Математическое моделирование биологических процессов.

Мы уже говорили о том, что математический подход к изучению тех или иных явлений реального мира начинается обычно с создания соответствующих общих понятий, т. е. с построения математических моделей, обладающих существенными для нас свойствами тех систем и процессов, которые мы изучаем. Мы упоминали и о тех трудностях, с которыми Связано построение таких моделей в биологии, трудностях, обусловленных чрезвычайной сложностью биологических систем. Однако, несмотря на эти трудности, "модельный" подход к биологическим проблемам сейчас успешно развивается и уже принес определенные результаты. Мы рассмотрим некоторые модели, относящиеся к различным биологическим процессам и системам.

Говоря о роли моделей в биологических исследованиях, важно заметить следующее. Хотя термин «модель» мы понимаем в абстрактном смысле - как некоторую систему логических понятий, а не как реальное физическое устройство, все же модель - это нечто существенно большее, чем простое описание явления или чисто качественная гипотеза, в которых еще остается достаточно места для разного рода неясностей и субъективных мнений. Напомним следующий пример, относящийся к довольно далекому прошлому. В свое время Гельмгольц, занимаясь изучением слуха, выдвинул так называемую резонансную теорию, выглядевшую правдоподобно с чисто качественной стороны. Однако проведенные позже количественные расчеты, учитывающие реальные значения масс, упругости и вязкости составляющих слуховую систему компонент, показали несостоятельность этой гипотезы. Иначе говоря, попытка превратить чисто качественную гипотезу в точную модель, допускающую ее исследование математическими методами, сразу же обнаружила несостоятельность исходных принципов. Конечно, если мы построили некоторую модель и даже получили хорошее согласие между этой моделью и результатами соответствующего биологического эксперимента, то это еще не доказывает правильности нашей модели. Вот если мы на основании изучения нашей модели сможем сделать какие-то предсказания о той биологической системе, которую мы моделируем, а затем подтвердим эти предсказания реальным экспериментом, то это будет гораздо более ценным свидетельством в пользу правильности модели.

Но перейдем к конкретным примерам.

2.Кровообращение

Одной из первых, если не самой первой, работой по математическому моделированию биологических процессов следует считать работу Леонарда Эйлера, в которой он развил математическую теорию кровообращения, рассматривая в первом приближении всю кровеносную систему как состоящую из резервуара с упругими стенками, периферического сопротивления и насоса. Эти идеи Эйлера (как и некоторые другие его работы) были сперва основательно забыты, а затем возрождены в более поздних работах других авторов.

3. Законы Менделя

Достаточно давняя и хорошо известная, но тем не менее весьма замечательная модель в биологии - это менделевская теория наследственности. Эта модель, основанная на теоретико-вероятностных понятиях, состоит в том, что в хромосомах родительских клеток заложены определенные наборы признаков, которые при оплодотворении комбинируются между собой независимо и случайно. В дальнейшем эта основная идея подверглась весьма существенным уточнениям; так, например, было обнаружено, что разные признаки не всегда независимы друг от друга; если они связаны с одной и той же хромосомой, то они могут передаваться лишь в определенной комбинации. Далее, обнаружилось, что и разные хромосомы комбинируются не независимо, а имеет место свойство, названное сродством хромосом, нарушающее эту независимость и т. д. В настоящее время теоретико-вероятностные и статистические методы весьма широко проникли в генетические исследования и даже термин «математическая генетика» получил полные права гражданства. Сейчас в этой области ведется интенсивная работа, получено много результатов, интересных как с биологической, так и с чисто математической точки зрения. Однако в самой основе этих исследований лежит та модель, которая была создана Менделем более 100 лет назад.

4. Модели мышцы

Одним из интереснейших объектов физиологического исследования является мышца. Этот объект весьма доступен, и многие исследования экспериментатор может проделать просто на себе, располагая лишь сравнительно несложным оборудованием. Достаточно ясны и определенны и те функции, которые выполняет мышца в живом организме. Несмотря на все это, многочисленные попытки построить удовлетворительную модель работы мышцы не дали окончательных результатов. Ясно, что хотя мышца может растягиваться и сокращаться, подобно пружине, их свойства совершенно различны, и даже в самом первом приближении пружину нельзя рассматривать как подобие мышцы. Для пружины существует строгая зависимость между ее удлинением и приложенной к ней нагрузкой. Для мышцы это не так: мышца может менять свою длину, сохраняя натяжение, и наоборот, менять силу тяги, не изменяя длины. Проще говоря, при одной и той же длине мышца может быть расслаблена, а может быть напряжена.

Среди различных режимов работы, возможных для мышцы, наиболее существенны так называемое изотоническое сокращение (т. е. сокращение, при котором напряжение мышцы остается постоянным) и изометрическое напряжение, при котором не меняется длина мышцы (оба ее конца неподвижно закреплены). Исследование мышцы в этих режимах важно для понимания принципов ее работы, хотя в естественных условиях активность мышцы не бывает ни чисто изотонической, ни чисто изометрической.

Для описания соотношения между скоростью изотонического сокращения мышцы и величиной нагрузки были предложены различные математические формулы. Наиболее известная из них - так называемое характеристическое уравнение Хилла. Оно имеет вид

(P+a)V=b(P 0 -P) ,

- скорость сокращения, а, b и Р 0 - постоянные.

Другие хорошо известные формулы для описания этой же связи - это уравнение Обера

P = Р 0 e- V⁄P ±F

и уравнение Полиссара

V=const (А 1-P/P 0 - B 1-P/P 0) .

Уравнение Хилла получило широкое распространение в физиологии; оно дает достаточно хорошее совпадение с экспериментом для мышц самых разных животных, хотя на самом деле оно представляет собой результат «подбора», а не вывод из некоторой модели. Два других уравнения, дающих в довольно широком диапазоне нагрузок примерно ту же зависимость, что и уравнение Хилла, получены их авторами из определенных представлений о физико-химическом механизме мышечного сокращения. Существует ряд попыток построить модель работы мышцы, рассматривая последнюю как некоторую комбинацию упругих и вязких элементов. Однако до сих пор достаточно удовлетворительной модели, отражающей все основные черты работы мышцы в различных режимах, не существует.

5. Модели нейрона, нейронные сети

Нервные клетки, или нейроны, это те «рабочие единицы», из которых состоит нервная система и которым организм животного или человека обязан всеми своими способностями воспринимать внешние сигналы и управлять различными частями тела. Характерная черта нервных клеток состоит в том, что такая клетка может находиться в двух состояниях - покоя и возбуждения. В этом нервные клетки сходны с такими элементами, как радиолампы или полупроводниковые триггеры, из которых собираются логические схемы вычислительных машин. За последние 15-20 лет было предпринято много попыток моделировать деятельность нервной системы, исходя из тех же принципов, на которых основана работа универсальных вычислительных машин. Еще в 40-х годах американские исследователи Мак-Каллок и Питтс ввели понятие «формального нейрона», определив его как элемент (физическая природа которого не играет роли), снабженный некоторым количеством «возбуждающих» и некоторым количеством «тормозящих» входов. Сам этот элемент может находиться в двух состояниях - «покой» или «возбуждение». Возбужденное состояние наступает в том случае, если на нейрон пришло достаточное число возбуждающих сигналов и нет тормозящих сигналов. Мак-Каллок и Питтс показали, что с помощью схем, составленных из таких элементов, можно, в принципе, реализовать любой из типов обработки информации, происходящих в живом организме. Это, однако, вовсе не означает, что мы тем самым познали действительные принципы работы нервной системы. Прежде всего, хотя для нервных клеток характерен принцип «все или ничего», т. е. наличие двух четко выраженных состояний - покой и возбуждение, отсюда вовсе не следует, что наша нервная система, подобно универсальной вычислительной машине, пользуется двоичным цифровым кодом, состоящим из нулей и единиц. Например, в нервной системе существенную роль играет, видимо, частотная модуляция, т. е. передача информации с помощью длин временных интервалов между импульсами. Вообще в нервной системе нет, видимо, такого разделения способов кодирования информации на «цифровые» дискретные) и «аналоговые» (непрерывные), какое имеется в современной вычислительной технике.

Для того чтобы система нейронов работала как некоторое целое, необходимо, чтобы между этими нейронами были определенные связи: импульсы, генерируемые одним нейроном, должны поступать на входы других нейронов. Эти связи могут иметь правильную, регулярную структуру, а могут определяться лишь статистическими закономерностями и подвергаться тем или иным случайным изменениям. В существующих сейчас вычислительных устройствах никакой случайности в соединениях между элементами не допускается, однако имеется ряд теоретических исследований по поводу возможности построения вычислительных устройств, основанных на принципах случайных связей между элементами. Есть достаточно серьезные доводы в пользу того, что связи между реальными нейронами в нервной системе тоже носят в значительной мере статистический, а не строго регулярный характер. Однако мнения по этому поводу расходятся.

В целом, по поводу проблемы моделирования нервной системы можно сказать следующее. Мы уже довольно много внаем об особенностях работы нейронов, т. е. тех элементов, из которых состоит нервная система. Более того, с помощью систем формальных нейронов (понимаемых в смысле Мак- Каллока и Питтса или в каком-либо ином), имитирующих основные свойства реальных нервных клеток, можно моделировать, как уже говорилось, весьма разнообразные способы обработки информации. Тем не менее мы еще довольно далеки от четкого понимания основных принципов работы нервной системы и отдельных ее частей, а следовательно, и от создания ее удовлетворительной модели * .

* (Если мы можем создать какую-то систему, умеющую решать такие же задачи, что и какая-то другая система, то это еще не значит, что обе системы работают по одним и тем же принципам. Например, можно численно решать дифференциальное уравнение на цифровой вычислительной машине, задав ей соответствующую программу, а можно то же уравнение решать на аналоговой машине. Мы получим одинаковые или почти одинаковые результаты, но принципы обработки информации в этих двух типах машин совершенно различные. )

6. Восприятие зрительных образов. Цветное зрение

Зрение - один из основных каналов, по которому к нам поступают сведения о внешнем мире. Известное выражение - лучше один раз увидеть, чем сто раз услышать - справедливо, между прочим, и с чисто информационной точки зрения: количество информации, которое мы воспринимаем с помощью зрения, несравненно больше, чем воспринимаемое другими органами чувств. Эта важность зрительной системы для живого организма наряду с другими соображениями (специфичность функций, возможность проведения разнообразных исследований без каких-либо повреждений системы и т. д.) стимулировала ее изучение и, в частности, попытки модельного подхода к этой проблеме.

Глаз представляет собой орган, служащий одновременно и оптической системой и устройством для обработки информации. И с той и с другой точки зрения эта система обладает рядом удивительных свойств. Замечательна способность глаза приспосабливаться к очень широкому диапазону интенсивностей освещения и правильно воспринимать при этом все цвета. Например, находящийся в плохо освещенной комнате кусок мела отражает меньше света, чем кусок угля, вынесенный на яркий солнечный свет, тем не менее мы в каждом из этих случаев воспринимаем цвета соответствующих предметов правильно. Глаз хорошо передает относительные различия в интенсивностях освещения и даже их несколько «утрирует». Так, серая линия на ярко-белом фоне кажется нам более темной, чем сплошное поле того же серого цвета. Эта способность глаза подчеркивать контрасты освещенности связана с тем, что зрительные нейроны оказывают друг на друга тормозящее действие: если из двух соседних нейронов первый получает более сильный сигнал, чем второй, то он оказывает на второй интенсивное тормозящее действие, и на выходе этих нейронов разница в интенсивности получается больше, чем была разница в интенсивности входных сигналов. Модели, состоящие из формальных нейронов, соединенных между собой как возбуждающими, так и тормозящими связями, привлекают внимание как физиологов, так и математиков. Здесь имеются и интересные результаты и нерешенные вопросы.

Большой интерес представляет механизм восприятия глазом различных цветов. Как известно, все оттенки цветов, воспринимаемых нашим глазом, могут быть представлены как комбинации трех основных цветов. Обычно в качестве таких основных цветов берут красный, синий и желтый цвета, отвечающие длинам волн 700, 540 и 450 Å, но этот выбор не однозначен.

«Трехцветность» нашего зрения связана с тем, что в глазу человека имеются рецепторы трех типов, с максимумами чувствительности в желтой, синей и красной зонах соответственно. Вопрос о том, как мы с помощью этих трех рецепторов различаем большое количество цветовых оттенков, весьма не прост. Например, недостаточно ясно еще - чем именно кодируется тот или иной цвет в нашем глазу: частотой нервных импульсов, локализацией того нейрона, который преимущественно реагирует на данный оттенок цвета, или чем-либо еще. Существуют некоторые модельные представления об этом процессе восприятия оттенков, однако они еще носят довольно предварительный характер. Несомненно, впрочем, что и здесь существенную роль должны играть системы нейронов, соединенных между собой как возбуждающими, так и тормозящими связями.

Наконец, глаз весьма интересен и как кинематическая система. Рядом остроумных опытов (многие из них были выполнены в лаборатории физиологии зрения Института проблем передачи информации в Москве) был установлен следующий на первый взгляд неожиданный факт: если некоторое изображение неподвижно относительно глаза, то глаз его не воспринимает. Наш глаз, осматривая какой-либо предмет, буквально «ощупывает» его (эти движения глаза можно при помощи соответствующей аппаратуры точно зарегистрировать). Изучение двигательного аппарата глаза и разработка соответствующих модельных представлений достаточно интересны как сами по себе, так и в связи с другими (оптическими, информационными и т. п.) свойствами нашей зрительной системы.

Резюмируя, можно сказать, что мы еще далеки от создания вполне удовлетворительных моделей зрительной системы, хорошо описывающих все ее основные свойства. Однако ряд важных аспектов и (принципов ее работы уже достаточно ясен и может быть смоделирован в виде вычислительных программ для УЦВМ или даже в виде технических устройств.

7. Модель активной среды. Распространение возбуждения

Одно из весьма характерных свойств многих живых тканей, в первую очередь нервной ткани, это их способность к возбуждению и к передаче возбуждения от одних участков к соседним с ними. Примерно раз в секунду волна возбуждения пробегает по нашей сердечной мышце, заставляя ее сокращаться и гнать кровь по всему телу. По нервным волокнам возбуждение, распространяясь от периферии (органов чувств) к спинному и головному мозгу, информирует нас о внешнем мире, а в обратном направлении идут возбуждения-команды, предписывающие мышцам те или иные действия.

Возбуждение в нервной клетке может возникнуть само по себе (как говорят, «спонтанно»), под действием возбужденной соседней клетки или же под влиянием какого-либо внешнего сигнала, скажем, электрического раздражения, идущего от некоторого источника тока. Перейдя в возбужденное состояние, клетка пребывает в нем некоторое время, а затем возбуждение исчезает, после чего наступает определенный период невосприимчивости клетки к новым раздражениям - так называемый рефрактерный период. В течение этого периода клетка не реагирует на поступающие к ней сигналы. Затем клетка снова переходит в первоначальное состояние, из которого возможен переход в состояние возбуждения. Таким образом, возбуждение нервных клеток обладает рядом четко выраженных свойств, отправляясь от которых можно построить аксиоматическую модель этого явления. Далее для исследования этой модели могут быть применены чисто математические методы.

Представления о такой модели были развиты несколько лет тому назад в работах И. М. Гельфанда и М. Л. Цетлина, продолженных затем рядом других авторов. Сформулируем аксиоматическое описание модели, о которой идет речь.

Будем под «возбудимой средой» понимать некоторое множество X элементов («клеток»), обладающих следующими свойствами:

1.Каждый элемент может находиться в одном из трех состояний: покой, возбуждение и рефрактерность;

2.От каждого возбужденного элемента возбуждение распространяется по множеству элементов, находящихся в покое, с некоторой скоростью v ;

3.Если элемент х не был возбужден в течение некоторого определенного времени Т(х) , то по прошествии этого времени он самопроизвольно переходит в возбужденное состояние. Время Т(х) называется периодом спонтанной активности элемента х . При этом не исключается и тот случай, когда Т(х)= ∞ , т. е. когда спонтанная активность на самом деле отсутствует;

4.Состояние возбуждения длится некоторое время τ (которое может зависеть от х ), потом элемент переходит на время R(x) в рефрактерное состояние, после чего наступает состояние покоя.

Похожие математические модели возникают и в совсем других областях, например в теории горения, или в задачах о распространении света в неоднородной среде. Однако наличие «периода рефрактерности» является характерной чертой именно биологических процессов.

Описанную модель можно исследовать или аналитическими методами, или с помощью реализации ее на вычислительной машине. В последнем случае мы, понятно, вынуждены считать, что множество X (возбудимая среда) состоит из некоторого конечного числа элементов (в соответствии с возможностями существующей вычислительной техники - порядка нескольких тысяч). Для аналитического исследования естественно предполагать X некоторым непрерывным многообразием (например, считать, что X - это кусок плоскости). Простейший случай такой модели получается, если принять за X некоторый отрезок (прототип нервного волокна) и предположить, что время, в течение которого каждый элемент находится в возбужденном состоянии, очень мало. Тогда процесс последовательного распространения импульсов по такому «нервному волокну» может быть описан цепочкой обыкновенных дифференциальных уравнений первого порядка. Уже в этой упрощенной модели воспроизводится ряд особенностей процесса распространения, обнаруживаемых и в реальных биологических экспериментах.

Весьма интересен как с теоретической, так и с прикладной медицинской точки зрения вопрос об условиях возникновения в такой модельной активной среде так называемой фибрилляции. Это явление, наблюдаемое экспериментально, например на сердечной мышце, состоит в том, что вместо ритмических согласованных сокращений в сердце возникают беспорядочные локальные возбуждения, лишенные периодичности и нарушающие его функционирование. Впервые теоретическое исследование этой проблемы было предпринято в работе Н. Винера и А. Розенблюта в 50-х годах. В настоящее время работы в этом направлении интенсивно ведутся у нас и дали уже ряд интересных результатов.

Книга представляет собой лекции по математическому моделированию биологических процессов и написана на основании материала курсов, читаемых на биологическом факультете Московского государственного университета им. М. В. Ломоносова.
В 24 лекциях изложены классификация и особенности моделирования живых систем, основы математического аппарата, применяемого для построения динамических моделей в биологии, базовые модели роста популяций и взаимодействия видов, модели мультистационарных, колебательных и квазистохастических процессов в биологии. Рассматриваются методы изучения пространственно-временного поведения биологических систем, модели автоволновых биохимических реакций, распространения нервного импульса, модели раскраски шкур животных и другие. Особое внимание уделено важному для моделирования в биологии понятию иерархии времен, современным представлениям о фракталах и динамическом хаосе. Последние лекции посвящены современным методам математического и компьютерного моделирования процессов фотосинтеза. Лекции предназначены для студентов, аспирантов и специалистов, желающих ознакомиться с современными основами математического моделирования в биологии.

Молекулярная динамика.
На протяжении всей истории западной науки стоял вопрос о том, можно ли, зная координаты всех атомов и законы их взаимодействия, описать все процессы, происходящие во Вселенной. Вопрос не нашел своего однозначного ответа. Квантовая механика утвердила понятие неопределенности на микроуровне. В лекциях 10-12 мы увидим, что существование квазистохастических типов поведения в детерминированных системах делает практически невозможным предсказание поведения некоторых детерминированных систем и на макроуровне.

Следствием первого вопроса является второй: вопрос «сводимости». Можно ли, зная законы физики, т. е. законы движения всех атомов, входящих в состав биологических систем, и законы их взаимодействия, описать поведение живых систем. В принципе, на этот вопрос можно ответить с помощью имитационной модели, в которую заложены координаты и скорости движения всех атомов какой-либо живой системы и законы их взаимодействия. Для любой живой системы такая модель должна содержать огромное количество переменных и параметров. Попытки моделировать с помощью такого подхода функционирование элементов живых систем - биомакромолекул - делаются, начиная с 70-х годов.

Содержание
Предисловие ко второму изданию
Предисловие к первому изданию
Лекция 1. Введение. Математические модели в биологии
Лекция 2. Модели биологических систем, описываемые одним дифференциальным уравнением первого порядка
Лекция 3. Модели роста популяций
Лекция 4. Модели, описываемые системами двух автономных дифференциальных уравнений
Лекция 5. Исследование устойчивости стационарных состояний нелинейных систем второго порядка
Лекция 6. Проблема быстрых и медленных переменных. Теорема Тихонова. Типы бифуркаций. Катастрофы
Лекция 7. Мультистационарные системы
Лекция 8. Колебания в биологических системах
Лекция 9. Модели взаимодействия двух видов
Лекция 10. Динамический хаос. Модели биологических сообществ
Примеры фрактальных множеств
Лекция 11. Моделирование микробных популяций
Лекция 12. Модель воздействия слабого электрического поля на нелинейную систему трансмембранного переноса ионов
Лекция 13. Распределенные биологические системы. Уравнение реакция-диффузия
Лекция 14. Решение уравнения диффузии. Устойчивость гомогенных стационарных состояний
Лекция 15. Распространение концентрационной волны в системах с диффузией
Лекция 16. Устойчивость однородных стационарных решений системы двух уравнений типа реакция-диффузия. Диссипативные структуры
Лекция 17. Реакция Белоусова-Жаботинского
Лекция 18. Модели распространения нервного импульса. Автоволновые процессы и сердечные аритмии
Лекция 19. Распределенные триггеры и морфогенез. Модели раскраски шкур животных
Лекция 20. Пространственно-временные модели взаимодействия видов
Лекция 21. Колебания и периодические пространственные распределения величины РН и электрического потенциала вдоль клеточной мембраны гигантских водорослей Chara corallina
Лекция 22. Модели фотосинтетического электронного транспорта. Перенос электрона в мультиферментном комплексе
Лекция 23. Кинетические модели процессов фотосинтетического электронного транспорта
Лекция 24. Прямые компьютерные модели процессов в фотосинтетической мембране
Нелинейное естественно-научное мышление и экологическое сознание
Стадии эволюции сложных систем.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Лекции по математическим моделям в биологии, Ризниченко Г.Ю., 2011 - fileskachat.com, быстрое и бесплатное скачивание.

Функционирование сложной биологической системы, в том числе сердечно-сосудистой системы, является результатом взаимодействия составляющих ее элементов и протекающих в ней процессов. Следует иметь в виду, что согласно общему принципу восходящей иерархии типов движения (механическое – физическое – химическое – биологическое – социальное), биологическая форма движения не может быть полностью сведена к механической, физической или химической форме движения, а биологические системы не могут быть полностью описаны с позиций какой-либо одной из этих форм движения. Эти формы движения могут служить моделями биологической формы движения, то есть ее упрощенными образами.

Выяснить основные принципы регулирования процессов сложной биологической системы можно с помощью построения сначала механической, физической или химической модели системы, а затем построения их математических моделей, то есть отыскания описывающих эти модели математических функций, в том числе уравнений (создания математических моделей). Чем ниже уровень иерархии – тем проще модель, тем больше факторов реальной системы исключаются из рассмотрения.

Моделирование – это метод, при котором производится замена изучения некоторого сложного объекта (процесса, явления) исследованием его упрощенного аналога - модели. В биофизике, биологии и медицине широко применяются физические, химические, биологические и математические модели. Например, течение крови по сосудам моделируется движением жидкости по трубам (физическая модель). Биологическая модель – это простые биологические объекты, удобные для экспериментального исследования, на которых изучают свойства реальных более сложных биологических систем. Например, закономерности возникновения и распространения потенциала действия по нервному волокну были изучены на биологической модели – гигантском аксоне кальмара.

Математическая модель – это совокупность математических объектов и отношений между ними, отражающая интересующие исследователя свойства и характеристики реального объекта. Адекватную математическую модель можно построить только с привлечением конкретных данных и представлений о механизмах сложных процессов. После построения математическая модель «живет» по своим внутренним законам, познание которых позволяет выявить характерные черты исследуемой системы (см. схему на рис. 1.1.). Результаты моделирования составляют основу управления процессами любой природы.

Биологические системы, по сути, являются чрезвычайно сложными структурно-функциональными единицами.

Чаще всего математические модели биологических процессов задаются в виде дифференциальных или разностных уравнений, но возможны и другие типы представлений модели. После того как модель построена, задача сводится к изучению ее свойств методами математической дедукции или путем машинного моделирования.

При изучении сложного явления обычно предлагают несколько альтернативных моделей. Проверяют качественное соответствие этих моделей объекту. Например, устанавливают наличие устойчивых стационарных состояний в модели, существование колебательных режимов. Модель, наилучшим образом соответствующую исследуемой системе, выбирают в качестве основной. Выбранную модель уточняют применительно к конкретной исследуемой системе. Задают числовые значения параметров по экспериментальным данным.

Процесс поиска математической модели сложного явления можно разделить на этапы, последовательность и взаимосвязь которых отражает схема ни рис. 1.2.

Этап 1 соответствует сбору имеющихся к началу исследования данных об изучаемом объекте.

На этапе 2 осуществляется выбор базовой модели (системы уравнений) из возможных альтернативных моделей по качественным признакам.

На этапе 3 производится идентификация параметров модели по экспериментальным данным.

На этапе 4 осуществляется проверка поведения модели на независимых экспериментальных данных. Для этого часто приходится ставить дополнительные эксперименты.

Если взятые для верификации модели экспериментальные данные «не вписываются» в модель, требуется проанализировать ситуацию и выдвинуть иные модели, исследовать свойства этих новых моделей, а затем поставить эксперименты, позволяющие сделать вывод о предпочтительности одной из них (этап 5).

Этап построения математической модели (этап 2, рис. 1.2) является наиболее важным этапом в математическом моделировании. Представления о механизмах и законах, которые действуют в системе и которые закладываются в математическую модель, определяют рамки результатов моделирования. Так, при моделировании функционирования сердечно-сосудистой системы на основе представлений о работе сердца с позиций механики можем построить механико-математическую модель.

Когда речь идет о математическом моделировании динамики сложной биологической системы, основанном на физических законах, мы вторгаемся в область математической биофизики сложных систем. Именно на стыке трех наук: математики, физики и биологии в последние пять десятилетий произошел качественный скачок в математическом описании поведения любой системы (физической, биологической, экономической).

Обычно принято измерять физиологические величины как функции времени. Для характеристики таких временных зависимостей существуют четыре основных математических понятия: стационарные состояния, колебания, хаос и шум. Стационарное состояние в математике может быть связано с понятием гомеостаза в физиологии, например, среднее артериальное давление поддерживается постоянным у человека. При физической нагрузке давление повышается, а после прекращения физической нагрузки давление в течение нескольких минут возвращается до стационарного уровня. Примерами колебательных процессов в организме человека могут служить: ритмы сердцебиения, дыхания и размножения клеток, циклы сна и бодрствования, секреции инсулина, перистальтические волны в кишечнике и мочеточнике, электрическая активность коры головного мозга и автономной нервной системы и т. п. Известно, что даже тщательное измерение физической или физиологической величины никогда не дает абсолютно стационарной или строго периодической временной зависимости. Всегда будут наблюдаться флуктуации (отклонения) вокруг некоторого фиксированного уровня или периода колебаний. Кроме того, существуют системы настолько нерегулярные, что трудно найти лежащий в их основе стационарный или периодический процесс. Такие процессы рассматриваются в математике либо как шум (относящийся к флуктуациям), либо как хаос («наивысшая степень» порядка, нерегулярность, наблюдаемая в детерминированной системе). Хаос может наблюдаться и при полном отсутствии шума в окружающей среде.

Основу математической модели составляет система математических уравнений (формула 1.1). Динамическая математическая модель характеризует поведение системы во времени, которое можно описать с помощью таких физических понятий, как скорость и ускорение. Динамические модели описываются системами дифференциальных уравнений, на которые накладываются ограничения, вытекающие из физического или физиологического смыслов принятых величин:

где f 1 ,…, f n - некоторые функции, x 1 , …, х п – независимые переменные, п - размерность фазового пространства, a,…, e и т. д. - параметры дифференциальных уравнений.

Стационарные устойчивые состояния соответствуют постоянным решениям уравнений системы 1.1 (рис. 1. 3, А). Стационарным колебаниям биологических или физических величин соответствуют периодические решения системы уравнений (рис. 1.3, Б). Нерегулярные (апериодические) временные решения уравнений соответствуют шуму или хаосу (рис 1.3, В).

При некоторых значениях параметров возможно получение нескольких решений, то есть система может находиться в нескольких стационарных состояниях (например, в двух состояниях). Переход системы, в результате которого она может оказаться в одном из возможных состояний, называется бифуркацией. Обычно одни состояния являются устойчивыми, другие – неустойчивыми. Если возможны два устойчивых состояния, то система может перескакивать из одного состояния в другое при незначительном внешнем воздействии, в том числе при флуктуации. Это явление называется бистабильностью.

В качестве примера построения модели периодического биологического процесса рассмотрим математическую модель «хищник - жертва» Вольтерра.

Модель Вольтера

Пусть в некотором замкнутом районе живут зайцы и рыси. Зайцы питаются растительной пищей, имеющейся всегда в достаточном количестве. Рыси (хищники) питаются только зайцами (жертвами). Обозначим число зайцев в этом районе через N 1 , а число рысей через N 2 . N 1 и N 2 являются функциями времени.

Так как количество пищи для зайцев не ограничено, мы можем считать, что при отсутствии хищников, их число возрастало бы с течением времени t прямо пропорционально числу имеющихся особей:

где a i – коэффициент пропорциональности.

Если бы в данном районе жили только рыси, то они бы вымерли из-за отсутствия пищи.


В течение последних десятилетий наметился значительный прогресс в количественном (математическом) описании функций различных биосистем на различных уровнях организации жизни: молекулярном, клеточном, органном, организменном, популяционном, биогеоценологическом (экосистемном). Жизнь определяется множеством различных характеристик этих биосистем и процессов, протекающих на соответствующих уровнях организации системы и интегрированных в единое целое в процессе функционирования системы. О моделях, базирующихся на существенных постулатах о принципах функционирования системы, которые описывают и объясняют широкий круг явлений и выражают знание в компактной, формализованной форме, можно говорить, как о теории биосистемы . Построение математических моделей (теорий) биологических систем стало возможным благодаря исключительно интенсивной аналитической работе экспериментаторов: морфологов, биохимиков, физиологов, специалистов по молекулярной биологии и др. В результате этой работы кристаллизованы морфофункциональные схемы различных клеток, в рамках которых упорядоченно в пространстве и во времени протекают различные физико-химические и биохимические процессы, образующие весьма сложные переплетения.

Вторым очень важным обстоятельством , способствующим привлечению математического аппарата в биологию, является тщательное экспериментальное определение констант скоростей многочисленных внутриклеточных реакций, определяющих функции клетки и соответствующей биосистемы. Без знания таких констант невозможно формально-математическое описание внутриклеточных процессов.

И наконец, третьим условием , определившим успех математического моделирования в биологии, явилось развитие мощных вычислительных средств в виде персональных компьютеров, суперкомпьютеров и информационных технологий. Это связано с тем, что обычно процессы, контролирующие ту или иную функ­цию клеток или органов, многочисленны, охвачены петлями прямой и обратной связи и, следовательно, описываются сложными системами нелинейных уравнений с большим числом неизвестных. Такие уравнения не решаются аналитически, но могут быть решены численно при помощи компьютера.

Численные эксперименты на моделях, способные воспроизводить широкий класс явлений в клетках, органах и организме, позволяют оценить правильность предположений, сделанных при построении моделей. Хотя в качестве постулатов моделей используются экспериментальные факты, необходимость некоторых допущений и предположений является важным теоретическим компонентом моделирования. Эти допущения и предположения являются гипотезами , которые могут быть подвергнуты экспериментальной проверке. Таким образом, модели становятся источниками гипотез, притом экспериментально верифицируемых. Эксперимент, направленный на проверку данной гипотезы, может опровергнуть или подтвердить ее и тем самым способствовать уточнению модели.

Такое взаимодействие моделирования и эксперимента происходит непрерывно, приводя ко все более глубокому и точному пониманию явления:

  • эксперимент уточняет модель,
  • новая модель выдвигает новые гипотезы,
  • эксперимент уточняет новую модель и т. д.

В настоящее время область математического моделирования живых систем объединяет ряд различных и уже устоявшихся традиционных и более современных дисциплин, названия которых звучат достаточно обще, так что трудно бывает строго разграничить зоны их специфического использования. В настоящее время особенно бурно развиваются специализированные области применения математического моделирования живых систем - математическая физиология, математическая иммунология, математическая эпидемиология, направленные на разработку математических теорий и компьютерных моделей соответствующих систем и процессов.

Как всякая научная дисциплина, математическая (теоретическая) биология имеет свой предмет, способы, методы и процедуры исследования. В качестве предмета исследований выступают математические (компьютерные) модели биологических процессов, одновременно представляющие собой и объект исследования, и инструмент для исследования собственно биологических объектов. В связи с такой двоякой сущностью биоматематических моделей они подразумевают использование имеющихся и разработку новых способов анализа математических систем (теорий и методов соответствующих разделов математики) с целью изучения свойств самой модели как математического объекта, а также использование модели для воспроизведения и анализа экспериментальных данных, получаемых в биологических экспериментах. При этом в качестве одного из наиболее важных назначений математических моделей (и теоретической биологии в целом) является возможность предсказания биологических явлений и сценариев поведения биосистемы в определенных условиях и их теоретического обоснования до проведения соответствующих биологических экспериментов.

Основным методом исследования и использования сложных моделей биологических систем является вычислительный компьютерный эксперимент, который требует применения адекватных методов вычислений для соответствующих математических систем, алгоритмов вычислений, технологий разработки и реализации компьютерных программ, хранения и обработки результатов компьютерного моделирования.

Наконец, в связи с основной целью использования биоматематических моделей для познания законов функционирования биологических систем, все стадии разработки и использования математических моделей предполагают обязательную опору на теорию и практику биологической науки, и в первую очередь на результаты натурных экспериментов.

Метод описания биологических систем с помощью адекватного математического аппарата. Определение матем. аппарата, адекватно отображающего работу биологических систем, является сложной задачей, связанной с их классификацией. Классификацию биосистем по сложности (логарифму числа состояний) можно провести, пользуясь, напр., шкалой, по которой к простым системам относятся системы, имеющие до тысячи состояний, к сложным - от тысячи до миллиона и к очень сложным - свыше миллиона состояний. Второй важнейшей характеристикой биосистемы является закономерность, выражаемая законом распределения вероятностей состояний. По этому закону можно определить неопределенность ее работы по К. Шеннону и оценку относительной организации. Т. о., биол. системы можно классифицировать по сложности (макс. разнообразию или максимально возможной неопределенности) и относительной организации, т. е. степени организованности (см. Биологических систем организация).

Классификационная диаграмма биосистем:

Простые системы;

Сложные системы;

Очень сложные системы;

Вероятностные системы;

Вероятностно-детерминированные системы;

Детерминированные системы.

На рис. приведена классификационная диаграмма биосистем в осях максимально возможной неопределенности характеризующей число состояний системы и определяемой логарифмом числа состояний, и уровня относительной орг-ции - , характеризующего степень организации системы. На диаграмме даны названия соответствующих полос так, что, напр., область под цифрой 8 означает «очень сложные вероятностно-детерминированные биосистемы». Опыт изучения биосистем показывает, что если , вычисленное по гистограмме распределения отклонений изучаемого показателя от его математического ожидания, лежит в пределах от 1,0 до 0,3, то можно считать, что это детерминированная биосистема. К таким системам относятся системы управления внутр. органами, в основном системы гормонального (гуморального) управления. Нейрон, органы внутр. сферы, системы обмена веществ по определенным параметрам тоже могут быть отнесены к детерминированным биосистемам. Матем. модели таких систем строятся на основе физико-хим. соотношений между элементами или органами системы. Моделированию в этом случае подвергается динамика изменения входных, промежуточных и выходных показателей. Таковы, напр., биофизические модели нервной клетки, сердечно-сосудистой системы, системы управления содержанием сахара в крови и другие. Матем. аппаратом, адекватно описывающим поведение таких детерминированных биосистем, является теория дифф. и интегральных ур-ний. На основании матем. моделей биосистем можно, используя методы автоматического управления теории, успешно решать задачи дифф. диагностики и оптимизации лечения. Область моделирования детерминированных биосистем развита наиболее полно.

Если организованность биосистем по отношению к изучаемому показателю (или системе показателей) лежит в пределах 0,3 - 0,1, то системы можно считать вероятностно-детерминированными. К ним относятся системы управления внутр. органами с явно выраженной компонентой нервной регуляции (напр., система управления частотой пульса), а также системы гормональной регуляции в случае патологии. В качестве адекватного матем. аппарата может служить представление динамики изменения показателей дифф. ур-ниями с коэфф., подчиняющимися определенным законам распределения. Моделирование таких биосистем развито сравнительно слабо, хотя и представляет значительный интерес для целей кибернетики медицинской.

Вероятностные биосистемы характеризуются значением организованности R в пределах от 0,1 до 0. К ним относятся системы, определяющие взаимодействие анализаторов и поведенческие реакции, включая процессы обучения при простых условно-рефлекторных актах и сложных взаимосвязях между сигналами окружающей среды и реакциями организма. Адекватным матем. аппаратом

для моделирования таких биосистем является теория детерминированных и случайных автоматов, взаимодействующих с детерминированными и случайными средами, случайных процессов теория.

Матем. моделирование биосистем включает предварительную статистическую обработку экспериментальных результатов (см. Биологических исследований математические методы), изучение сложности и организованности биосистем, выбор адекватной матем. модели и определение числовых значений параметров матем. модели по экспериментальным данным (см. Кибернетика биологическая). Последняя задача в общем случае является очень сложной. Для детерминированных биосистем, модели которых могут быть представлены линейными дифф. ур-ниями, определение наилучших параметров модели (коэфф. дифф. ур-ния) может быть проведено методом спуска (см. Градиентный метод) в пространстве параметров модели, оценивая по интегралу от квадрата ошибки. В этом случае требуется применить процедуру спуска по параметрам для минимизации функционала

где Т - период, характерное время для показателя , у - экспериментальная кривая изменения показателя биосистемы, у - решение матем. модели. Если необходимо получить наилучшее (в смысле интеграла от квадрата ошибки) приближение матем. модели к работе биосистемы по нескольким показателям по различным внутренним состояниям биосистемы или для различных характерных внешних воздействий, то можно, применяя метод спуска в пространстве параметров модели, минимизировать сумму частных функционалов . При использовании такой процедуры выбора параметров матем. модели можно повысить вероятность получения единственного набора коэфф. модели, отвечающих принятой структуре. С помощью Б. с. м. м. желательно получить не только количественные характеристики работы биосистем, ее элементов и характеристики взаимосвязи элементов, но и выявить критерии работы баосистем, установить определенные общие принципы их функционирования. Лит.: Глушков В. М. Введение в кибернетику. К., 1964 [библиогр. с. 319-322]; Моделирование в биологии и медицине, в. 1-3. К., 1965-68; Буш Р., Мостеллер Ф. Стохастические модели обучаемости. Пер. с англ. М., 1962. Ю. Г. Антомонов.