть, выпущенные когти, угрожающее рычание или шипение достаточно убедительно свидетельствуют об агрессивных намерениях зверя. Ритуальный, брачный танец птиц - это сложная система поз и телодвижений, передающая партнеру информацию совсем иного рода. В таком языке животных огромную роль играют, например, хвост и уши. Их многочисленные характерные положения свидетельствуют о тонких нюансах настроений и намерений хозяина, значение которых не всегда понятно наблюдателю, хотя очевидно для сородичей животного.

Важнейшим элементом языка зверей является язык запахов. Чтобы убедиться в этом, достаточно понаблюдать за вышедшей на прогулку собакой: с каким сосредоточенным вниманием и тщательностью обнюхивает она все столбы и деревья, на которых имеются метки других собак, и оставляет поверх них свои. У многих животных существуют специальные железы, выделяющие специфическое для данного вида сильно пахнущее вещество, следы которого животное оставляет на местах своего пребывания и тем самым метит границы своей территории.

Наконец, звуковой язык имеет для животных совершенно особое значение. Для того, чтобы получить информацию при помощи языка поз и телодвижений, животные должны видеть друг друга. Язык запахов предполагает, что животное находится поблизости от того места, где находится или побывал другой зверь. Преимущество языка звуков состоит в том, что он позволяет зверям общаться, не видя друг друга, например, в полной темноте и на далеком расстоянии. Так, трубный глас оленя, призывающего подругу и вызывающего на бой соперника, разносится на многие километры. Важнейшей особенностью языка животных является его эмоциональный характер. Азбука этого языка включает возгласы типа: «Внимание!», «Осторожно, опасность!», «Спасайся, кто может!», «Убирайся прочь!» и т.п. Другая особенность языка животных - это зависимость сигналов от ситуации. У многих животных в лексиконе имеется всего лишь десяток-другой звуковых сигналов. Например, у американского желтобрюхого сурка их всего 8. Но при помощи этих сигналов сурки оказываются способны сообщить друг другу информацию значительно большего объема, чем сведения о восьми возможных ситуациях, поскольку каждый сигнал в разных ситуациях будет говорить соответственно о разном. Смысловое значение большинства сигналов животных носит вероятностный характер в зависимости от ситуации.

Таким образом, язык большинства животных - это совокупность конкретных сигналов - звуковых, обонятельных, зрительных и т.д., которые действуют в данной ситуации и непроизвольно отражают состояние животного в данный конкретный момент.

Основная масса сигналов животных, передаваемых по каналам основных видов коммуникации, не имеет непосредственного адресата. Этим естественные языки животных принципиально отличаются от языка человека, который функционирует под контролем сознания и воли.

Сигналы языка животных строго специфичны для каждого вида и генетически обусловлены. Они в общих чертах одинаковы у всех особей данного вида, а их набор практически не подлежит расширению. Сигналы, используемые животными большинства видов, достаточно разнообразны и многочисленны.

Однако все их многообразие у разных видов по смысловому значению укладывается приблизительно в 10 основных категорий:

сигналы, предназначенные половым партнерам и возможным конкурентам;

сигналы, обеспечивающие обмен информацией между родителями и потомством;

крики тревоги;

сообщения о наличии пищи;

сигналы, помогающие поддерживать контакт между членами стаи;

сигналы-"переключатели", предназначенные для того, чтобы подготовить животное к действию последующих стимулов, так называемая метакоммуникация. Так, характерная для собак поза "приглашения к игре" предшествует игровой борьбе, сопровождающейся игровой агрессивностью;

сигналы-"намерения", предшествующие какой-либо реакции: например, птицы перед взлетом производят особые движения крыльями;

сигналы, связанные с выражением агрессии;

сигналы миролюбия;

сигналы неудовлетворенности (фрустрации).

Большая часть сигналов животных строго видоспецифична, однако среди них есть и такие, которые могут быть вполне информативны и для представителей других видов. Это, например, крики тревоги, сообщения о наличии пищи или сигналы агрессии.

Наряду с этим сигналы животных и очень конкретны, то есть сигнализируют сородичам о чем-то определенном. Животные хорошо различают друг друга по голосу, самка узнает самца, детенышей, а те, в свою очередь, прекрасно различают голоса родителей. Однако, в отличие от речи человека, обладающей свойством передавать бесконечные объемы сложнейшей информации не только конкретного, но и абстрактного характера, язык животных всегда конкретен, то есть сигнализирует о конкретной окружающей обстановке или состоянии животного. В этом принципиальное отличие языка животных от речи человека, свойства которой предопределены необычайно развитыми способностями мозга человека к абстрактному мышлению.

Системы коммуникаций, которыми пользуются животные, И.П. Павлов назвал первой сигнальной системой. Он подчеркивал, что эта система является общей для животных и человека, поскольку для получения информации об окружающем мире человек использует фактически те же системы коммуникаций.

Всем животным приходится добывать пищу, защищаться, охранять границы территории, искать брачных партнеров, заботиться о потомстве. Для нормальной жизни каждой особи необходима точная информация обо всем, что ее окружает. Получение этой информации происходит посредством систем и средств коммуникации. Животные принимают коммуникативные сигналы и другую информацию о внешнем мире с помощью физических чувств - зрения, слуха и осязания, а также химических чувств - обоняния и вкуса.

У большинства таксономических групп животных присутствуют и одновременно функционируют все органы чувств. Однако в зависимости от их анатомического строения и образа жизни функциональная роль разных систем оказывается неодинаковой. Сенсорные системы хорошо дополняют друг друга и обеспечивают полную информацию живого организма о факторах внешней среды. В то же время, в случае полного или частичного выхода из строя одной или даже нескольких из них, оставшиеся системы усиливают и расширяют свои функции, чем компенсируют недостаток информации. Так, например, ослепшие и оглохшие животные оказываются способны ориентироваться в окружающей среде с помощью обоняния и осязания. Хорошо известно, что глухонемые люди легко научаются понимать речь собеседника по движению его губ, а слепые - читать при помощи пальцев.

В зависимости от степени развития у животных тех или иных органов чувств, при общении могут использоваться разные способы коммуникаций. Так, во взаимодействиях многих беспозвоночных, а также некоторых позвоночных, у которых отсутствуют глаза, доминирует тактильная коммуникация. Из-за физических свойств водной среды, ее обитатели общаются между собой главным образом с помощью зрительных и звуковых сигналов.

Рыбы используют по крайней мере три типа коммуникативных сигналов: звуковые, зрительные и химические, часто их комбинируя. Хотя земноводные и пресмыкающиеся имеют все характерные для позвоночных органы чувств, формы их коммуникации сравнительно просты. Коммуникации птиц достигают высокого уровня развития, за исключением хемокоммуникации, имеющейся буквально у единичных видов. Общаясь с особями своего, а также других видов, в том числе с млекопитающими и даже с человеком, птицы используют главным образом звуковые, а также зрительные сигналы. Благодаря хорошему развитию слухового и голосового аппарата, птицы имеют прекрасный слух и способны издавать множество разных звуков. Стайные птицы используют более разнообразные звуковые и зрительные сигналы, чем птицы одиночные. У них существуют сигналы, собирающие стаю, извещающие об опасности, сигналы "все спокойно" и даже призывы к трапезе. В общении наземных млекопитающих довольно много места занимает информация об эмоциональных состояниях - страхе, гневе, удовольствии, голоде и боли.

Однако этим далеко не исчерпывается содержание коммуникаций - даже у животных, не относящихся к приматам.

Кочующие группами животные посредством зрительных сигналов поддерживают цельность группы и предупреждают друг друга об опасности;

медведи, в пределах своего участка, обдирают кору на стволах деревьев или трутся о них, информируя таким образом о размерах своего тела и половой принадлежности;

скунсы и ряд других животных выделяют пахучие вещества для защиты или в качестве половых аттрактантов;

самцы оленей устраивают ритуальные турниры для привлечения самок в период гона; волки выражают свое отношение агрессивным рычанием или дружелюбным помахиванием хвоста;

тюлени на лежбищах общаются с помощью криков и особых движений;

рассерженный медведь угрожающе кашляет.

Коммуникативные сигналы млекопитающих были выработаны для общения между особями одного вида, но нередко эти сигналы воспринимаются и особями других видов, оказавшимися неподалеку. В Африке один и тот же источник иногда используется для водопоя одновременно разными животными, например, гну, зеброй и водяным козлом. Если зебра с ее острым слухом и обонянием чует приближение льва или другого хищника, ее действия информируют об этом соседей по водопою, и они соответственно реагируют. В этом случае имеет место межвидовая коммуникация.

Человек использует для общения голос в неизмеримо большей степени, чем любой другой примат. Для большей экспрессивности слова сопровождаются жестами и мимикой. Остальные приматы используют в общении сигнальные позы и движения гораздо чаще, чем мы, а голос - гораздо реже. Эти компоненты коммуникативного поведения приматов не являются врожденными - животные обучаются различным способам общения по мере взросления.

Воспитание детенышей в дикой природе основано на подражании и выработке стереотипов; за ними ухаживают большую часть времени и наказывают, когда необходимо; они узнают о том, что съедобно, наблюдая за матерями, и учатся жестам и голосовому общению в основном методом проб и ошибок. Усвоение коммуникативных стереотипов поведения - процесс постепенный. Наиболее интересные особенности коммуникативного поведения приматов легче понять, если учесть обстоятельства, в которых используются разные типы сигналов - химические, тактильные, звуковые и зрительные.

Исследование происхождения человеческого языка невозможно без изучения коммуникативных систем животных - иначе мы не сможем выделить ни то новое, что появилось у человека по сравнению с животными, ни те полезные для развития языка свойства, которые к началу его эволюции уже имелись. Неучет факторов такого рода ослабляет выдвигаемые гипотезы. Например, Т. Дикон отводит ключевую роль в происхождении языка употреблению знаков-символов (его книга так и называется - “The symbolic species”, “Символический вид” 1 ) - но поскольку способность к их употреблению обнаруживают и многие животные (причем, как мы увидим ниже, не только в условиях эксперимента), на роль главной движущей силы глоттогенеза пользование символами не годится.

Впрочем, исследование коммуникации животных нужно не только для того, чтобы отвергать подобные гипотезы. Нынешнее состояние науки позволяет поставить и более глубокие вопросы: с чем коррелирует наличие у коммуникативной системы тех или иных характеристик? Какие существуют направления эволюции коммуникативных систем и чем они могут определяться?

Прежде всего необходимо понимать, что за словом “животные” скрывается огромное количество самых разных существ, одни из которых близки к человеку до такой степени, что осмысленно ставить вопрос о тех свойствах, необходимых для коммуникации, которыми обладал их общий предок, другие же далеки настолько, что у общих предков заведомо никаких релевантных для коммуникации свойств быть не могло. Таким образом, следует различать “гомологии” и “аналогии” - под первым термином понимаются свойства, развившиеся из того общего наследия, которое досталось от общего предка, под вторым - характеристики, которые, будучи внешне сходными, развились в ходе эволюции независимо. Например, наличие двух пар конечностей у человека и крокодила - гомология, а обтекаемая форма тела у рыб, дельфинов и ихтиозавров имеет аналогическую природу.

Рис. 4.1. Сравнение языка с коммуникативными системами других видов по критериям Ч. Хоккета 2 .

Когда по критериям, предложенным Ч. Хоккетом, было проведено сравнение языка с коммуникативными системами нескольких разных видов животных (колюшки, серебристой чайки, пчелы и гиббона), оказалось, что больше всего общих черт с языком набирает коммуникативная система медоносной пчелы (Apis mellifera ). Виляющий танец пчел обладает такими свойствами, как продуктивность и перемещаемость; он является специализированным коммуникативным действием; те, кто может производить сигналы этого типа, могут и понимать их (последнее называется “свойством взаимозаменяемости”). До некоторой степени в танце пчел можно усмотреть даже произвольность знака: один и тот же элемент виляющего танца у немецкой пчелы обозначает расстояние в 75 метров до источника корма, у итальянской - 25 метров, а у пчелы из Египта - всего пять 3 . Соответственно, эта коммуникативная система является (по крайней мере, отчасти) выучиваемой - как показали эксперименты Нины Георгиевны Лопатиной 4 , пчела, выращенная в изоляции и не имевшая возможности наблюдать за танцами взрослых особей, не понимает смысла танца, не может “считывать” с него передаваемую информацию. С формальной точки зрения в танцах пчел можно выделить элементарные компоненты (см. ниже), различные комбинации которых составляют разные смыслы (подобно тому, как в человеческом языке различные комбинации фонем дают разные слова) 5 .

Определенные аналогии можно усмотреть между человеческим языком и коммуникативными системами некоторых видов муравьев. Как показали опыты Ж.И. Резниковой (см. фото 16 на вклейке), проведенные с муравьями-древоточцами Camponotus herculeanus , их сигнализация обладает свойством продуктивности и свойством перемещаемости: муравьи способны сообщать своим сородичам о различных местах нахождения корма. При этом они могут сжимать информацию: путь типа “все время направо” описывается короче, чем путь типа “налево, потом направо, еще раз направо, потом налево и потом направо”. Информация о том же самом, хорошо знакомом месте передается быстрее, чем о другом. Хотя прямой расшифровке коммуникативная система муравьев не поддается, эта аналогия показывает, что такие свойства, видимо, с неизбежностью возникают в коммуникативной системе, которая должна обеспечивать передачу большого количества разнообразной информации.

Как отмечает Ж.И. Резникова, использование разными видами муравьев разных типов передачи информации связано с их образом жизни и теми задачами, которые им приходится решать. Тем видам, у которых численность семьи составляет не более нескольких сотен особей, развитая знаковая система не нужна: необходимое количество корма вполне можно собрать на расстоянии двух-трех метров от гнезда, “а на таком расстоянии прекрасно действует и пахучий след” 6 . Напротив, у тех видов, которые живут огромными семьями и собирают корм, удаляясь от гнезда на значительное расстояние, имеются коммуникативные системы, обладающие богатыми выразительными возможностями.

Для звучащей речи большое значение имеют формантные различия - прежде всего именно по ним (а не, скажем, по громкости, длительности или высоте основного тона) мы отличаем разные фонемы друг от друга. Но способность использовать формантные различия представлена и у животных. Как свидетельствует Т. Фитч, виды, использующие звуковую коммуникацию, - например, зеленые мартышки (верветки), японские макаки, журавли, - способны различать форманты не хуже людей 7 . Даже у лягушек есть специальные детекторы, настроенные на те частоты, которые особенно важны для каждого конкретного вида. Формантные различия могут использоваться, в частности, для того, чтобы отличать друг от друга сородичей 8 , для распознавания разных типов сигналов опасности и т. п.

Множество аналогов в животном мире имеет человеческая способность к рекурсии. Самый простой (по крайней мере, с точки зрения человека) мыслительный процесс, требующий применения рекурсии, - это счет: каждое следующее число на единицу больше предыдущего. Но считать, как показали исследования, умеют не только люди 9 , но и шимпанзе (этому посвящены, в частности, специальные эксперименты, проводимые в Киото под руководством Тецуро Мацузавы 10 ), попугаи 11 , ворoны 12 и муравьи 13 . В опытах З.А. Зориной и А.А. Смирновой было показано, что серые вороны могут складывать числа в пределах 4 (и даже оперировать при этом обычными “арабскими” цифрами), муравьи в экспериментах Ж.И. Резниковой продемонстрировали способность “складывать и вычитать в пределах 5” 14 . Макаки-резусы (в опытах американских исследователей Элизабет Бреннон и Герберта Террейса) “считали” (последовательно дотрагиваясь на экране до изображений групп с разным количеством предметов) по возрастанию и по убыванию от 1 до 4 и от 5 до 9 15 .

Наиболее разработана аналогия между человеческим языком и песней певчих птиц (это один из подотрядов отряда воробьиных). Песня делится на слоги - отдельные спектральные события, имеющие более звучную вершину и менее звучные края. Каждый отдельный слог, подобно фонеме, не имеет собственного значения , но их последовательность складывается в песню, несущую определенный смысл. Для распознавания песни существенно, чтобы слоги шли в определенном порядке - иначе представители соответствующего вида не опознают песню как свою 16 .

Подобно языку, песня выучивается во время чувствительного периода, т. е. в ее передаче велико значение культурной составляющей. В чувствительном периоде есть стадия “лепета” (или “подпесни”, англ. subsong ) - подросший птенец-слеток издает разнообразные звуки, как бы пробуя различные возможности голосового аппарата 17 . Издает, в отличие от взрослых самцов, негромко, что называется, “себе под нос”. Для нормального развития вокального репертуара ему необходимо слышать и самого себя, и взрослых представителей своего вида. Обучение происходит посредством звукоподражания, причем это подражание является самоподдерживающимся - как и детям, овладевающим языком, птенцам не нужно специальное поощрение за выученные элементы коммуникативной системы. В результате такого обучения складываются - как и в языке - диалекты (местные варианты песни) и идиолекты (индивидуальные варианты песни, которые в работах орнитологов также именуются “диалектами”, что создает некоторую путаницу). У птиц имеется латерализация мозга, причем звукопроизводством управляет в нормальном случае левое полушарие.

Рис. 4.2. Сонограмма песни зяблика (Fringilla coelebs).

У певчих птиц, а также у попугаев и колибри, которые тоже обучаются своим звуковым коммуникативным сигналам посредством звукового подражания, контроль за звукопроизводством осуществляется не теми мозговыми структурами, что у тех видов, у которых звуковые сигналы являются врожденными 18 . Повреждения аналогичных участков мозга приводят к аналогичным нарушениям звукопроизводства: при одних птицы, подобно людям с афазией Брока, теряют способность правильно составлять последовательности звуков, при других - способность выучивать новые звучания, при третьих - сохраняют лишь способность к эхолалическому повторению 19 .

Множество аналогичных черт у языка и с коммуникацией китообразных. В обоих случаях носителем информации является звук (правда, у китообразных, в отличие от человека, большая часть сигналов передается в ультразвуковом диапазоне). У дельфинов есть “имена собственные” - знаменитый “свист-подпись”: этим сигналом (индивидуальным для каждой особи) дельфины завершают свои сообщения, и с его помощью их можно позвать. У касаток Orcinus orca были обнаружены локальные диалекты 20 . Как и в языках людей, одни “слова” (звуковые сигналы) у касаток более стабильны, другие сравнительно быстро (у касаток - на протяжении порядка 10 лет) меняются 21 .

Звуковые сигналы дельфинов-афалин (Tursiops truncatus ), согласно наблюдениям В.И. Маркова 22 , комбинируются в комплексы нескольких уровней сложности. Комплекс, состоящий из нескольких звуков, сгруппированных определенным образом, может входить составной частью в комплекс более высокого уровня подобно тому, как слово, состоящее из нескольких фонем, входит составной частью в более сложный комплекс - предложение. Так же, как фонема может быть описана как совокупность смыслоразличительных признаков, в звуковых сигналах дельфинов могут быть выделены отдельные компоненты, противопоставляющие один звук другому.

Скорее всего, столь сложное устройство сигналов говорит о том, что у дельфинов (как и у людей) есть возможность (а значит, вероятно, и необходимость) кодировать большое (по подсчетам Маркова, потенциально даже бесконечно большое) количество разнообразной информации.

По-видимому, коммуникативная система дельфинов позволяет им передавать в том числе и весьма конкретные сведения. В эксперименте, проведенном Уильямом Эвансом и Джарвисом Бастианом 23 , два дельфина (самец Базз и самка Дорис) были обучены нажимать на педали в определенном порядке, чтобы получать пищевое подкрепление. Порядок менялся в зависимости от того, ровно горела лампочка над бассейном или же мигала, а подкрепление выдавалось лишь в том случае, когда на педали в правильном порядке нажимали оба дельфина. Когда лампочку установили так, чтобы ее могла видеть только Дорис, она оказалась в состоянии “объяснить” Баззу через непрозрачную стенку бассейна, в каком порядке следует нажимать на педали, - в 90 % случаев правильно.

Рис. 4.3. Схема опыта В. Эванса и Дж. Бастиана 2

В опытах В.И. Маркова и его коллег дельфины передавали друг другу информацию о размере мяча (большой он или маленький) и о том, с какой стороны предъявляет его экспериментатор (справа или слева) 25 .

Как показали Дэвид и Мелба Колдуэллы, дельфины, подобно людям, способны опознавать сородичей по голосу - независимо от того, что конкретно тот говорит (или, в случае дельфинов, свистит) 26 . И у китообразных, и у певчих птиц, как и у человека, вокализация произвольна. Она независима от лимбической системы (подкорковых структур), не свидетельствует об эмоциональном возбуждении и осуществляется скелетной мускулатурой 27 . Органы же звукопроизводства при этом совершенно разные: у человека это прежде всего гортань с голосовыми связками, у дельфинов и китов - назальные мешки, у птиц - сиринкс (иначе “нижняя гортань”, расположенная не в начале трахеи, как гортань млекопитающих, а в том месте, где от трахеи ответвляются бронхи; эволюционное происхождение сиринкса и гортани млекопитающих различно).


Рис. 4.4. Мозг дельфина, человека, орангутана и собаки.

У китообразных, как и у певчих птиц, имеется латерали-зация мозга. Но если у китообразных, как и у человека, асимметрично устроена кора больших полушарий (неокортекс), то у птиц это свойство реализовано на базе хотя и гомологичных новой коре, но все же не тождественных ей структур - нидопаллиума и гиперпаллиума (раньше их называли неостриатум и гиперстриатум соответственно) 28 .

Впрочем, асимметрия мозговых структур обнаруживается у самых разных животных, в том числе у угрей, тритонов, лягушек и акул 29 .

И для китообразных, и для певчих птиц чрезвычайно важна способность к звукоподражанию. Так, дельфины заимствуют “свист-подпись” у других дельфинов той же группы. Впрочем, способность к звукоподражанию была обнаружена у целого ряда видов, пользующихся звуковой коммуникацией, - она есть не только у певчих птиц и у китообразных, но и у летучих мышей, тюленей 30 , слонов 31 , а возможно, даже у мышей. Способность к обучению звуковым элементам коммуникации, по-видимому, характерна прежде всего для тех видов, у которых звук используется для поддержания социальной структуры.

Все эти (и другие, которые наверняка будут еще открыты) сходные черты коммуникативных систем певчих птиц, китообразных и человека, как можно видеть, приобретены независимо. Поскольку эти сходства охватывают целый комплекс свойств, их возникновение в ходе эволюции, вероятно, представляло собой процесс с положительной обратной связью, и ответ на вопрос о том, что является причиной, а что следствием, далеко не очевиден. В частности, по мнению Т. Дикона, асимметрия, присущая человеческому мозгу, является скорее следствием, нежели причиной возникновения языка 32 .

Изучение коммуникации животных позволяет разрешить самую непостижимую для некоторых исследователей “загадку языка” - почему он вообще возможен. Действительно, особь, производящая коммуникативные действия, тратит свое время и силы, становится более заметной хищникам - ради чего? Зачем передавать информацию другим вместо того, чтобы воспользоваться ею самому 33 ? Почему бы не обмануть сородичей, чтобы получить свою выгоду 34 ? Зачем пользоваться информацией от других, а не собственными ощущениями 35 ? Или, может быть, выгоднее собирать информацию на основе сигналов других особей, а самому “молчать” (тем самым не платя высокую цену за производство сигнала)? Подобные рассуждения приводят, например, к идее, что язык развился для манипулирования сородичами (см. подробнее ниже, гл. 5). Или, может быть, появление языка вообще не связано с информационным обменом? Может быть, язык возник исключительно как инструмент мышления, как считает Ноам Хомский, или даже вообще в качестве игры, как полагает антрополог Крис Найт 36 ?

В самом деле, если анализировать действие естественного отбора на индивидуальном, а не на групповом уровне, то преимущества коммуникативной системы (любой - не только языка) обнаружить не удается. И это приводит некоторых исследователей к выводу, что естественный отбор не играл никакой роли в процессе глоттогенеза 37 , и возникновение языка, возможно, в принципе не связано с обретением каких-либо адаптивных преимуществ, а просто является побочным эффектом развития каких-то других свойств, например, прямохождения (см. гл. 3) 38 .

Но на самом деле все перечисленные выше вопросы могут быть отнесены не только к человеческому языку - они релевантны для любой коммуникативной системы. И задавать их может лишь человек, не искушенный в этологии. Действительно, любая коммуникация - дело затратное: животное расходует энергию на производство сигнала, тратит время (которое могло бы быть использовано для чего-то, приносящего непосредственную биологическую пользу, например, для питания или гигиенических процедур), во время производства и восприятия сигнала менее внимательно следит за всем остальным, рискуя быть съеденным (классический пример - токующий глухарь, см. фото 19 на вклейке). Кроме того, энергия тратится на поддержание мозговых структур, необходимых для восприятия сигналов, и анатомических структур, необходимых для их производства. Однако “альтруистическое” поведение коммуницирующих особей, идущих на определенные затраты ради того, чтобы (вольно или невольно) передать своим сородичам информацию, ведет в итоге к общему увеличению количества “альтруистов” - даже если внутри своей популяции они проигрывают конкурентную борьбу более “эгоистичным” сородичам, - поскольку популяции, в которых альтруистов много, увеличивают свою численность гораздо более эффективно, чем популяции с преобладанием “эгоистов”. Этот статистический парадокс, известный как “парадокс Симпсона” , был недавно смоделирован на бактериях 39 , среди которых также есть особи, отличающиеся “альтруистическим” поведением, т. е. производящие - с повышением собственных затрат - вещества, способствующие росту всех окружающих бактерий. Чем сильнее конкуренция между группами, тем выше оказывается уровень альтруизма и кооперации внутри отдельных групп 40 .

Коммуникативная система - любая - возникает, развивается и существует не для выгоды особи, подающей сигнал, и не для выгоды особи, его принимающей; ее назначение - даже не организация отношений в паре “говорящий” - “слушающий”. Коммуникативная система представляет собой “специализированный механизм управления в системе популяции в целом” 41 .

Особи одного вида неизбежно оказываются конкурентами друг друга, поскольку претендуют на одни и те же ресурсы (пищу, укрытия, половых партнеров и т. д.). Тем не менее, при выборе места обитания животные предпочитают селиться по соседству с представителями своего вида. Соседство может быть тесным (как, например, у групповых млекопитающих или колониальных птиц) или не очень (например, индивидуальные участки тигров или медведей простираются на многие километры), но даже медведи не стремятся поселиться там, где бы поблизости вообще не было других медведей. И понятно почему: если бы появилась особь, в генах которой было бы заложено стремление поселиться как можно дальше от сородичей (и тем самым избавиться от конкурентов), ей было бы крайне трудно найти себе пару и передать эти гены потомству. Как показали недавние исследования 42 , птицы выбирают гнездовые участки рядом с участками сородичей, но стремятся селиться подальше от представителей видов, занимающих сходную экологическую нишу. Это значит, что конкуренция за ресурсы между представителями одного вида и разных видов устроена неодинаково: если чужаков лучше избегать или выгонять, то со своими можно “договориться” - при помощи коммуникативных взаимодействий распределить ресурсы так, чтобы этих ресурсов (пусть и разного качества) в итоге хватило всем.

Коммуникативная система позволяет каждой особи находить свое место. Например, особь, получившая по итогам коммуникативных взаимодействий высокий ранг, может кормиться тем, что дает много энергии, но требует больших временны х затрат на то, чтобы подготовиться к добыче корма самым специализированным и эффективным методом, - она “знает”, что ее не будут беспокоить слишком часто. Особь же низкоранговая выберет такую пищедобывательную стратегию, которая не сулит большой энергетической выгоды, но зато позволяет часто отвлекаться. И это дает существенный выигрыш, поскольку попытка добывать высокопитательный, но затратный по времени корм обернулась бы для низкоранговой особи настоящей трагедией: среди ее соседей слишком много охотников “самоутвердиться за ее счет” (т. е. повысить свой ранг за счет коммуникативной победы над ней), и реализовать такую стратегию кормления она бы просто не успела. Таким образом, коммуникация значительно ослабляет конкуренцию за ресурсы и позволяет выжить большему количеству представителей одного вида. Подобным же образом коммуникация распределяет особей и в других важных для жизни вида аспектах, например, при половом размножении. Так, высокоранговый олень завоевывает себе целый гарем самок и получает возможность передать свои гены большому количеству потомков. А низкоранговые олени, не имеющие собственного гарема, получают доступ к противоположному полу иначе: потихоньку, пока хозяин гарема не видит, они спариваются с его самками и тем самым тоже обеспечивают себе определенный репродуктивный успех 43 .

Кроме того, у видов, практикующих половое размножение, имеется задача “морально подготовить” партнеров к спариванию. Решение такого рода задач без посредства коммуникативной системы воистину “смерти подобно” - это наглядно показывают австралийские сумчатые мыши (род Antechinus ). Их самцы кидаются на самок, “не говоря ни слова” (т. е. без предварительного обмена какими-либо коммуникативными сигналами), - и в итоге ни один из них не переживает сезона размножения. Как показали данные Иэна Мак-Дональда и его коллег 44 , все погибают от стресса, хотя в принципе организм самца сумчатой мыши рассчитан на более долгую жизнь: если держать его дома в клетке, не подпуская к самкам (и другим самцам, с которыми он также вступал бы в физические, а не в коммуникативные взаимодействия), он проживет примерно года два, как и самка.

Рис. 4.5. Сумчатая мышь - живое доказательство того, что без коммуникации жить можно, но плохо и недолго.

При высокой плодовитости и отсутствии эффективных хищников такой вид еще может существовать, но при менее благоприятных условиях он, вероятно, не выдержал бы конкуренцию с видами, пользующимися коммуникацией.

Наличие в репертуаре вида специальных коммуникативных действий позволяет уменьшить количество прямых физических воздействий на сородичей: если особи могут, обменявшись несколькими сигналами, выяснить, кто из них выше другого в иерархии, имеет больше прав на самку и т. д., отпадает нужда кусать, клевать или как-либо иначе травмировать друг друга. Соответственно, чем более совершенна коммуникативная система вида, тем менее опасными для здоровья партнеров оказываются процессы взаимодействия.

Развитая коммуникативная система дает возможность эффективно организовывать совместную деятельность нескольких особей - даже если в процессе этой деятельности сигналы и не используются. Так, например, волки, которые не имели случая ранее “договориться” между собой о взаимной иерархии, не могут слаженно охотиться на оленя (и, соответственно, вынуждены довольствоваться полевками и другими грызунами). Непосредственно в момент охоты волки не обмениваются сигналами, но “понимание” своего места в иерархии задает некий внутренний ритм движений каждого животного. Совокупность дополняющих друг друга различных “внутренних ритмов” позволяет успешно объединять усилия 45 .

Еще одна задача коммуникативной системы - сортировка особей по территориям. Те, кто коммуницирует успешнее других, имеют наибольшие шансы занять максимально удобные местообитания (т. е. такие, к которым особи данного вида лучше всего приспособлены). Менее успешные коммуниканты оттесняются на периферию. Таким образом коммуникативная система организует структуру популяции, и это позволяет - не конкретным особям, а именно популяции в целом - формировать приспособительный ответ на изменения экологической ситуации.

В целом можно сказать, что возможность общаться позволяет виду (прежде всего именно виду, а не отдельным его представителям) сдвигать свою активность с непосредственной реакции на уже происшедшие события в область экстраполяции и прогноза 46 : в результате действий, которые совершаются не “в пожарном порядке” (после того, как нечто случилось), а в относительно комфортных условиях готовности к общению, будущее оказывается до какой-то степени доступным прогнозированию. Обмен сигналами позволяет особи составить некоторый прогноз на будущее - и действовать, исходя из него. Соответственно, преимущество получают те особи, которые умеют строить свою активность при условии знания , что их ждет дальше. Это обеспечивает виду бoльшую стабильность. Чем более совершенна коммуникативная система, тем в большей степени будущее в результате ее применения становится предсказуемым (а впоследствии и формируемым). Кроме того, “коммуникативная система стимулирует развитие самых разных компенсаторных механизмов у всех, говорящих “не так”” 47 , поскольку “общение продолжается даже при нарушениях в правилах передачи знаков, если партнеры готовы менять установки в сторону нормы 48 .

Рис. 4.6. Такырная круглоголовка (слева) лучше вооружена, чем ее близкая родственница - сетчатая круглоголовка (справа). Поэтому для такырной круглоголовки оказывается полезным использовать коммуникативные сигналы вместо прямых физических воздействий. А для сетчатой круглоголовки, наоборот, выгоднее «сэкономить» на коммуникации: поскольку ее укусы не так страшны, тратить много ресурсов на избавление от них нерентабельно.

Как возникают коммуникативные сигналы, можно наблюдать на примере двух близких видов ящериц - такырной и сетчатой круглоголовок (Phrynocephalus helioscopus, Ph. reticulatus ) 49 . Для круглоголовок необходимо, чтобы самец не спаривался с самкой, которая уже оплодотворена другим самцом (и не тратил попусту свои репродуктивные ресурсы). Соответственно, самка должна уклониться от спаривания. Сетчатая круглоголовка в таких случаях либо убегает, либо кусает самца. Но у такырных круглоголовок такой номер не пройдет: во-первых, такырные круглоголовки более целеустремленные, значит, тактика “убежать” потребует бoльших затрат. А во-вторых, они лучше вооружены, так что укусы нанесут более серьезный ущерб здоровью самца. И тогда возникает коммуникативный сигнал. Легко заметно, что это, в сущности, те же самые движения, что и у сетчатой круглоголовки: движения, отражающие конфликт двух побуждений - убежать и укусить. Но если у сетчатой круглоголовки эти движения определяются чисто эмоционально и могут быть вообще незаметны, то такырная круглоголовка делает их явно напоказ: они более стереотипны, даже несколько неестественны, с резкими, четко выделимыми границами, вся демонстрация продолжается дольше, чем у сетчатой круглоголовки. И это неудивительно: для такырных круглоголовок очень важно, чтобы самец отказался от своих намерений без ущерба для здоровья - как своего, так и самки.

Заметим, что о сколь-нибудь настоящей “сигнализации” тут речь, возможно, и не идет. Самка не хочет ничего сообщить самцу, она просто испытывает очень сильные колебания между намерением укусить и намерением убежать - настолько сильные, что самец успевает заметить этот конфликт мотиваций, и у него запускается - опять-таки, без всякого, вероятно, участия сознания - поведение “прекратить преследование”. И отбор благоприятствует тем популяциям, где чаще рождаются самки, способные максимально тщательно продемонстрировать самцу свои намерения, и самцы, с максимальной эффективностью распознающие демонстрацию самки. Соответственно, у самцов формируются детекторы для обнаружения характеристических черт самочьей “пантомимы”, а самки делают свои движения все более четкими и стереотипными, такими, чтобы их явно очерченные границы максимально хорошо распознавались детекторами самца. Кроме того, демонстрация самки продолжается заметное время - с тем чтобы самец успел распознать сигнал и запустить соответствующую программу поведения.

Впрочем, справедливости ради следует отметить, что у такырных круглоголовок (как, впрочем, и у нас, людей) случаются “коммуникативные неудачи”, так что некоторые самцы в итоге становятся жертвой укусов. Но доля таких самцов существенно (статистически значимо) меньше, чем у сетчатой круглоголовки.

Этот пример наглядно показывает, что для возникновения коммуникативных сигналов не нужен гений, в порыве вдохновения творящий знаки, изобретающий всё новые сочетания форм и смыслов. Не нужно, вероятно, даже сознание. Необходимо лишь, чтобы нервная система могла отслеживать события, происходящие во внешнем мире, и запускать оптимально отвечающие им поведенческие программы. Если для жизни вида окажется важным, чтобы о тех или иных намерениях особи ее сородичи могли узнавать до того, как эти намерения воплотятся в действия, отбор позаботится о том, чтобы сделать соответствующие намерения максимально заметными - с одной стороны, акцентировать некоторые компоненты физических проявлений соответствующего намерения, а с другой - настроить детекторы на их распознавание. Стандартный путь развития коммуникативных систем состоит в том, что особи наблюдают за внешним видом и/или поведением сородичей и у них формируются детекторы для регистрации этого. Вместе с тем элементы внешнего вида и/или поведения сородичей становятся всё более легко регистрируемыми при помощи детекторов. Возникает положительная обратная связь между отправителем и получателем коммуникативного сигнала, заставляющая коммуникативную систему все более - в эволюционной перспективе - усложняться (разумеется, лишь до тех пор, пока затраты на коммуникацию не начнут превышать выгоды от нее). Создать детекторы, регистрирующие те или иные характеристики сородичей, эволюционно проще, чем создать детекторы, пригодные для наблюдения за другими видами, ландшафтом и т. п. (хотя и такие детекторы, разумеется, тоже имеются у организмов), поскольку и бoльшая заметность элементов внешнего вида и/или поведения, и степень восприятия их кодируются в одном и том же геноме и подвергаются фактически одному и тому же естественному отбору.

В принципе, любое поведение животного его сородичи могут заметить и изменить в связи с этим свое собственное поведение. Например, когда голубь клюет ломоть хлеба, другой голубь (или, скажем, воробей) может, увидев это, приблизиться и начать клевать тот же ломоть с другого конца (если, конечно, его не прогонят). Поэтому в животном мире нередки действия, которые имеют как информационную, так и неинформационную составляющую. Например, такими являются действия собаки, метящей территорию собственной мочой: для того, чтобы опорожнить мочевой пузырь, ей достаточно было бы помочиться однократно (а не поднимать лапку у каждого дерева или столба, роняя всякий раз по нескольку капель), но оставленный запах несет информацию для других собак.

О собственно “сигналах”, возможно, следует говорить лишь тогда, когда то или иное действие перестает приносить непосредственную биологическую пользу, становясь только средством передачи информации. В этом случае оно оптимизируется не под изменчивые характеристики окружающего мира, а под жестко настроенные детекторы.

Возможно, именно в грубой работе детекторов разгадка того, почему движения, перешедшие из области обычной повседневной активности в сферу коммуникации, часто становятся резкими и “вычурными”, а их отдельные элементы выдерживаются дольше, чем сходные элементы обычного поведения. Например, райские птицы, демонстрируя, могут часами висеть вниз головой.

Такого рода дискретные, длительно выдерживаемые сигналы зафиксированы у птиц и рептилий, у млекопитающих же во многих случаях структура коммуникативной системы иная. Может быть, дело в том, что кора больших полушарий головного мозга (неокортекс) дает возможность более эффективного распознавания, может быть, в чем-то еще, но у млекопитающих коммуникативные сигналы часто оказываются континуальными, с бесконечным количеством переходных ступеней от одного сигнала к другому. На рисунке 4.7 изображена мимика домашней кошки, соответствующая разным степеням страха и агрессивности. На схеме показаны лишь по три градации для каждой из эмоций, но, разумеется, кошка не автомат, который резко “перещелкивается” из позиции 1 в позицию 2 и далее в позицию 3. Читатель может сам мысленно достроить то бесконечное количество оттенков обоих этих чувств, которое займет промежуточную позицию между любыми двумя соседними клетками данной схемы.

Впрочем, у млекопитающих есть не только эмоциональные сигналы, плавно переходящие один в другой. Сравнительное изучение разных видов, относящихся к одной классификационной группе (т. е. к одному таксону), дает возможность увидеть тенденции развития коммуникативных систем.

Рис. 4.7. Мимика домашней кошки 50 .

Рассмотрим в качестве примера два разных вида сусликов (см. фото 20 на вклейке) - более примитивного (по своему строению) калифорнийского суслика (Spermophilus beecheyi ) и более “прогрессивного” суслика Белдинга (Spermophilus beldingi ). У обоих видов есть сигналы опасности - щебет и свист. У суслика Белдинга свист - сигнал очень сильной опасности, а щебет (или, точнее, его аналог - трель) - умеренной. Заметим еще раз, что под словом “сигнал” здесь не имеется в виду никакого намеренного действия, специально предназначенного для коммуникации. Просто у суслика, который сильнее испуган, звук получается более похожим на свист - тем более, чем сильнее страх. Соответственно, между трелью и свистом возможно бесконечное число промежуточных “сигналов”. Сородичи, слышащие этот звук, “заражаются” соответствующей эмоцией (подобно тому, как людей “заражает” зевота или смех), и у многих из них непроизвольно возникает соответствующая вокализация. К этому уровню развития коммуникации вполне применимо рассуждение Е.Н. Панова 51 , согласно которому никаких “языков” у животных нет.

Но у калифорнийского суслика коммуникативная система устроена принципиально иначе. Свист и щебет становятся референциальными сигналами (англ. referential signals ), т. е. сигналами, обозначающими вполне конкретный объект внешнего мира (называемый в семиотике “референтом”): свист означает “опасность с воздуха”, щебет - “опасность с земли” 52 .

“Этимология” этих сигналов не менее прозрачна, чем “этимология” демонстраций такырной круглоголовки: летящий хищник обычно более опасен (и, соответственно, страшен), чем хищник наземный. Но функционирование свиста и щебета у калифорнийского суслика отличается кардинально. Промежуточных градаций между ними нет - как нет промежуточных градаций между орлом, летящим по воздуху, и койотом, бегущим по земле. Эти сигналы уже не настолько связаны с эмоциями: суслик может быть очень испуган внезапным появлением наземного хищника, но все равно звук, который он издаст, будет (с максимальной вероятностью) щебетом, а не свистом. И наоборот, хищная птица может быть очень далеко в небе и не вызывать большого страха - но суслик, видя ее, будет (в подавляющем большинстве случаев) издавать свист. Сигналы этого типа (хотя они, возможно, также не являются преднамеренными) не “заражают” сородичей эмоциями, а предоставляют им конкретную информацию об окружающем мире.

Соответственно, референциальные сигналы с полным правом можно назвать сигналами-символами (как это сделано в работе этолога Владимира Семеновича Фридмана 53 ), поскольку у них нет обязательной природной связи между формой и смыслом. Интересно, что у этих видов сусликов различается и восприятие сигнала: суслики Белдинга ретранслируют сигнал только в том случае, если сами в достаточной степени напуганы, калифорнийские же суслики способны передавать информацию дальше независимо от своего эмоционального состояния. Интенсивность воздействия сигнала в этой системе пропорциональна не степени возбуждения издающей сигнал особи, а степени стереотипности его внешней формы (поскольку наиболее “правильного” вида сигналы наиболее эффективно распознаются детекторами).

Этот пример показывает, что специализация к определенному типу существования у общественных животных может предполагать не только те или иные анатомические изменения, но и оптимизацию “заметных” действий (коммуникативных сигналов), их освобождение от эмоций и обретение ими способности обозначать конкретные объекты (или ситуации) окружающего мира. Именно на этом уровне развития коммуникативной системы возникает не только произвольность знака, но и возможность оторваться от “здесь и сейчас”: суслику достаточно услышать свист, чтобы мочь запустить поведенческий комплекс, обеспечивающий спасение от хищной птицы, - наблюдать самого хищника ему при этом необязательно. Отрыв от “здесь и сейчас” позволяет особи принимать менее эмоциональное, более “взвешенное” решение о том, что следует делать дальше.

Референциальные сигналы, подобно элементам человеческого языка, характеризуются категориальным восприятием. Это было проверено, в частности, в опытах Алексея Анатольевича Шибкова на самых примитивных представителях отряда приматов - тупайях (Tupaia glis , см. фото 21 на вклейке). Совмещая подачу одного из сигналов, присущих данному виду, со слабым ударом электрическим током, у животных вырабатывали вполне заметную реакцию на данный сигнал - реакцию избегания. Потом характеристики сигнала плавно меняли, постепенно превращая его в другой сигнал того же самого вида. В полном соответствии с моделью категориального восприятия, пока сигнал оставался “тем же самым” (по мнению подопытной тупайи), животные демонстрировали реакцию избегания, но как только сигнал становился “другим”, эта реакция немедленно исчезала 54 .

Системы референциальных сигналов были обнаружены у многих видов животных - у сурикатов (африканских мангустов) Suricata suricatta (различаются типы опасности - наземный хищник, хищная птица, змея) 55 , у кошачьих лемуров Lemur catta (различаются “опасность с земли” и “опасность с воздуха”) 56 , у луговых собачек (наземных грызунов из семейства беличьих) Cynomys gunnisoni 57 и даже у домашних кур (обозначение двух типов опасности - наземный и воздушный хищники - и “пищевой” крик) 58 . Вероятно, развитие таких сигналов из эмоциональных является эволюционной тенденцией - оно прослеживается, в частности, у сурков 59 .

Из референциальных сигналов состоит система предупреждения об опасности у верветок (Cercopithecus aethiops , см. фото 22 на вклейке). Как установили приматологи Дороти Чини и Роберт Сифард 60 , у верветок имеются четко различающиеся сигналы опасности: один крик обозначает орла, другой - леопарда (или гепарда), третий - змею (мамбу или питона), четвертый - опасного примата (павиана или человека). Исследователи проигрывали им магнитофонные записи разных типов криков (в отсутствие соответствующих опасностей), и верветки всякий раз реагировали “правильно”: по сигналу “леопард” бросались на тонкие верхние ветки, по сигналу “орел” спускались на землю, по сигналу “змея” вставали на задние лапы и осматривались. Чтобы выяснить, являются ли сигналы верветок эмоциональными или референциальными, исследователи делали записи длиннее или короче, громче или тише - для эмоциональных сигналов именно эти характеристики имеют основное значение, для референциальных же они совершенно несущественны (подобно тому, как для смысла слова в общем случае не важно, будет ли оно произнесено быстро или медленно, громко или тихо). Опыты показали, что для верветок важна не интенсивность сигнала, а его формантные характеристики.

Рис. 4.8. Это родословное древо сурков (род Marmotta) построено на основании молекулярных данных, но по нему видно, что при переходе от более примитивных видов к более прогрессивным число различных сигналов увеличивается 61 .

Коммуникативную систему верветок нередко рассматривают как промежуточный этап на пути к человеческому языку: сначала сигналов было, как у верветок, лишь несколько, потом, постепенно добавляя по одному сигналу, предки человека добрались в конце концов до языка современного типа 62 . Однако это, по-видимому, неверно. Дело в том, что, во-первых, внешняя форма (звуковая оболочка) сигналов у верветок является врожденной, следовательно, расширение такой коммуникативной системы и добавление в нее новых сигналов может происходить только путем генетических мутаций. Человеческая же система знаков не врожденная, она содержит огромное число элементов (десятки тысяч - для такого количества нужных мутаций просто не хватило бы эволюционного времени) и, кроме того, является принципиально открытой, добавление в нее новых знаков легко происходит за время жизни одного индивида. Возможно, что вы, читая эту главу, пополнили свой лексикон несколькими новыми словами - верветке такого не достичь. Все, что она может сделать за время жизни, - это несколько уточнить форму (акустические характеристики) и значение того или иного крика (например, усвоить, что сигнал “орел” не относится к птицам-падальщикам) .

Во-вторых, в человеческом языке принципиально иначе устроена реакция на сигнал. Если у верветок восприятие сигнала жестко задает поведение, то у человека восприятие сигнала задает лишь начало деятельности по его интерпретации (по мнению Т. Дикона, это вызвано наличием огромного количества ассоциативных связей между словами-символами в мозге 64 ), результаты же этой интерпретации могут зависеть от личного опыта, от индивидуальных особенностей характера, от отношения к подавшему сигнал, от сиюминутных намерений и предпочтений и т. д. и т. п. Поэтому нередко оказывается, что реакция на один и тот же текст у разных слушателей (или читателей) резко различается.

Подобная разница между людьми и верветками вполне объяснима. У верветок функция данного фрагмента коммуникативной системы состоит в том, чтобы обеспечить быстрый запуск правильной поведенческой программы спасения от соответствующего хищника, поэтому любые отклонения от стандартной реакции подавляются отбором. Человек же, в значительной степени вышедший из-под контроля естественного отбора, может себе позволить долгие размышления о смысле услышанного сообщения. Таким образом, хотя верветки относятся, как и мы, к отряду приматов, между их коммуникативной системой и языком нет гомологии, а есть лишь аналогия.

У других представителей церкопитековых, больших белоносых мартышек (Cercopithecus nicticans , см. фото 23 на вклейке), можно наблюдать еще одну аналогию с человеческим языком 65 . У этих мартышек, как и у верветок, есть разные сигналы для разных типов опасностей - крик “пяу” (в англоязычных работах - pyow ) означает “леопард”, крик “хак” (hack ) - “орел”. Но у них, как установили Кейт Арнольд и Клаус Цубербюлер, есть также возможность комбинирования сигналов, и при этом получается, как в человеческом языке, нетривиальное приращение смысла (не сводящееся к простой сумме смыслов составных частей). Когда самец произносит последовательность “пяу-хак” (или, чаще, повторяет каждый из этих криков несколько раз - но именно в такой последовательности), это вызывает не реакцию спасения от леопарда или орла, а перемещение всей группы на достаточно значительное расстояние - более значительное, чем без сигнала “пяу-хак”. Некоторые исследователи склонны видеть в этом сходство с человеческим синтаксисом (два “слова” составляют “предложение”), другие полагают, что это больше напоминает морфологию (сложное слово типа кресло -качалка ), но это не более чем спор об аналогии. В качестве же гомологии с языком здесь можно рассматривать лишь когнитивную возможность получать при комбинировании сигналов нетривиальное приращение значения (ср. вечер - вечерник “студент вечернего отделения института”, но утро - утренник “праздник или представление, устраиваемое утром”: один и тот же суффикс в сочетании с названиями разных частей дня добавляет совершенно разный смысл).

Еще более развернутую аналогию с человеческим языком можно усмотреть в коммуникативной системе мартышек Кемпбелла (, см. фото 24 на вклейке), живущих в национальном парке Таи (Берег Слоновой Кости). Самцы этих обезьян употребляют шесть видов сигналов, которые исследователи (К. Цубербюлер и его соавторы) записывают как “бум”, “крак”, “крак-у”, “хок”, “хок-у” и “вак-у” 66 . Элемент “-у”, выделяемый в трех из этих сигналов, авторы интерпретируют как суффикс. Он, подобно, например, русскому суффиксу - ств (о ) (ср. братство ) или английскому - hood (ср. brotherhood “братство” от brother “брат”), не употребляется отдельно, но определенным образом изменяет значение той основы, к которой присоединяется. Так, сигнал “крак” обозначает леопарда, а сигнал “крак-у” - опасность вообще.

Комбинирование знаков дает, как и у больших белоносых мартышек, нетривиальные приращения смысла. Например, серия криков “крак-у” может быть издана, когда мартышка слышит голос леопарда или крик мартышек диан, предупреждающий о появлении леопарда, но если этому сигналу предшествует дважды повторенный сигнал “бум”, то вся “фраза” интерпретируется как “падает дерево или большая ветка”. Если в серию криков “крак-у”, которой предшествует пара криков “бум”, иногда вставлять крик “хок-у”, получится территориальный сигнал, который самцы издают при встрече на границе участка с другой группой мартышек Кемпбелла. Просто двукратное повторение крика “бум” означает, что самец потерял из виду свою группу (самки, слыша такой сигнал, подходят к самцу). Всего авторы выделили девять возможных “фраз”, скомбинированных из этих шести криков.



Рис. 4.9. Звуковые сигналы мартышек Кемпбелла (сонограммы). Черная стрелка показывает движение формант; пунктирной рамкой обведен “суффикс” “-у” 67 .

В коммуникативной системе мартышек Кемпбелла представлены и правила “порядка слов”: например, сигнал “бум” употребляется только в начале цепочки криков и всегда повторяется дважды, сигнал “хок” предшествует сигналу “хок-у”, если они встречаются вместе, серия криков, предупреждающая об орле, начинается обычно с нескольких криков “хок”, а заканчивается несколькими криками “крак-у” и т. д.

По мнению авторов исследования, в некоторых аспектах эта коммуникативная система приближается к человеческому языку даже больше, чем успехи человекообразных обезьян, обученных языкам-посредникам и умеющих составлять комбинации типа “ВОДА”+“ПТИЦА”, хотя настоящей грамматикой она все же не обладает 68 . И дело здесь не только в том, что правила достаточно просты, а их число невелико. Главное, на мой взгляд, отличие этой системы от человеческого языка - отсутствие в ней достраиваемости: есть шесть криков и девять возможных “предложений”, и этим все ограничивается, новые знаки и новые сообщения не строятся.

Ограниченность исследованного материала не дает возможности судить о том, являются ли все эти сигналы (в том числе содержащие суффикс “-у”) и их комбинации врожденными, присущими всем представителям Cercopithecus campbelli campbelli , или же, по крайней мере, некоторая часть этой системы является культурной традицией данной конкретной популяции. По наблюдениям авторов, верно скорее первое: сигналы издаются без волевого контроля, самцы не демонстрируют намерения информировать сородичей, они просто испытывают эмоции - и на этом фоне у них издаются соответствующие крики. В то же время эти данные показывают, что даже при отсутствии волевого контроля за звукопроизводством жизнь вида, ведущего групповой образ жизни, в лесу, в условиях низкой видимости и большого количества хищников располагает к формированию коммуникативной системы, которая использует комбинации звуковых сигналов (как друг с другом, так и с элементами, не являющимися отдельными сигналами), чтобы из небольшого количества доступных врожденных криков произвести больше различных сообщений.

Если рассмотреть коммуникативные системы различных видов позвоночных, можно увидеть еще одну общую тенденцию - уменьшение степени врожденности. У низших животных, обладающих коммуникативной системой, врожденной является как внешняя форма сигнала, так и его “смысл” (то, что так или иначе будет определять поведение животного, воспринявшего данный сигнал); реакция на сигнал так же врожденна и стереотипна, как и реакция на несигнальные раздражители (поэтому такие сигналы называются релизерными). Например, птенец серебристой чайки, выпрашивая пищу, клюет красное пятно на клюве родителя, и это побуждает родителя покормить птенца, - в этом примере врожденными, инстинктивными, являются как действия птенца, так и реакция взрослой птицы. Сигналы такого рода, разумеется, могут до некоторой степени совершенствоваться в ходе развития отдельной особи (так, птенец чайки с течением времени “натренировывается” более метко попадать в красное пятно), но не более, чем любые другие инстинктивные действия.

У животных, обладающих более высоким уровнем когнитивного развития, появляются так называемые “иерархические” сигналы. Этот термин, введенный этологом В.С. Фридманом, подчеркивает, что основная функция этих сигналов - обслуживание иерархических отношений между особями в пределах группировки. Форма иерархических сигналов еще является врожденной, но “смысл” устанавливается в каждой группировке отдельно. Например, предъявление большим пестрым дятлом своему сородичу крайних рулевых перьев обозначает “это я”, смысл же “эта особь выше меня по иерархии” (или “эта особь ниже меня по иерархии”) сородич, увидевший этот сигнал, достраивает, исходя из опыта предыдущих взаимодействий с данной птицей. Такой смысл не может быть врожденным, поскольку невозможно предугадать заранее место конкретной особи в конкретной группировке. Кроме того, такой смысл может меняться по итогам взаимодействия особей друг с другом.

Следующая ступень развития - так называемые “ad-hoc-сигналы”, имеющиеся лишь у узконосых обезьян (начиная с павианов): эти элементы коммуникативного поведения создаются по ходу дела, для сиюминутных нужд, соответственно, врожденными не являются ни их форма, ни их “смысл”. Такую коммуникативную систему может себе позволить лишь вид с достаточно хорошо развитым мозгом, поскольку, чтобы поддерживать коммуникацию такого рода, особи должны быть готовы придавать сигнальное значение действиям, до этого сигналами не являвшимся.

Человеческий язык представляет собой следующий член этого ряда: бывшие ad-hoc-сигналы начинают закрепляться, накапливаться и передаваться по наследству посредством обучения и подражания - так же, как, например, умение изготавливать орудия труда. В результате получается “инструментальная” (термин А.Н. Барулина) семиотическая система.

В качестве одного из наиболее существенных отличий коммуникативных систем животных от человеческого языка нередко называется то, что они не связаны с индивидуальным опытом, с рассудочной деятельностью, тогда как у человека язык и мышление объединились в ходе эволюции “в одну речемыслительную систему” 69 . Действительно, сигналы с врожденной формой и врожденным смыслом не могут передавать жизненный опыт отдельной особи - только обобщенный опыт вида. Но уже иерархические сигналы отчасти отражают индивидуальный опыт, хотя и лишь в одной, весьма ограниченной области, - опыт конкурентных взаимодействий одной особи с другими. Еще в большей степени связаны с личным опытом ad-hoc-сигналы, поскольку в них как форма, так и смысл могут включать то, что стало известно конкретной особи в течение ее жизни (см. ниже).

Что же касается обезьян, то их звуковые сигналы, хотя и являются по форме врожденными, также, вероятно, могут участвовать в передаче личного опыта. Свидетельницей одного такого случая стала С. Сэвидж-Рамбо после вечерней прогулки по лесу с бонобо Панбанишей. Во время прогулки они заметили на дереве силуэт какой-то крупной кошки и, испугавшись, вернулись в лабораторию, где их встретили бонобо Канзи, Тамули, Матата и шимпанзе Панзи. Обезьяны (вероятно, по невербальным сигналам) догадались, что Панбанишу и С. Сэвидж-Рамбо что-то напугало в лесу - они, пишет Сэвидж-Рамбо, “стали напряженно всматриваться в темноту и издавать мягкие звуки “уху-ух”, говорящие о чем-то необычном. <Панбаниша> тоже начала издавать какие-то звуки, как будто рассказывала им о большой кошке, которую мы видели в лесу. Все остальные слушали и отвечали громкими криками. Неужели она говорит им что-то, чего я не могу понять? Я не знаю” 70 . Какую информацию передала Панбаниша, в точности сказать трудно (йеркишем она не воспользовалась), но “Канзи и Панзи, когда им в очередной раз разрешили погулять, обнаружили колебания и страх именно в этом участке леса. Поскольку их прежде никогда не пугали, похоже, все-таки, что они смогли что-то понять из происшедшего” 71 .

Подобный же “рассказ” наблюдала и отечественный приматолог Светлана Леонидовна Новоселова. Шимпанзе Лада, которую однажды пришлось, несмотря на ее отчаянный вой и сопротивление, вынести на прогулку, на следующий день “поведала” людям о случившемся: “Обезьяна, драматически воздев руки, привстала в своем гнезде на широкой полке, спустилась и, бегая по клетке, воспроизвела интонационно очень верно в своем крике, который продолжался не менее 30 мин, эмоциональную динамику переживаний предшествующего дня. У меня и у всех окружающих сложилось полное впечатление “рассказа о пережитом”” 72 .

Такое поведение было отмечено и в естественных условиях. Джейн Гудолл, долгое время наблюдавшая за поведением шимпанзе в природе, описывает случай, когда в группе шимпанзе, за которой она наблюдала, появилась самка-каннибалка, Пэшн, поедавшая чужих детенышей. Самке Мифф удалось спасти своего детеныша от Пэшн, и впоследствии, когда она встретилась с Пэшн не один на один, а в компании дружественных самцов, Мифф выказала сильное возбуждение и смогла донести до самцов идею, что Пэшн ей очень не нравится и ее надо наказать - по крайней мере, самцы, увидев поведение Мифф, устроили Пэшн агрессивную демонстрацию 73 .

Можно предполагать, что во всех таких случаях обезьяны передают не столько сам конкретный опыт, сколько свои эмоции по его поводу. И, вероятно, в большинстве случаев этого бывает достаточно, поскольку антропоиды способны очень тонко различать нюансы того, что психологи называют “невербальной коммуникацией”. Например, шимпанзе Уошо смогла угадать, что работавшие с ней Роджер и Дебора Футс - муж и жена, хотя они намеренно старались на работе вести себя друг с другом не как супруги, а как коллеги. “Никто не сравнится с шимпанзе в умении понимать невербальные сигналы!” - написал по этому поводу Р. Футс 74 .

Однако, если информация, которую необходимо передать, достаточно необычна, такой способ коммуникации дает сбои. Так, в описанном выше примере объяснить, что в точности произошло, Мифф не смогла - в противном случае самцы бы, наверное, не ограничились демонстрацией, а выгнали бы Пэшн из группы или, по крайней мере, предупредили бы об опасности дружественных им самок.

Впрочем, когда в языковых проектах обезьяны получают в свое распоряжение более совершенное коммуникативное средство - язык-посредник (и, к слову, более понятливого собеседника - человека), они оказываются в состоянии облечь свой собственный опыт и взгляды на мир в знаковую форму (см. примеры в гл. 1).

Рис. 4.10. Виляющий танец.

Попытки расшифровать коммуникативные системы животных предпринимались неоднократно. Одна из наиболее успешных - расшифровка виляющего танца медоносной пчелы австрийским биологом Карлом фон Фришем 75 . Угол между осью танца и вертикалью (если пчела танцует на вертикальной стенке) соответствует углу между направлением на пищу и направлением на Солнце, продолжительность движения пчелы по прямой несет информацию о расстоянии до источника корма; кроме того, имеют значение скорость, с которой движется пчела, виляние брюшком, движение из стороны в сторону, звуковая составляющая танца и т. д. - всего по меньшей мере одиннадцать параметров. Блестящим подтверждением правильности этой расшифровки стала созданная Акселем Михельсеном 76 пчела-робот: ее танцы в улье (см. фото 17 на вклейке), управляемые компьютерной программой, успешно мобилизовывали пчел-сборщиц на поиски корма. Пчелы правильно определяли направление на кормушку и расстояние до нее - даже несмотря на то, что пчела-робот не давала сборщицам запаховой информации.

Но многие другие коммуникативные системы оказались сложнее. Так, не удалось в точности выяснить, какие движения муравьев, прикасающихся антеннами к своим сородичам, информируют их, скажем, о повороте направо. У дельфинов удалось определить лишь “свист-подпись”. Единственный расшифрованный сигнал волков - “звук одиночества”. Гудолл 77 отмечает, что шимпанзе издают звук “хуу” “только при виде небольшой змеи, неизвестного шевелящегося создания или мертвого животного”, - но почти ни про какие другие звуки шимпанзе ничего столь же определенного пока сказать нельзя.

Широко известны опыты Эмила Мензела 78 с шимпанзе. Экспериментатор показывал одному из шимпанзе тайник со спрятанными фруктами, и потом, когда обезьяна возвращалась к своей группе, она неким образом “сообщала” соплеменникам о местонахождении тайника - по крайней мере, те отправлялись на поиски, явно имея представление о том, в каком направлении следует идти, и даже иногда обгоняли сообщавшего. Если одному шимпанзе показывали тайник с фруктами, а другому - с овощами, группа не колеблясь выбирала первый тайник. Если в тайнике была спрятана игрушечная змея, шимпанзе приближались к нему с некоторой опаской. Но как именно шимпанзе передавали соответствующую информацию, так и осталось загадкой. Высокоранговые особи, казалось, не делали для этого вовсе ничего, но тем не менее добивались понимания, низкоранговые, напротив, разыгрывали целую пантомиму, делали выразительные жесты в соответствующем направлении - но все равно мобилизовать группу на поиски тайника им не удавалось.

Для расшифровки смысла того или иного сигнала необходимо, чтобы его появление взаимно-однозначно соответствовало либо некоторой ситуации во внешнем мире, либо строго определенной реакции особей, воспринимающих сигнал. Поэтому так легко оказалось расшифровать систему предупреждения об опасности у верветок: крик с определенными акустическими характеристиками (отличными от характеристик других криков) жестко коррелирует (а) с наличием леопарда в зоне видимости и (б) с убеганием всех слышащих сигнал обезьян на тонкие верхние ветки.

Но большинство сигналов волков, дельфинов, шимпанзе таких жестких корреляций не обнаруживают. Как отмечает Е.Н. Панов, они могут “в разное время выступать в разных качествах” 79 . Например, у шимпанзе один и тот же сигнал оказывается связан и с ситуацией дружелюбия, и с ситуацией подчинения, и даже с ситуацией агрессии. По мнению Панова, это свидетельствует о том, что с точки зрения теории информации “эти сигналы существенно вырождены” 80 и никакого внятного смысла не имеют. Но то же самое рассуждение применимо и ко многим выражениям человеческого языка. Если рассматривать слова не в словаре, где каждому из них приписана вполне определенная семантика, а в составе выражений, произносимых в реальных жизненных ситуациях, легко видеть, что они, подобно сигналам животных, могут в разное время выступать в разных качествах. Например, предложение “Молодец!” может выступать и в качестве похвалы (“Уже все уроки сделал? Молодец!”), и в качестве порицания (“Разбил чашку? Моло-дец!”). Слово “точка” может обозначать начало (“точка отсчета”) и конец (“на этом поставим точку”), маленький черный кружок, изображенный на бумаге (“проведите прямую через точку А и точку В”), и реальное, подчас довольно большое и не всегда круглое место (“торговая точка”). Таким образом, если следовать логике Е.Н. Панова, человеческий язык тоже, пожалуй, придется признать вырожденным с точки зрения теории информации.

Рис. 4.11. Эти шесть сигналов шимпанзе (выделенных этологом Яаном ван Хооффом) могут, хотя и с различной частотой, выступать в разных ситуациях - и при дружелюбном взаимодействии (заштрихованные столбцы), и для демонстрации подчинения (белые столбцы), и при агрессии (черные столбцы). Относительная высота столбцов отражает частоту, с которой каждый сигнал был зафиксирован в соответствующей ситуации. Сигнал “визг с оскаленными зубами” (д) используется во всех трех типах взаимодействий 81 .

В человеческих языках не существует, видимо, ни одного выражения, которое бы вызывало всякий раз одну и ту же реакцию. Даже услышав крик “Пожар!”, одни люди бросятся участвовать в спасении, другие - мародерствовать, третьи станут созерцать происходящее, не предпринимая никаких действий, а четвертые просто пройдут мимо. Как писал Тютчев, “Нам не дано предугадать…”. Не существует и ситуации, которая бы однозначно вызывала появление того или иного сигнала, - люди по-разному строят свои высказывания в зависимости от того, какие элементы ситуации представляются им в данном конкретном случае более важными, учитывают тот фонд знаний, которым, по их представлениям, обладает слушающий, отражают в высказывании свое отношение к ситуации (а нередко и к слушающему) и т. д., и т. д. . Колоссальная избыточность, которой обладает любой человеческий язык, предоставляет людям весьма широкие возможности для такого варьирования. С другой стороны, слушающие обладают достаточными когнитивными возможностями, чтобы “угадать” (в большинстве случае правильно), какой смысл вкладывал в свое сообщение говорящий.

Так что, может быть, не случайно, что сигналы, которые не обнаруживают прямой связи ни с наличной ситуацией, ни с реакцией особей, воспринимающих сигнал, обнаруживаются в достаточно развитых (насчитывающих много сигналов) коммуникативных системах, у видов, обладающих высоким когнитивным потенциалом, - таких, как шимпанзе, волки, муравьи-древоточцы или дельфины. Нельзя исключать, что по достижении определенного уровня организации коммуникативная система обретает возможность включать в себя многозначные сигналы, варьировать “смысл” сигнала в зависимости от различных ситуативно определяемых параметров.

Некоторые элементы такой возможности уже обнаружены в исследованных коммуникативных системах животных. Так, например, у павианов чакма (Papio ursinus или Papio cynocephalus ursinus ) имеются два акустически различных сигнала-“ворчания”: один из них выражает желание перейти (всей группой) через полное опасностей открытое пространство в другой участок леса, другой - стремление понянчить детеныша. Как было установлено Дрю Рэндоллом, Робертом Сифардом, Дороти Чини и Майклом Оуреном, реакция на оба эти сигнала зависит от конкретной ситуации (например, подается сигнал на границе лесного участка или в его середине), а также от ранговых взаимоотношений подающей и принимающей сигнал особи 82 . Зависимость от контекста была обнаружена и в такой развитой системе коммуникации, как феромонная коммуникация у насекомых. Как показали опыты на дрозофилах, один и тот же химический сигнал-феромон “может нести разный смысл в зависимости от контекста, то есть комплекса других феромонов, а также поведенческих, зрительных и звуковых сигналов” 83 .

Еще один аспект исследования животных в контексте происхождения человеческого языка - это поиск гомологий и преадаптаций. Какие свойства, имеющиеся как у человека, так и у приматов, и тем самым наличествовавшие, вероятно, у общего предка человека и его ближайших родственников, были полезны для формирования языка? Каковы были стартовые условия глоттогенеза?

Как показывают исследования, у обезьян имеются гомологи основных речевых центров - зоны Брока и зоны Вернике 84 . Эти зоны соответствуют человеческим не только по своему расположению, но и по клеточному составу, а также по входящим и исходящим нейронным связям; кроме того, эти области - как у человека, так и у человекообразных обезьян - соединены между собой пучком волокон (это было показано как отечественными, так и зарубежными исследователями 85 ).

Но у обезьян эти отделы мозга в гораздо меньшей степени, чем у людей, связаны со звуковой коммуникацией, поскольку они не задействованы в производстве сигналов. Гомолог зоны Брока “отвечает” за автоматические комплексные поведенческие программы, осуществляемые мышцами лица, рта, языка и гортани, а также за координированные программы действий правой руки 86 . Гомолог зоны Вернике (и соседние участки мозга) используются для распознавания звуковых сигналов, а также для того, чтобы различать сородичей по голосу. Кроме того, “различные подобласти этих гомологов получают данные от всех частей мозга, задействованных при слушании, ощущении прикосновения во рту, языке и гортани и областях, где сливаются потоки информации от всех органов чувств” 87 .

По предположению Эриха Джарвиса, можно проследить гомологию в путях движения слуховой информации в мозгу. Эти пути сходны у млекопитающих, птиц и рептилий - значит, база для звукового обучения была заложена по меньшей мере 320 млн. лет назад 88 .

Система коммуникации у шимпанзе использует все возможные каналы связи - и зрительный, и слуховой, и обонятельный, и осязательный, при этом “большая часть информации передается по двум и более каналам” 89 . В ней присутствуют и непроизвольные, чисто природные сигналы, такие, как набухание половой кожи у самок, свидетельствующее о рецептивности, и сигналы намеренные, которые одна особь осознанно подает другой. Звуковые сигналы относятся к первой категории - они являются врожденными (по крайней мере, они возникают даже в условиях депривации, когда подрастающий шимпанзе не имеет возможности перенять их от сородичей) 90 и издаются непроизвольно. Как пишет Дж. Гудолл, “произвести звук в отсутствие подходящего эмоционального состояния - это для шимпанзе почти непосильная задача” 91 . Супруги Кэти и Кейт Хейс, которые пытались научить говорить воспитывавшуюся в домашних условиях самку шимпанзе Вики, свидетельствуют, что она абсолютно не могла издавать какие-либо звуки намеренно 92 . Все, что может сделать шимпанзе, - это подавить звук. Дж. Гудолл описывает случай 93 , когда подросток Фиган, которому исследователи дали бананов, издал пищевой крик, на крик прибежали более старшие самцы и бананы у Фигана отобрали. В следующий раз Фиган повел себя хитрее - он волевым усилием подавил пищевой крик (и получил бананы), но при этом, по словам Гудолл, звуки “застревали у него где-то в горле, и он, казалось, едва не задохнулся”. Будучи связаны с эмоциями, “крики шимпанзе составляют непрерывный ряд” 94 , поэтому разные исследователи насчитывают в вокальном репертуаре шимпанзе разное количество сигналов.

Случай с Фиганом, кстати, - нагляднейшее доказательство того, что эволюция коммуникативной системы ориентирована на выгоды группы, а не отдельной особи. Склонность подавать сигналы поощряется отбором даже в том случае, когда для сигнализирующей особи это оказывается скорее вредным, как для Фигана, лишившегося (в первый раз) бананов.

Впрочем, возможно, что представление об исключительно эмоциональном характере звуковых сигналов шимпанзе подлежит пересмотру. По данным Кейти Слокомбе и Клауса Цубербюлера, пищевые крики шимпанзе референциальны. Исследователи записали на магнитофон крики шимпанзе, которым дали яблок, и крики шимпанзе, которым дали плодов хлебного дерева. При проигрывании магнитофонных записей обезьяны достоверно различали эти два типа криков - они проводили более интенсивные поиски под тем деревом, на плоды которого указывал услышанный ими крик. Шимпанзе из контрольной группы, которым этих записей не проигрывали, искали под деревьями обоих видов примерно поровну 95 . Сходные результаты были получены и для бонобо - Занна Клей и Клаус Цубербюлер выделили у них пять различных пищевых криков, издаваемых с разной частотой в зависимости от степени предпочтительности пищи 96 . Даже если дело не в референциальности, а просто в том, что разные виды пищи вызывают у обезьян несколько разные эмоции (например, потому, что одни из них вкуснее, чем другие), способность различать такие сигналы и успешно соотносить их с реалиями внешнего мира является неплохой преадаптацией к языку.

Возможно, в звуковых сигналах шимпанзе и бонобо будет обнаружено еще одно “человеческое” свойство - комбинативность: как показывают исследования, их так называемые долгие крики “состоят из ограниченного числа базовых элементов, которые могут комбинироваться по-разному в зависимости от ситуации и у разных животных” 97 .

В некоторой степени в коммуникации шимпанзе представлено и звукоподражание: по данным Джона Митани и Карла Брандта 98 , самцы, присоединяясь к долгим крикам других самцов, стремятся воспроизводить в своем крике некоторые акустические параметры вокализации “собеседника”.

Кроме звуков, шимпанзе используют мимику, жесты, позы, действия (касания, похлопывания, объятия, поцелуи, шлепки, затрещины), манипуляции с предметами. Например, для умиротворения агрессора может использоваться поза подставления (шимпанзе как бы подставляется для спаривания); подскакивание и взмах рукой являются агрессивными сигналами. С той же целью демонстрации агрессивных намерений самцы шимпанзе могут волочить по земле ветки, перекатывать камни, раскачивать кусты. Укрепляет дружественные отношения груминг - обыскивание шерсти (кстати, не только у шимпанзе, см. фото 26 на вклейке).

Как показали М.А. Дерягина и С.В. Васильев, процесс коммуникации у обезьян - причем не только у человекообразных, но и у других видов (в их работе исследовались бурые капуцины Cebus apella , яванские макаки Macaca fascicularis , макаки-резусы Macaca mulatta , бурые макаки Macaca arctoides , японские макаки Macaca fuscata , павианы гамадрилы Papio hamadryas , белорукие гиббоны Hylobates lar и шимпанзе Pan troglodytes ) - “представляет собой последовательности… комплексов коммуникации” 99 . Комплексы состоят из элементов разной модальности, например, из позы, мимики и жеста. Некоторые комплексы являются общими для всех изученных видов, например: “пристальный взгляд - выпад, оскал - агрессивный акустический сигнал - пристальный взгляд - флаш <быстрое движение бровями вверх. - С.Б.> - выпад” 100 , другие характерны лишь для отдельных видов. Например, только у шимпанзе зафиксирован такой комплекс коммуникации: “пристальный взгляд - подход - протягивание руки - дружелюбный контактный звук” 101 . Каждый отдельный элемент такого комплекса может быть разложен на элементарные незначимые составляющие, например, любой элемент мимики представляет собой движение целого ряда лицевых мышц - другие комбинации движений тех же мышц дают другое “выражение лица”. Тем самым, можно констатировать, что коммуникации обезьян в природе (а не только в условиях “языкового проекта”) присуще двойное членение.

Шимпанзе могут изобретать ad-hoc-сигналы, и сигналы эти понимаются сородичами не хуже, чем врожденные или давно известные. В книге Дж. Гудолл “Шимпанзе в природе: поведение” описывается такой случай 102 , происшедший в 1964 г.: самец шимпанзе Майк, увидев группу высокоранговых самцов неподалеку от лагеря исследователей, пошел в лагерь. Там “он подхватил две пустые канистры, и, держа их за ручки, по одной в каждой руке, пошел (выпрямившись) на прежнее место, сел и уставился на других самцов, которые были тогда все более высокого по сравнению с ним ранга. Они продолжали спокойно обыскивать друг друга, не обращая на него внимания. Спустя секунду Майк начал едва заметно раскачиваться из стороны в сторону, а шерсть его слегка вздыбилась. Остальные самцы по-прежнему игнорировали его присутствие. Постепенно Майк стал раскачиваться сильнее, шерсть на нем полностью ощетинилась, и с ухающими звуками он внезапно бросился на старших по рангу, ударяя канистрами впереди себя. Остальные самцы убежали. Иногда Майк повторял свое выступление по четыре раза кряду…”. В результате таких действий Майку удалось донести до сородичей идею, что его следует признать старшим по рангу - и этот ранг он сохранял потом долгие годы.

Шимпанзе могут несколько изменять значение сигналов с учетом наличной ситуации. Гудолл описывает случай, когда взрослый самец Фиган (тот самый, который, будучи подростком, смог не закричать при виде бананов) использовал знак для того, чтобы побудить другого самца, Жомео, помочь ему охотиться на поросят кистеухой свиньи. Он, “пристально взглянув на заросли, где исчезла свинья с выводком, обернулся к Жомео и сделал характерный жест, покачав веткой, - так обычно самцы во время ухаживания подзывают к себе самок. Жомео поспешил к нему, оба устремились в заросли, и один поросенок был пойман” 103 .

Ad-hoc-сигналы могут закрепляться и передаваться по традиции - различной для разных популяций. Например, шимпанзе, живущие в горах Махале, ухаживая за самками, с громким звуком обгрызают листья, а шимпанзе национального парка Таи в аналогичной ситуации постукивают костяшками пальцев по стволу небольшого деревца 104 . С другой стороны, у шимпанзе из Боссу (Гвинея) громкое обгрызание листьев принято считать приглашением к игре 105 . По данным Симоне Пики и Джона Митани 106 , шимпанзе сообщества Нгого в национальном парке Кибале (Уганда) используют жест “громкое почесывание” в качестве указания на то конкретное место на своем теле, которое предлагается обыскать грумингующему. Такого же типа жест - преувеличенно заметное громкое почесывание бока - шимпанзе Гомбе используют в другой функции: так мать, сидящая на нижних ветвях дерева, призывает залезшего повыше отпрыска взобраться на нее, чтобы вместе спуститься на землю 107 . Отечественный приматолог Леонид Александрович Фирсов, много лет наблюдая поведение шимпанзе в лабораторных и полевых условиях, неоднократно становился свидетелем того, как обезьяны “изобретали” собственные ad-hoc-сигналы 108 - и звуковые, и жестовые - чтобы привлечь в себе внимание. Эти (неврожденные!) формы коммуникации позволяли им успешно добиваться контакта с людьми, которые могли не только “пообщаться” с животными и, скажем, приласкать их, но и выпустить из вольера или угостить чем-нибудь вкусненьким. Если тот или иной “знак” приводил к успеху, животное повторяло его и в следующий раз, кроме того, этот сигнал перенимали (путем подражания) другие обезьяны, видевшие его успешное употребление. Самка шимпанзе Эля, перемещенная на несколько лет из Ростовского зоопарка в Колтуши, научилась у тамошних шимпанзе многим таким сигналам, а потом, когда она вернулась в Ростов, эти неврожденные элементы коммуникативного поведения переняли от нее другие шимпанзе. Как пишет Л.А. Фирсов, “факт более чем интересный” 109 .

Умеют шимпанзе и намеренно придавать своим действиям повышенную заметность, вкладывая в них тем самым коммуникативную составляющую, - об этом говорит рассмотренный выше (гл. 3) случай, когда шимпанзе-мать показывала своей дочери, как надо колоть орехи. Действие, в обычной ситуации служащее вполне практическим надобностям, было выполнено медленнее и отчетливее, чем необходимо для того, чтобы расколоть орех, и цель его явно состояла в том, чтобы дочь смогла приобрести знание, как следует в такой ситуации держать в руке камень.

Как пишет Дж. Гудолл, шимпанзе “проявляют большую изобретательность в коммуникативных актах. Действительные сигналы, подаваемые самцом во время ухаживания, варьируют как у одного и того же самца в разных ситуациях, так и у разных самцов; самка почти наверняка реагирует на всю совокупность разнообразных сигналов, а не на отдельные элементы” 110 .

Основой для столь свободного превращения действий в сигналы служит то, что шимпанзе могут “предвидеть вероятный характер реакции сородичей на свое собственное поведение или на действия других шимпанзе и в соответствии с этим видоизменять свои поступки”, а также “внимательно подмечать разного рода непроизвольные, ненаправленные детали поведения своих сородичей, которые могут служить случайными сигналами” 111 . Поскольку шимпанзе достаточно умны, чтобы верно истолковывать пластичное поведение своих сородичей и принимать его в расчет при построении собственной линии поведения, их легко заставить истолковывать те элементы поведения, которые сородичи могут специально сделать особенно заметными, - в этом случае и получаются ad-hoc-сигналы. Граница между просто поведением и сигналами достаточно зыбка, поскольку даже совершенно лишенные сигнальной составляющей действия могут быть поняты сородичами, которые изменят в связи с этим собственное поведение. О сигнализации можно говорить лишь постольку, поскольку некоторые свои действия шимпанзе намеренно сопровождают специальными деталями, способствующими усилению заметности.

Таким образом, можно видеть, что достаточно многие свойства, полезные для развития языка, у шимпанзе имеются. Вероятно, имелись они и у общих предков шимпанзе и человека - а если даже развились независимо, то это можно рассматривать как очередное проявление сформулированного Николаем Ивановичем Вавиловым закона гомологических рядов в наследственной изменчивости (“виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов”).

Чрезвычайно интересные закономерности эволюции коммуникативных систем в рамках отряда приматов выявили М.А. Дерягина и С.В. Васильев 112 . По их данным, хотя все приматы используют многие каналы передачи информации - визуальный, акустический и ольфакторный (запаховый), - у разных таксонов наиболее важная роль в коммуникации закреплена за разными каналами. У полуобезьян - лемуров и галаго - ведущая роль принадлежит ольфакторному каналу, у широконосых обезьян на первый план выдвигается акустический канал (у некоторых - наряду с ольфакторным), у узконосых (кроме человека) - визуальный. У более прогрессивных таксонов не только увеличивается общее число сигналов, но и происходит перераспределение долей сигналов разного типа в коммуникативном инвентаре. Например, число различных поз и тактильных элементов увеличивается у шимпанзе по сравнению с низшими обезьянами примерно вдвое, а число жестов - в 4–5 раз 113 . Сходство между отдельными сигналами (как формальное, так и “смысловое”) дает возможность предположить, что наиболее архаичными коммуникативными элементами являются позы (“они примерно с одинаковой частотой встречаются у всех исследованных нами видов”, пишут М.А. Дерягина и С.В. Васильев 114 ). Жесты, напротив, оказываются наиболее прогрессивными - они “моложе” не только поз, но и мимики. Еще одна эволюционная тенденция - увеличение числа дружелюбных сигналов в репертуаре. Из 13 общих для всех исследованных видов коммуникативных комплексов “10 связаны с агрессивным контекстом поведения” 115 . “Вероятно, первичная функция комплексов коммуникации состояла в предотвращении агрессии, особенно ее контактных деструктивных форм” 116 . Впоследствии получают развитие дружелюбные элементы коммуникации - их число растет у более прогрессивных видов по сравнению с более примитивными, у шимпанзе они складываются в особые дружелюбные комплексы. Кроме того, у шимпанзе усиливается связь “жестов и звуков в дружелюбной сфере общения” 117 . Наиболее прогрессивной чертой коммуникативной системы является возможность “объединять элементы в комплексы и перекомбинировать их в новой ситуации” 118 - отчетливее всего она проявляется у бонобо в дружественных социальных контактах. Такой эволюционный путь развития коммуникативной системы - от агрессивных контактов к дружеским и кооперативным - представляется очень важным для становления человеческого языка.

Общие закономерности эволюции выполняются для самых разных таксонов. Поэтому в ходе формирования языка естественно ожидать, чтобы происходили такие процессы, как появление в сигналах компонентов “повышенной заметности” (легко регистрируемых детекторами), превращение иконических сигналов в символьные, эмоциональных - в референциальные, врожденных - в выучиваемые, возникновение возможности передавать информацию о том, что не находится непосредственно в поле наблюдения, а также сжимать информацию. Все эти процессы являются неотъемлемым свойством развития коммуникативных систем в природе.

Объяснять же надо другое. Поскольку коммуникация, как уже говорилось, весьма дорого “стоит”, идти на такие затраты можно только во имя чего-то действительно жизненно необходимого. Поэтому в “сферу действия” коммуникативной системы у животных бывают включены только самые важные для жизни вида моменты. И это порождает неизбежную ограниченность встречающихся в природе коммуникативных систем. Соответственно, гипотеза о происхождении языка должна непременно ответить на вопрос о том, какие факторы окружающей среды стали настолько жизненно важны для наших предков, что им понадобилась именно такая коммуникативная система (с огромным числом понятий - от наиболее конкретных до самых абстрактных). Кроме того, она должна также объяснить, с какого момента и по каким причинам (и у какого вида гоминид) бюджет энергии приобрел такие характеристики, что поддержание столь колоссальной системы коммуникации стало возможным без угрозы для общей приспособленности, - а может быть, гоминиды (по крайней мере, с какого-то времени) стали производить столько “лишней” энергии, что развитие языка могло продолжаться и тогда, когда жесткой необходимости в этом уже не было.

Коммуникация у животных

В настоящее время выделяются три основных подхода к изучению коммуникации животных в зоопсихологии.

Попытки прямой расшифровки сигналов. Можно просто наблюдать за животными в разнообразных ситуациях их жизни в сообществах и, опираясь на достоверные корреляции между предшествующими и последующими событиями, делать выводы об используемых животными системах передачи информации (корреляционный метод). Были получены данные о сигналах, используемых рядом видов птиц в брачном поведении, информирующих о найденных источниках корма у медоносной пчелы, информирующих о разных опасных животных у зеленых мартышек («орел», «змея», «леопард») и др. Часто метод наблюдения дополняется экспериментом. Метод макетов или моделей, использованный при изучении системы передачи информации у бабочек-бархатниц, позволил установить, какой именно набор признаков моделей бабочки самки вызывает положительную реакцию самцов (цвет – черный, размер – большой, в 4,5 раза больше натурального, форма не важна, движения – танцующие, порхающие, а не равномерные). С помощью эксперимента, включающего предъявление зеленым мартышкам записей криков их сородичей, издаваемых в различных ситуациях тревоги, но при измененных акустических характеристиках и в отсутствии реальной опасности, было установлено, что обезьяны и в этих случаях ведут себя в соответствии с семантическими значениями сигналов. Были составлены «словари» соответствующих сигналов для многих видов животных: насекомых, птиц (дятлов, кур, соек), млекопитающих (грызунов, дельфинов, лемуров, мартышек).

Попытки обучить животных применению какой-либо системы коммуникации, не присущей данному виду (обучение языкам-посредникам, искусственным языкам). Работы проводились с обезьянами (низшими – павианами и макаками, а также человекообразными, за исключением гиббонов), дельфинами, ластоногими и попугаями. В качестве систем коммуникации использовали системы жестов, пластиковых жетонов, значков (лексиграмм), нанесенных на клавиатуру компьютера, звуков, создаваемых с помощью синтезатора, слов разговорного английского языка. Животных обучали с помощью различных вариантов дрессировки, в т. ч. и путем подражания. Установлено, что представители всех перечисленных таксонов животных способны в определенных для каждого вида пределах освоить навязанную систему коммуникации и достаточно успешно пользоваться ею, в ряде случаев комбинируя усвоенные символы для обозначения новых объектов и ситуаций.

Теоретико-информационный подход. Суть этого оригинального подхода (Ж. И. Резникова) в том, что в экспериментах животные ставятся перед задачей передать определенное (заранее известное экспериментатору) количество информации, при этом измеряется время, затраченное на ее передачу, т. е. оценивается скорость передачи информации. В лабораторных экспериментах с рыжими лесными муравьями было показано, что муравьи-разведчики передают фуражирам совершенно точную информацию о том, на каком из конечных «листьев» искусственного «бинарного дерева» (особого лабиринта) находится приманка (сироп). Передается информация с помощью тактильного контакта – посредством «антеннального кода». Чем длинней была последовательность поворотов, т. е. чем больше информации надо было передать, тем больше времени муравей-разведчик тактильно, с помощью усиков, контактировал со своими 4–7 фуражирами. Получив информацию, фуражиры быстро, практически без ошибок на поворотах, достигали нужного «листа» и «дерева» (нового, не имеющего запаха муравья-разведчика). В описанных экспериментах показано, что муравьям, как и пчелам (что было впервые обнаружено К. Фришем у медоносной пчелы), свойственно т. наз. дистанционное наведение, т. е. передача информации дистанционным путем: у пчел – с помощью «танца», у муравьев – «антеннального кода».

Источники ко всем статьям Раздела 16: Лопатина Н. Г. Наумов Н. П. Биологические (сигнальные) поля и их значение в жизни млекопитающих // Успехи современной териологии. М., 1977; Резникова Ж. И. Структура сообществ и коммуникация животных. Новосибирск, 1997; Она же. Интеллект и язык. Животные и человек в зеркале эксперимента. М., 2000; Она же. Интеллект и язык животных и человека. Основы когнитивной этологии. М., 2005; Фабри К. Э. Основы зоопсихологии. М., 1976; Он же. Филогенетические предпосылки человеческих способов общения. Вестник МГУ. Сер. 14. Психология. 1977. № 2; Фридман В. С. Пространство и время социальной жизни животных: ресурс нынешнего или когнитивная матрица будущего поведения? // Мир психологии. 1999. № 4; Он же. Ритуализированные демонстрации позвоночных в процессе коммуникации: знак и стимул // Мастер-класс для «Пантоподы». М., 2007; Фриш К. Из жизни пчел. М., 1980.

Редактор-составитель Н. Н. Мешкова

Биологическое сигнальное поле животных (термин предложен Н. П. Наумовым): 1. Вносимые жизнедеятельностью животных изменения в окружающую среду и приобретающие информационное значение для представителей данного вида, а иногда и для представителей др. видов. 2. Вся доступная животным информация, как непосредственно получаемая от животного, обитающего на опр. территории, так и опосредованная – от следов жизнедеятельности животного на данной территории. Следы жизнедеятельности, имеющие информационное значение, достаточно видоспецифичны. Напр., для бурого медведя это «задиры» коры деревьев на высоте своего роста (при стоянии на задних конечностях), для песчанок – сооружение «сигнальных холмиков» или «сторожков» из грунта, пропитанного собственными выделениями, для домашней кошки – помеченные при особом маркировочном мочеиспускании «выделяющиеся» предметы – стволы деревьев, углы зданий, колеса автомобилей, для амурского тигра – «поскребы», сделанные когтями, и мочевые метки на вертикальных поверхностях тоже чем-то «выделяющихся» объектов – величиной, необычной формой ствола, наростами (деревья), отдельно расположенные крупные камни. У территориальных видов млекопитающих информационное значение приобретают также постоянные и временные убежища, соединяющая их сеть троп. Для насекомых (муравьев) информационное значение имеют также запаховые следы, оставляемые на тропах, расходящихся от муравейника в направлении кормовых участков. Пчелы, найдя обильный источник корма, метят это место при помощи особой железы, оставленный запах позволяет др. пчелам, получившим информацию, переданную во время «танца» разведчицы («танцы» пчел ), легче обнаружить этот источник корма. Для Б. с. п. ж. в значении 2 к перечисленным выше источникам информации следует добавить информацию, передаваемую с помощью особых сигналов непосредственно от животного к животному (сигналы животных ).

Н. Н. Мешкова

Демонстрации у животных – двигательные паттерны, вовлеченные в коммуникацию животных, в значительной степени генетически детерминированные и характерные для каждого вида. Демонстрации – результат процесса ритуализации. Демонстрации отличаются стереотипностью, выразительностью, преувеличенным характером исполнения, фиксированностью движений. Благодаря этому они выделяются как дискретные поведенческие структуры, позволяющие партнерам распознавать их как сигналы на фоне несигнальной активности и адекватным образом реагировать. Исследования последних лет показали, что у самых разных видов животных с разл. внутригрупповой организацией стержневым событием процессов общения является обмен информацией. Ритуализованные демонстрации и представляют собой те структуры, функция к-рых в процессе коммуникации – перенос четко отграниченных порций информации от одного животного к другому и обратно (В. С. Фридман). Демонстрации, функционирующие как сигналы, участвующие в коммуникации, описанные, напр., у манящих крабов, у разных видов рыб, ящериц, птиц и млекопитающих.

Н. Н. Мешкова

Коммуникация визуальная у животных – передача и прием информации посредством зрения. Визуальный канал связи обеспечивает экстренное поступление информации со значительных расстояний и весьма эффективен в кач. средства дистантной связи. К тому же отсутствует быстрое затухание сигнала, как при акустической коммуникации: пока животные находятся в пределах видимости друг друга, они являются постоянными взаимными источниками визуальной информации. В зрительной коммуникации используются сигналы двух типов: дистантные, действующие на значительных расстояниях, и ближние, действующие на коротких расстояниях. Пример первых – неспецифические сигналы, возникающие как следствие самого присутствия особей в поле зрения друг друга: стервятники, грифы и др. хищные птицы-падальщики отслеживают друг друга, летая на значительной высоте и на большом удалении друг от друга во время поиска пищи. Резкое снижение высоты одной из птиц служит для остальных сигналом о возможном обнаружении падали или раненого животного. Пример вторых – визуальные контакты между животными при ухаживании и заботе о потомстве: сигнальные позы и телодвижения в семейных парах цихлидовых рыб. Визуальная коммуникация обслуживает разл. сферы жизнедеятельности животных: территориальное, половое, родительско-детское поведение, др. сферы внутривидового взаимодействия, такие как агонистические, дружеские контакты, кооперативное поведение, возникновение и поддержание «традиций» – эффективных способов действия факультативного характера.

Визуальные сигналы нередко дополняются акустическими и тактильными, образуя сложные коммуникативные комплексы. Напр., у шимпанзе наблюдается коммуникативный комплекс, включающий особое мимическое выражение – «игровое лицо», жест, тактильное воздействие и голосовую реакцию, в ситуации взаимодействия подростков при приглашении к совместной игре.

Н. Н. Мешкова

Манипулирование демонстрационное – особый путь (тип) передачи информации, описанный автором у обезьян (павианов гамадрилов, макак резусов): одно животное, как правило высокоранговое, подчеркнуто, «нарочито» показывает объект манипулирования др. членам сообщества и демонстративно, провокационно манипулирует им на виду у внимательно наблюдающих за его действиями членов группы. Помимо демонстрационного показа объекта и производимых с ним действий, такая обезьяна может поддразнивать «зрителей» тем, что придвигает объект к одному из них, но немедленно одергивает его назад и с шумом «нападает», как только др. обезьяна протягивает к нему руку. Агрессивные проявления со стороны демонстрирующей обезьяны подавляются «зрителями» путем особых, примирительных движений и поз. Такое демонстрационное манипулирование наблюдается преим. у взрослых обезьян, но не у детенышей. Такое поведение обнаруживает, по мнению К. Э. Фабри, все признаки демонстрации, но при этом имеет существенную и важную познавательную функцию. Наблюдающие обезьяны имеют возможность дистантно получить такие сведения о свойствах объекта манипулирования, к-рые обычно выявляются лишь при непосредственном обращении с объектами. Они в состоянии проследить за структурными изменениями объекта, не вступая с ним в непосредственный контакт, т. к. все деструктивные и прочие манипуляции «актер» выполняет у них на виду, как бы «один за всех». Результатом демонстрационного манипулирования могут быть подражательные действия «зрителей». Это зависит от того, насколько действия «демонстратора» стимулировали остальных обезьян. Но всегда объект манипулирования выступает как некий посредник в общении между «актером» и «зрителями». Последние получают информацию и о самой манипулирующей особи, в действиях к-рой содержатся элементы «импонирования».

Демонстрационное манипулирование имеет прямое отношение к формированию «традиций» у обезьян, к настоящему времени подробно описанному у многих видов как низших, так и человекообразных обезьян. Этот путь передачи информации об объектах рассматривается К. Э. Фабри в кач. одной из важнейших предпосылок человеческих способов общения, поскольку именно здесь создаются наилучшие условия для совместной коммуникативно-познавательной деятельности.

Н. Н. Мешкова

Поведение ритуализованное у животных – видотипичные поведенческие паттерны, к-рые в процессе ритуализации модифицировались и стали исполнять коммуникативные функции. Эти паттерны обычно стереотипны по форме и являются незавершенными по своему исполнению. Ритуализованное поведение часто имеет определенную, типичную для вида интенсивность. Напр., черный дятел барабанит по дереву при выдалбливании дупла для гнезда. Он же барабанит по сухим ветвям для обозначения занятости территории. В последнем случае звук имеет характерный ритм и является стереотипным по сравнению со звуком при выдалбливании дупла. Ритуализованное поведение характеризуется также изменениями в мотивации. Примером является ритуализованное кормление в процессе ухаживания у многих видов птиц. Самки часто выпрашивают корм у самцов, ухаживающих за ними, с помощью поведения, к-рое в др. случаях наблюдается только при выпрашивании корма молодняком. В ситуации выпрашивания самки не являются особенно голодными, их поведение явно ритуализовано и имеет др. мотивацию, чем при обычном выпрашивании пищи.

Н. Н. Мешкова

Релизеры, или ключевые раздражители (от англ. to release – освобождать, отпускать, сбрасывать), – признаки компонентов среды, в т. ч. признаки, носителями к-рых являются сами животные, а также демонстрации, выполняемые ими, к-рые являются сигналами-стимулами, запускающими ответные реакции. Склонность животных подавать такие сигналы и отвечать на них опр. действиями – врожденная. Ответная реакция при действии ключевого раздражителя неизбежна, если животное находится в соответствующем мотивационном состоянии и рецептивно в отношении данного стимула. Однако показано для многих видов птиц и млекопитающих, живущих сообществами, что члены сообщества реагируют на релизеры своего вида, только когда он исходят от опр. особей, известных данному животному лично. В данном случае это результат установления индивидуальных связей в процессе научения. Как релизеры могут функционировать звуки (крики лягушек и жаб), запахи (пахучие чешуйки у самца бабочки), прикосновения (мягкие касания партнера у виноградной улитки, энергичное толкание самки самцом колюшки), разнообразные зрительные стимулы (красное пятно на клюве взрослой серебристой чайки), движения (при демонстрациях, связанных с угрозой и ухаживанием у серебристой чайки).

Н. Н. Мешкова

Ритуализация у животных – эволюционный процесс, путем к-рого нек-рые виды активности животных – элементы смещенной и переадресованной активности, экспрессивные движения, движения намерения, предоставляющие опр. информацию др. животному, – превращаются в стереотипные структуры поведения и приобретают сигнальную функцию. Напр., при помощи ритуализации смещенной чистки клювом перьев сложилась ритуализированная чистка, к-рая наблюдается во время ухаживания у многих видов уток. Она более стереотипная, чем нормальная чистка клювом перьев, и направлена на особенно бросающиеся в глаза заметные перья. В результате ритуализации элементы перечисленных выше активностей становятся демонстрациями.

Н. Н. Мешкова

Сигнализация у животных – осуществление коммуникативного взаимодействия между особями в сообществе с помощью сигнальных средств, посредством к-рых партнер или партнеры побуждаются к специфическим видотипичным ответным реакциям. Такова, напр., обоюдная сигнализация в семейных парах цихлидовых рыб в период заботы о мальках, семейных парах серебристых чаек в период насиживания и выкармливания птенцов. Эффект воздействия на партнера зависит от уровня мотивации демонстратора и, соответственно, интенсивности подаваемого сигнала. В кач. сигналов такого рода выступают выразительные движения и позы, а также их сочетания – демонстрации. По механизму своего действия на партнера последнее относится к ключевым раздражителям или релизерам.

Н. Н. Мешкова

Сигналы животных – средства, с помощью к-рых при взаимодействиях оказывают влияние друг на друга путем передачи информации. Сигналы представляют собой структуры поведения, состоящие из опр. поведенческих элементов – выразительных движений, поз, экспрессивных действий, звуков или их комплексов, а также морфоструктур, к-рые животные демонстрируют при помощи соответствующих движений. Сигналы подразделяют по способу осуществления сигнальной функции на сигналы-стимулы и сигналы в собственном смысле слова (символы или знаки). Сигналы-стимулы побуждают животное к ответному действию здесь и сейчас. К этой категории сигналов относятся ключевые раздражители, или релизеры. Животное-инициатор выполняет опр. видотипичную демонстрацию и в ответ др. животное осуществляет опр. также видотипичную реакцию, но только в том случае, если это животное находится в соответствующем мотивационном состоянии и рецептивно в отношении данного стимула. Напр., широко раскрывая ярко окрашенный рот, птенец (у многих видов воробьиных птиц) побуждает родителей складывать принесенную пищу ему в рот. Подобный тип влияния на партнера относят к категории манипуляции. С помощью стимулов животное манипулирует поведением партнера.

Сигналы в собственном смысле слова (символы или знаки) предают информацию, а не оказывают воздействие здесь и теперь (как стимулы). Животное, к-рому адресована эта информация, может воспользоваться ею сразу, а может и существенно позже, как только соответствующая ситуация возникнет вновь, т. е. в этом случае у животного имеется свобода выбора. Напр., в экспериментах, выполненных на цыплятах (Evans), было показано, что специфическую реакцию затаивания и бегства вызывает как особый «крик опасность с воздуха», так и стилизованное изображение «ястреба», если его двигать над цыплятами. Но стратегия каждым цыпленком принимается самостоятельно, исходя из собственного положения относительно опасности и собственных обстоятельств. Та же самая особенность, а именно отсутствие однозначной реакции на сигналы о появлении опасных объектов, была продемонстрирована на зеленых мартышках, мартышках-дианах, лемурах катта, пустынных мангустах сурикатах. При изучении функционирования такого рода сигналов в сообществах животных было также установлено, что эти сигналы достаточно независимы от контекста и соотносятся именно с опр. категориями значимых для вида событий в его среде обитания. Так, лемуры катта издают «крик опасность с воздуха» на любое появление пернатых хищников независимо от того, где находится сам лемур, или от того, насколько быстро меняется скорость приближения хищника к самому животному (Pereira, Macedonia). А зеленые мартышки издавали «крик орла», когда птица была достаточно далеко, и на последних стадиях атаки, когда кричащие обезьяны почти не имеют шансов спастись (Cheney, Seyfarth). Недавно было описано – у больших белоносых мартышек – комбинирование сигналов. У этого вида есть два базовых крика, относящихся к потенциально опасным объектам: «крик леопард с земли» и «крик орел с воздуха». Объединение обоих криков дает сигнал с новым значением «крайней, экстремальной опасности», в ответ на к-рый обезьяны всей группы сразу же снимаются с места и перемещаются быстро на дальнее расстояние (Arnold, Zuberbtihler).

Сигналы, подобные описанным, получили название «referential signals», т. е. относящихся к опр. категории значимых объектов во внеш. мире животного (Evans). Ж. И. Резникова использует дословный перевод «категориальный сигнал». В. С. Фридман считает более подходящим по смыслу перевод этого термина как «сигнал-символ» или «сигнал-знак». В отличие от сигналов первого типа – стимулов, к-рые функционируют между двумя (тремя) особями, сблизившимися для взаимодействия, – сигналы такого типа – символы или знаки – функционируют на уровне всего сообщества. Поэтому сообщения, поданные такими сигналами, сохраняют значимость и коммуникативную ценность вне «пространства и времени» той конкретной ситуации, когда был подан сигнал, тогда как сигналы-стимулы – теряют. Функционируя в сообществе животных как целостной системе, сигналы-знаки или «имена» опр. категорий существенных событий в окружающем животное мире, позволяют установить опр. соответствие сигналов и событий, т. е. передавать опр. порции информации от одной особи к другой и обратно, если они регулярно и активно участвуют как в восприятии, так и в генерировании таких сигналов-знаков.

В сообществах животных важная для них информация может содержаться не только в описанных выше сигналах, но и в следах активности животных. В этих случаях животное получает информацию опосредованно через объекты, подвергавшиеся воздействию со стороны животного. Трансформированная животными среда обитания не только позволяет им ориентироваться в пространстве, но и служит дополнительным важным источником информации как на видовом, так и на межвидовом уровнях. Совокупная информация, передаваемая непосредственно от одного животного к другому с помощью сигналов и опосредованно при помощи следов активности в среде, получила название «биологического сигнального поля» (Н. П. Наумов). В отношении, по крайней мере, обезьян можно говорить еще об одном – третьем пути или типе передачи информации – о комплексной передаче информации, при к-рой сочетаются оба предыдущих типа: действия животного и их результаты. Комплексная передача информации происходит тогда, когда обезьяны наблюдают за манипуляциями с объектами, преим. деструктивными, осуществляемыми демонстративно у них на виду др. обезьяной (К. Э. Фабри). Такое манипулирование получило название «демонстрационного манипулирования».

Arnold K., Zuberbtihler K. Semantic combinations in primate calls // Nature. 2006. 441. 18 May; Pereira M. E., Macedonia J. M. Ringtailed lemur antipredator calls denote predator class, not response urgency. Animal Behaviour 41. 1991; Cheney D., Seyfarth R. How monkeys see the world: Inside the mind of another species. Chicago; Evans C. Referential signal // Perspectives in ethology. 1997. V. 12.

Н. Н. Мешкова

Тактильная информация – обмен информацией между животными на основе физич. контактов. В силу своей природы тактильная коммуникация возможна только на близком расстоянии. Она широко распространена в животном мире, особенно выражена у видов с исключительно «общественным» образом жизни. Среди насекомых это, напр., муравьи, у к-рых описана передача информации о найденном корме при помощи «антеннального кода», пчелы, у к-рых описана передача информации о месте массового цветения растений с помощью «языка танцев», включающую тактильную составляющую. Тактильная коммуникация имеет важное значение и для позвоночных. Так, напр., самка колюшки, прежде чем отложить икру в гнездо, сделанное самцом из растений, нуждается в серии толчков, к-рые он проделывает, тычась своим рыльцем в основание ее хвоста. У шимпанзе физич. контакты с др. особями – осн. компонент коммуникативных воздействий, направленных на то, чтобы подбодрить или успокоить др. животное. Тактильные контакты используются, в частности, как приветствие после разлуки, в знак примирения после агрессивной стычки (Гудолл). Выражается тактильная коммуникация в касаниях друг друга рукой, похлопываниях, объятиях, поцелуях. Один из самых важных видов тактильных контактов у обезьян – груминг, или обыскивание шерсти. Животные, находящиеся в тесных дружеских отношениях, напр., мать и ее выросший отпрыск, двое взрослых самцов или самок, когда встречаются после разлуки, обычно, поприветствовав друг друга, садятся и подолгу занимаются взаимным обыскиванием. Последние также эффективно уменьшает напряженность между двумя взрослыми самцами, если между ними существуют натянутые отношения. Нередко наблюдаются и агрессивные тактильные контакты, такие как шлепок, удар, затрещина, укус. Исследователи подчеркивают, что такого рода воздействия эффективно работают на поддержание порядка в сообществе шимпанзе.

Гудолл Дж. Шимпанзе в природе: поведение. М., 1992.

Н. Н. Мешкова

Танцы пчел – сложная система коммуникации, позволяющая пчелам-разведчицам с помощью информации абстрактного характера путем т. наз. дистанционного наведения сообщать рабочим пчелам о найденных ими местах обильного цветения растений (Frisch), а также пчелам-«квартирмейстерам» (это всегда самые старые пчелы в улье) сообщать др. пчелам во время роения о найденном ими подходящем месте для жилья (Lindauer; Lewis, Schneider). «Танец» осуществляется внутри улья, в полной темноте (с целью наблюдения в экспериментах используются однорамочные стеклянные ульи), на вертикальной поверхности сотов. К. Фриш описал три разновидности «танца», информирующие об удаленности источника корма. 1) «Танец-толчок»: пчела беспорядочно бежит по сотам, время от времени виляя брюшком (в том случае, если она обнаружила корм на расстоянии два – пять метров от улья); 2) «круговой танец», состоящий из пробежек по кругу попеременно по часовой стрелке и против нее (если корм обнаружен на расстоянии до 100 м); 3) «виляющий танец» – пробежки по прямой, сопровождающиеся вилянием брюшка с возвращением пчелы к исходной точке то слева, то справа (если корм найден на большом расстоянии от улья). Как показал К. Фриш, расстояние до источника корма коррелирует с 11 параметрами «танца», напр., с его продолжительностью, темпом, количеством виляний брюшком, длительностью звуковых сигналов. Во время «виляющего танца» пчела передает также информацию о направлении, в к-ром нужно лететь: угол между линией пробежки и вертикалью соответствует углу между линией полета пчелы от улья к источнику корма и направлением на солнце. При этом если следует лететь навстречу солнцу, пчела «танцует» снизу вверх, если же от солнца, то сверху вниз. Дополнительную информацию, а именно запаховую, пчелы получают, обнюхивая разведчицу, волосистое тело к-рой обсыпано пыльцой цветков. Кроме того, «танцующая» пчела время от времени останавливается и делится с пчелами, двигающимися за нею в фигурах «танца», нектаром с обнаруженных ею цветков. Позднее было показано (Лопатина), что молодые пчелы-фуражиры не в состоянии полностью воспринять информацию, содержащуюся в «танце», и вынуждены доучиваться.

Скептики долго не признавали реальность описанных К. Фришем «танцев» пчел. Были выполнены с целью проверки многочисл. исследования. Само описание явления «танца» пчел дополнилось новыми подробностями. Важное открытие, безоговорочно подтвердившее правоту К. Фриша, было сделано в исследовании, авторы к-рого использовали в кач. пчелы-разведчицы электронную пчелу-робота, управляемую с помощью компьютерной программы. Модель, сделанная из латуни и покрытая тонким слоем воска, выполняет «виляющий танец», совершая при этом вибрационные и колебательные движения и издавая звуки, генерируемые синтезатором. Через каждые три минуты компьютер вносит поправку в «танец» пчелы-робота с учета изменившегося положения солнца. Через каждые десять циклов «танца» она выделяет каплю ароматизированного сиропа, поедаемого следующими за нею пчелами. Установлено, что 80 % пчел, следовавших за «танцующей» пчелой-роботом, прилетали в то место, к-рое было указано (Мichelsen et al.). Явление, обнаруженное К. Фришем у медоносной пчелы – способность к дистанционному наведению, – позднее было описано у дельфинов (Evans, Bastian), шимпанзе (Мenzel), муравьев (Ж. И. Резникова).

Лопатина Н. Г. Сигнальная деятельность в семье медоносной пчелы (Apis melifera). Л., 1971; Frisch К. ?ber die Spriche der Bienen. Zool. Jahrb. Von. 1923, V. 40; Lindauer M. Communication among Social Bees. Cambridge, Massachusetts: Harvard Univ. Press, 1961; Michelsen A. The dance language of honeybees: recent findings and problems // Peter Marler Book, 1998.

H. H. Мешкова

Язык животных – 1. Сигналы и механизмы коммуникации видов животных, образующих сообщества. 2. Специализированная знаковая система, в к-рой система дифференцированных знаков соответствует дифференцированным категориям объектов внеш. мира. Язык животных в значении 1 – традиционное, разделяемое многими специалистами – этологами, зоопсихологами понимание этого термина. В кач. сигналов, образующих «язык», могут выступать визуальные, акустические, химические, тактильные, электрические средства коммуникации и способы их передачи (коммуникация визуальная, акустическая, химическая). «Язык» животных в значении 2 – понимание этого термина в более строгом смысле слова – только как коммуникация при помощи системы сигналов-символов или знаков. Что у животных действительно можно обнаружить такого рода коммуникацию, показывают исследования последнего десятилетия, выполненные на разных видах позвоночных, прежде всего птицах и млекопитающих (Фридман; Cheney, Seyfarth; Evans; и др.). В основе исследований систем сигнализации высших животных – объединение обычного сравнительно-этологического подхода к анализу поведения с семиотическим подходом и отделение старой, эволюционно более ранней системы сигналов-стимулов от эволюционно более молодой системы сигналов-символов (знаков). Из книги Как относиться к себе и к людям [Другая редакция] автора Козлов Николай Иванович

Невербальная коммуникация Каждый раз, когда я общаюсь с другими людьми, я выражаю словами только часть своего сообщения. Очень многое выражается тоном голоса и другими невербальными посланиями. Когда я функционирую и реагирую свободно, все эти сообщения, объединяясь,

Из книги Научите себя думать! автора Бьюзен Тони

Секс-коммуникация (психологический практикум)Чтобы в сексуальной жизни между вами не было недоразумений, вы можете воспользоваться предлагаемым небольшим вопросником американских авторов. Если вы по своему опыту уже знаете, что разговор на эту тему для вас чреват

Из книги Психология автора Робинсон Дейв

7. Коммуникация Использование информации, ради чего она преднамеренно или случайно вводится. Включает в себя очень важный подкомпонент? мышление.В данное определение включены многие из проблем, перечисленных выше. Не включены только те из них, которые в каком-то смысле

Из книги Социальные коммуникации автора Адамьянц Тамара Завеновна

Из книги Диагностика способности к общению автора Батаршев Анатолий

Из книги Энкоды: Как договориться с кем угодно и о чем угодно автора Ходорыч Алексей

Вербальная коммуникация В качестве знаковой системы в вербальной коммуникации выступает человеческая речь, т. е. естественный звуковой язык.Система фонетических знаков языка строится на основе лексики и синтаксиса. Лексика – это совокупность слов, входящих в состав

Из книги Фитнес для ума автора Лисс Макс

Невербальная коммуникация Невербальную коммуникацию по признаку средств предъявления информации можно разделить на кинестетику, пара– и экстралингвистику, проксемику и «контакт глаз» (визуальное общение).Кинестетика – это один из видов невербальной коммуникации,

Из книги Обратная сторона власти. Прощание с Карнеги, или Революционное руководство для марионетки автора Штайнер Клод

Из книги Психология рекламы автора Лебедев-Любимов Александр Николаевич

Из книги Введение в психологическую теорию аутизма автора Аппе Франческа

Коммуникация Власть коммуникации определяется способностью продуцировать собственные мысли и чувства в других людях. Она включает в себя две операции: передачу и прием, говорение и слушание. Для передачи знания, для разрешения проблем с другими людьми, для построения

Из книги автора

Внутримагазинная коммуникация Манера разговора и тон, выбранный вами для общения с собственной доченькой, определяют, какими воспоминаниями о продуктовом шопинге она впоследствии будет делиться со своим психологом – ужасными или прекрасными. Ниже приведены наиболее