Какие есть методы исследования биологии. Методы биологии

Рефрактометрия является одним из самых простых физических методов анализа с затратой минимального количества анализируемого вещества и проводится за очень короткое время. Этот метод применяется для идентификации веществ, установления их чистоты, определения концентрации растворов.

Метод рефрактометрии основан на измерении показателя преломления света n анализируемым веществом. Показателем преломления называется отношение скорости распространения света в воздухе к скорости распространения света в исследуемом веществе. Величина показателя преломления зависит от природы вещества, температуры, длины световой волны, при которой проводят определение. В растворах показатель преломления зависит также от концентрации растворенного вещества и природы растворителя.

Различная скорость распространения луча света в средах с различной плотностью вызывает изменение его направления при переходе из одной среды в другую, т.е. рефракцию . Отношение скорости распространения света в воздухе v 1 к скорости распространения света в веществе v 2 , равное отношению синусов угла падения луча света α и угла его преломления β, называется показателем (коэффициентом) преломления n и является величиной, постоянной для данной длины волны:

При прохождении луча света из среды с меньшим значением n в среду с большим показателем преломления (рис.13а) β < α. Если угол падения α луча С (рис.13б) приближается к 90 0 , то β < 90 0 . При дальнейшем увеличении угла падения (луч D) падающий свет полностью отражается от границы раздела и не попадает в менее плотную среду, происходит полное внутреннее отражение. Справа (при наблюдении против светового потока) от предельного луча D" находится затемненное поле, слева – освещенное поле.

Рис.13. Преломление луча света при переходе из одной среды в другую:

а – преломление луча света при прохождении из менее плотной среды 1 в более плотную среду 2; б – преломление луча света при углах падения, приближающихся к 90 0 ; предельный луч D - D" (полное внутреннее отражение).

Определение показателя преломления производят с помощью специального прибора, называемого рефрактометром. На практике применяются рефрактометры различных систем: лабораторный – РЛ, универсальный – РЛУ, RL – 2, «Карат - МТ» и др.

Устройство рефрактометра основано на явлении полного внутреннего отражения луча света на границе двух сред (одна – стеклянная призма, другая – анализируемый раствор) или на положении предельного луча на границе светотени (рис.14).

Рис. 14. Схема рефрактометра РЛ – 2:

1 – свет от источника; 2 – зеркало; 3 – осветительная призма; 4 – измерительная призма; 5 – компенсатор; 6- объектив; 7 – призма; 8 –пластинка с визирными штрихами и шкалой показателей преломления; 9 – окуляр.

Свет от источника 1 попадает на зеркало 2 и, отражаясь, проходит в верхнюю осветительную призму 3, затем в нижнюю измерительную призму 4, изготовленную из специального стекла с высоким показателем преломления. Между гипотенузными поверхностями призм 3 и 4 капилляром помещают 1–2 капли анализируемой жидкости. Чтобы избежать механических повреждений призмы, капилляр не должен касаться ее поверхности.

Поверхность призмы 4 служит границей раздела, на которой происходит преломление луча света. Вследствие рассеивания лучей граница светотени получается радужной, расплывчатой; компенсатор дисперсии 5 устраняет это явление. Далее свет проходит через объектив 6 и призму 7. На пластинке 8 нанесены визирные штрихи (две крестообразно пересеченные прямые линии) и шкала показателей преломления, наблюдаемая в окуляре 9. По шкале отсчитывают показатель преломления с тремя знаками после запятой, четвертый знак оценивают на глаз.

В окуляре 9 видно поле с перекрещивающимися линиями для установления границы раздела. Передвижением окуляра совмещают точку перекрестия с границей раздела полей (рис.15).

Рис. 15. Поле зрения в окуляре рефрактометра:

слева – шкала показаний преломления; справа – шкала процентного содержания сухих веществ; между призмами находится дистиллированная вода.

Положение границы раздела полей соответствует углу полного внутреннего отражения и зависит от показателя преломления анализируемой жидкости.

Лабораторный рефрактометр РЛ – 2 (рис. 16) имеет две шкалы – показателей преломления (от 1,33 до 1,54) и содержания сухих веществ, выраженного в % (мас.) сахарозы, - от 0 до 95% (мас.).

Показатель преломления обычно измеряют при температуре (20 ± 0,3) º С и длине волны линии D спектра натрия (589,3 нм). Показатель преломления, определенный при таких условиях, обозначается индексом n D 20 .

Показатель преломления дистиллированной воды n 1 0 =1,33299, практически этот же показатель принимается в качестве отсчетного как n 0 = 1,333.

Рис.16. Рефрактометр РЛ – 2:

1 – основание; 2 – колонка; 3 – корпус; 4 – дисперсионный лимб для устранения спектральной окраски светотени; 5 – отражательное зеркало; 6 – камера измерительной призмы; 7 – шарнир, соединяющий призмы; 8 – осветительная призма; 9 – термометр; 10 – отверстие для регулирования шкалы рефрактометра; 11 – шкала для отсчета; 12 – рукоятка; 13 – окуляр

Порядок работы:

1. Проверка чистоты соприкасающихся поверхностей призм (до начала измерений).

2. Проверка нулевой точки. На поверхность измерительной призмы нанести 2–3 капли дистиллированной воды, осторожно закрыть осветительной призмой. Открыть осветительное оконце и установить в направлении наибольшей интенсивности источника света с помощью зеркала. Путем вращения винтов получить в поле зрения окуляра резкое, четкое разграничение светлого и темного полей. Вращая винт, навести линию света и тени точно до совпадения с точкой пересечения линии в верхнем оконце окуляра. Вертикальная линия в нижнем оконце окуляра указывает результат измерения – показатель преломления воды при 20 ° С – 1,333. В случае других показаний показатель преломления устанавливают винтом на 1,333, а при помощи ключа (регулировочный винт снять) приводят границу света и тени к точке пересечения линий.

3. Определение коэффициента преломления. После установки прибора на нулевую точку приподнимают камеру осветительной призмы и фильтровальной бумагой или марлевой салфеткой снимают воду. Затем наносят 1-2 капли исследуемого раствора на плоскость измерительной призмы, камеру закрывают. Вращают винты до совпадения границы света и тени с точкой пересечений линий. По шкале в нижнем оконце окуляра производят отсчет коэффициента преломления раствора.

4. Взаимосвязь между концентрацией двухкомпонентного раствора и покателем преломления устанавливают по градуировочному графику. Для построения графика готовят стандартные растворы из препарата химически чистого вещества, измеряют показатели преломления 3–4 раза, вычисляют среднеарифметическое и откладывают полученную величину на оси ординат, на оси абсцисс – концентрацию растворов. Такой график часто представляет собой практически прямую линию. Измерив показатель преломления анализируемого раствора, по графику находят его концентрацию.

5. Окончание работы на рефрактометре. После каждого определения необходимо обе камеры промыть водой и вытереть досуха фильтровальной бумагой или салфеткой, между камерами заложить прокладку из тонкого слоя ваты.

Преломляющие свойства вещества, обусловленные строением его молекулы, характеризуются молекулярной рефракцией R м и описываются уравнением Лоренца – Лорентца:

где М – молярная масса вещества, г/моль;

d – плотность х 10 3 кг/м 3 .

Молекулярная рефракция не зависит от температуры и агрегатного состояния вещества. Для химических соединений она представляет собой аддитивную величину, что применяется при установлении состава и строения органических веществ. Молекулярную рефракцию вычисляют как сумму атомных рефракций и инкрементов кратных связей (табл.1). С другой стороны, измеряют показатель преломления и плотность идентифицируемого вещества при 20 º С. Эти величины, а также молярную массу вещества вводят в уравнение. В обоих случаях должна получаться практически одинаковая молекулярная рефракция.

Таблица 1

Атомные рефракции некоторых химических элементы и инкрементов кратных связей (20 0 С, λ = 589 нм)

Вычисление молекулярной рефракции рассмотрим на примере хлорбензола, молекула которого содержит 6 атомов углерода, 5 атомов водорода, 1 атом хлора, а также в ней имеются 3 двойные связи, поэтому:

R м = 6×2,418 + 5×1,100 + 1×5,967 + 3×1,733 = 31, 2.

Экспериментально находят, что показатель преломления анализируемой жидкости равен 1,5248. Плотность хлорбензола 1,107×10 3 кг/м 3 , молярная масса 112,56 г/моль. Эти величины вводим в формулу и получаем:

Небольшое различие двух значений R м (31,2 – 30,9 = 0,3) свидетельствуют о том, что анализируемая жидкость действительно представляет собой хлорбензол. Существенные расхождения между значениями Rм, найденными двумя способами, могут обусловливаться экспериментальными погрешностями, значительным загрязнением анализируемого вещества, а также тем, что препарат не является хлорбензолом.

Меры предосторожности при работе

Быстрее всего в приборе выходят из строя призмы, поэтому необходимо соблюдать следующие меры предосторожности при обращении с ними.

1. Перед определением показателя преломления призмы тщательно очищают от грязи и пыли.

2. Не измеряют показатели преломления кислот и щелочей, так как они разъедают поверхность призм.

3. После проведения измерений протирают поверхность призм чистой мягкой салфеткой, смоченной водой или спиртом, вытирают насухо и закладывают между призмами небольшую сухую чистую салфетку или вату.

б) оставлять на продолжительное время между призмами исследуемую жидкость, так как поверхность призм после этого покрывается тонким матовым слоем и измерение показателя преломления становится невозможным.

Задание к лабораторной работе№7

1. Определить показатели преломления органических растворителей и сравнить с известными значениями n 20 D . Проанализировать полученные результаты.

Органические растворители n 20 D

Этанол 1,3613

Хлороформ 1,4467

Толуол 1,4992

Иодистый метил 1,5207

Анилин 1,5863

1 – Бромнафталин 1,6582

2. Построить калибровочный график зависимости показателей преломления от концентрации этилового спирта в воде.

3.Определить концентрацию выданного преподавателем раствора этилового спирта в воде.

4.Экспериментально определить и вычислить молекулярную рефракцию этанола. Проанализировать полученные результаты.

Лабораторная работа №8

Законы физики играют очень важную роль при проведении расчетов для планирования определенной стратегии производства какого-либо товара или при составлении проекта строительства сооружений различного назначения. Многие величины являются расчетными, так что перед стартом работ по планированию производятся измерения и вычисления. Например, показатель преломления стекла равен отношению синуса угла падения к синусу угла преломления.

Так что вначале идет процесс измерения углов, затем вычисляют их синус, а уже только потом можно получить искомое значение. Несмотря на наличие табличных данных, стоит каждый раз проводить дополнительные расчеты, так как в справочниках зачастую используются идеальные условия, которых добиться в реальной жизни практически невозможно. Поэтому на деле показатель обязательно будет отличаться от табличного, а в некоторых ситуациях это имеет принципиальное значение.

Абсолютный показатель

Абсолютный показатель преломления зависит от марки стекла, так как на практике имеется огромное количество вариантов, отличающихся по составу и степени прозрачности. В среднем он составляет 1,5 и колеблется вокруг этого значения на 0,2 в ту или иную сторону. В редких случаях могут быть отклонения от этой цифры.

Опять-таки, если важен точный показатель, то без дополнительных измерений не обойтись. Но и они не дают стопроцентно достоверного результата, так как на итоговое значение будет влиять положение солнца на небосводе и облачность в день измерений. К счастью, в 99,99% случае достаточно просто знать, что показатель преломления такого материала, как стекло больше единицы и меньше двойки, а все остальные десятые и сотые доли не играют роли.

На форумах, которые занимаются помощью в решении задач по физике, часто мелькает вопрос, каков показатель преломления стекла и алмаза? Многие думают, что раз эти два вещества похожи внешне, то и свойства у них должны быть примерно одинаковыми. Но это заблуждение.

Максимальное преломление у стекла будет находиться на уровне около 1,7, в то время как у алмаза этот показатель достигает отметки 2,42. Данный драгоценный камень является одним из немногих материалов на Земле, чей уровень преломления превышает отметку 2. Это связано с его кристаллическим строением и большим уровнем разброса световых лучей. Огранка играет в изменениях табличного значения минимальную роль.

Относительный показатель

Относительный показатель для некоторых сред можно охарактеризовать так:

  • - показатель преломления стекла относительно воды составляет примерно 1,18;
  • - показатель преломления этго же материала относительно воздуха равен значению 1,5;
  • - показатель преломления относительно спирта - 1,1.

Измерения показателя и вычисления относительного значения проводятся по известному алгоритму. Чтобы найти относительный параметр, нужно разделить одно табличное значение на другое. Или же произвести опытные расчеты для двух сред, а потом уже делить полученные данные. Такие операции часто проводятся на лабораторных занятиях по физике.

Определение показателя преломления

Определить показатель преломления стекла на практике довольно сложно, потому что требуются высокоточные приборы для измерения начальных данных. Любая погрешность будет возрастать, так как при вычислении используются сложные формулы, требующие отсутствия ошибок.

Вообще данный коэффициент показывает, во сколько раз замедляется скорость распространения световых лучей при прохождении через определенное препятствие. Поэтому он характерен только для прозрачных материалов. За эталонное значение, то бишь за единицу, взят показатель преломления газов. Это было сделано для того, чтобы можно было отталкиваться от какого-нибудь значения при расчетах.

Если солнечный луч падает на поверхность стекла с показателем преломления, который равен табличному значению, то изменить его можно несколькими способами:

  • 1. Поклеить сверху пленку, у которой коэффициент преломления будет выше, чем у стекла. Этот принцип используется в тонировке окон автомобиля, чтобы улучшить комфорт пассажиров и позволить водителю более четко наблюдать за дорожной обстановкой. Также пленка будет сдерживать и ультрафиолетовое излучение.
  • 2. Покрасить стекло краской. Так поступают производители дешевых солнцезащитных очков, но стоит учесть, что это может быть вредно для зрения. В хороших моделях стекла сразу производятся цветными по специальной технологии.
  • 3. Погрузить стекло в какую-либо жидкость. Это полезно исключительно для опытов.

Если луч света переходит из стекла, то показатель преломления на следующем материале рассчитывается при помощи использования относительного коэффициента, который можно получить, сопоставив между собой табличные значения. Эти вычисления очень важны при проектировке оптических систем, которые несут практическую или экспериментальную нагрузку. Ошибки здесь недопустимы, потому что они приведут к неправильной работе всего прибора, и тогда любые полученные с его помощью данные будут бесполезны.

Чтобы определить скорость света в стекле с показателем преломления, нужно абсолютное значение скорости в вакууме разделить на величину преломления. Вакуум используется в качестве эталонной среды, потому что там не действует преломление из-за отсутствия каких-либо веществ, которые могли бы мешать беспрепятственному движению световых лучей по заданной траектории.

В любых расчетных показателях скорость будет меньше, чем в эталонной среде, так как коэффициент преломления всегда больше единицы.

Урок 25/III-1 Распространение света в различных средах. Преломление света на границе раздела двух сред.

    Изучение нового материала.

До сих пор мы рассматривали распространение света в одной среде, как обычно – в воздухе. Свет может распространяться в различных средах: переходить из одной среды в другую; в точках падения лучи не только отражаются от поверхности, но и частично проходят через нее. Такие переходы вызывают немало красивых и интересных явлений.

Изменение направления распространение света, проходящего через границу двух сред, называют преломлением света.

Частьсветового луча, падающего на границу раздела двух прозрачных сред, отражается, а часть переходит в другую среду. При этом направление светового луча, который перешел в другую среду, изменяется. Поэтому явление называется преломлением, а луч – преломленным.

1 – падающий луч

2 – отраженный луч

3 – преломленный луч α β

ОО 1 – граница раздела двух сред

MN - перпендикуляр О О 1

Угол, образованный лучом и перпендикуляром к границе раздела двух сред, опущенным в точку падения луча, называется углом преломления γ (гамма).

Свет в вакууме распространяется со скоростью 300000 км/с. В любой среде скорость света всегда меньше, чем в вакууме. Поэтому при переходе света из одной среды в другую, его скорость уменьшается и это является причиной преломления света. Чем меньше скорость распространения света в данной среде, тем большей оптической плотностью обладает данная среда. Так, например, воздух имеет больше оптическую плотность, чем вакуум, потому что в воздухе скорость света несколько меньше, чем в вакууме. Оптическая плотность воды больше, чем оптическая плотность воздуха, так как скорость света в воздухе больше, чем в воде.

Чем больше отличаются оптические плотности двух сред, тем больше преломляется свет на границе их раздела. Чем больше изменяется скорость света на границе раздела двух сред, тем сильнее оно преломляется.

Для каждого прозрачного вещества существует такая важная физическая характеристика, как показатель преломления света n. Он показывает, во сколько раз скорость света в данном веществе, меньше, чем в вакууме.

Показатель преломления света

Вещество

Вещество

Вещество

Каменная соль

Скипидар

Кедровое масло

Спирт этиловый

Глицерин

Плексиглас

Стекло (легкое)

Сероуглерод

Соотношение значений угла падения и угла преломления зависит от оптической плотности каждой из среды. Если луч света переходит из среды с меньшей оптической плотностью в среду с большей оптической плотностью, то угол преломления будет меньшим, чем угол падения. Если луч света переходит из среды с большей оптической плотностью, то угол преломления будет меньшим, чем угол падения. Если луч света переходит из среды с большей оптической плотностью в среду с меньшей оптической плотностью, то угол преломления больше, чем угол падения.

То есть, если n 1 γ; если n 1 >n 2 , то α<γ.

Закон преломления света :

    Луч падающий, луч преломленный и перпендикуляр к границе раздела двух сред в точке падения луча, лежат в одной плоскости.

    Соотношения угла падения и угла преломления определяются формулой.

где - синус угла падения,- синус кута преломления.

Значение синусов і тангенсов для углов 0 – 900

Градусы

Градусы

Градусы

Закон преломления света впервые сформулировал голландский астроном и математик В. Снелиус около 1626 г, профессор Лейденского университета (1613 г).

Для XVI столетия оптика была ультрасовременной наукой.Из стеклянного шара, наполненного водой, которым пользовались как линзой, возникло увеличительное стекло. А из него изобрели подзорную трубу и микроскоп. В то время Нидерландам нужны были подзорные трубы для рассматривания берега и своевременно убежать от врагов. Именно оптика обеспечила успех и надежность навигации. Поэтому в Нидерландах очень много ученых интересовались именно оптикой. Голландец Скель Ван Ройен (Снелиус) наблюдад, как тонкий луч света отражался в зеркале. Он измерял угол падения и угол отражения и установил: угол отражения равен углу падения. Ему же принадлежат законы отражения света. Он вывел закон преломления света.

Рассмотрим закон преломления света .

В ней - относительный показатель преломления второй среды относительно первой, в случае, когда второе имеет большую оптическую плотность. Если свет преломляется и проходит с среду с меньшей оптической плотностью, тогда α < γ, тогда

Если первой средой является вакуум, то n 1 =1 то .

Данный показатель называют абсолютным показателем преломления второй среды:

где - скорость света в вакууме, скорость света в данной среде.

Следствием преломления света в атмосфере Земли есть тот факт, что мы видим Солнце и звезды немного выше их реального положения. Преломлением света можно объяснить возникновение миражей, радуги… явление преломления света есть основой принципа работы численных оптических устройств: микроскопа, телескопа, фотоаппарата.

Оптика - это раздел физики, изучающий природу светового излучения, его распространение и взаимодействие с веществом. Световые волны - это электромагнитные волны. Длина волны световых волн заключена в интервале . Волны такого диапазона воспринимаются человеческим глазом.

Свет распространяется вдоль линий, называемых лучами. В приближении лучевой (или геометрической) оптики пренебрегают конечностью длин волн света, полагая, что λ→0. Геометрическая оптика во многих случаях позволяет достаточно хорошо рассчитать оптическую систему. Простейшей оптической системой является линза.

При изучении интерференции света следует помнить, что интерференция наблюдается только от когерентных источников и что интерференция связана с перераспределением энергии в пространстве. Здесь важно уметь правильно записывать условие максимума и минимума интенсивности света и обратить внимание на такие вопросы, как цвета тонких пленок, полосы равной толщины и равного наклона.

При изучении явления дифракции света необходимо уяснить принцип Гюйгенса-Френеля, метод зон Френеля, понимать, как описать дифракционную картину на одной щели и на дифракционной решетке.

При изучении явления поляризации света нужно понимать, что в основе этого явления лежит поперечность световых волн. Следует обратить внимание на способы получения поляризованного света и на законы Брюстера и Малюса.

Таблица основных формул по оптике

Физические законы, формулы, переменные

Формулы оптики

Абсолютный показатель преломления

где с - скорость света в вакууме, с=3·108 м/с,

v - скорость распространения света в среде.

Относительный показатель преломления

где n 2 и n 1 - абсолютные показатели преломления второй и первой среды.

Закон преломления

где i - угол падения,

r - угол преломления.

Формула тонкой линзы

где F - фокусное расстояние линзы,

d - расстояние от предмета до линзы,

f - расстояние от линзы до изображения.

Оптическая сила линзы

где R 1 и R 2 - радиусы кривизны сферических поверхностей линзы.

Для выпуклой поверхности R>0.

Для вогнутой поверхности R<0.

Оптическая длина пути:

где n - показатель преломления среды;

r - геометрическая длина пути световой волны.

Оптическая разность хода:

L 1 и L 2 - оптические пути двух световых волн.

Условие интерференционного

максимума:

минимума:

где λ 0 - длина световой волны в вакууме;

m - порядок интерференционного максимума или минимума.

Оптическая разность хода в тонких пленках

в отраженном свете:

в проходящем свете:

где d - толщина пленки;

i - угол падения света;

n - показатель преломления.

Ширина интерференционных полос в опыте Юнга:

где d - расстояние между когерентными источниками света;

L - расстояние от источника до экрана.

Условие главных максимумов дифракционной решетки:

где d - постоянная дифракционной решетки;

φ - угол дифракции.

Разрешающая способность дифракционной решетки:

где Δλ - минимальная разность длин волн двух спектральных линий, разрешаемых решеткой;