Эпс часть комплекса гольджи. Одномембранные структуры

Аппарат Гольджи – одномембранная, микроскопическая органелла эукариотической клетки, которая предназначена для завершения процессов синтеза клетки и обеспечивает вывод образовавшихся веществ.

Исследование структурных компонентов комплекса Гольжи началось еще в 1898 итальянским ученым-гистологом Камилло Гольджи, в честь него органелла и была названа. Изучение органоида проходило впервые в составе нервной клетки.

Строение комплекса Гольджи

В пластинчатом комплексе (аппарат Гольджи) имеется три части:

  • Цис-цистерна — находится вблизи ядра, постоянно взаимодействует с гранулярной эндоплазматической сетью;
  • медиал-цистерна или промежуточная часть;
  • транс-цистерна — отдаленная от ядра, дает трубчатые разветвления, формируя транс-сеть Гольджи.

Пластинчатый комплекс в клетках разной природы и даже на различных этапах дифференцировки одной клетки, иногда имеет отличительные черты в строении.


Характерные признаки аппарата Гольджи

Имеет вид стопки, которая состоит от трех до восьми цистерн, толщиной около 25 нм, они уплощены в центральной части и расширяются в направлении к периферии, напоминают стопку перевернутых тарелок. Поверхности цистерн примыкают друг к другу очень плотно. От периферической части отпочковываются небольшие мембранные пузырьки.

Клетки человека имеют одну, реже пару стопок, а клетки растений могут содержать несколько таких образований. Совокупность цистерн (одна стопка) совместно с окружающими ее пузырьками называется диктиосомой. Несколько диктиосом могут связываться между собой, формируя сеть.

Полярность – наличие цис-стороны, направленной к ЭПС и ядру, где происходит слияние везикул, и транс-стороны, устремленной к клеточной оболочке (это особенность хорошо прослеживается в клетках секретирующих органов).

Асимметричность – сторона расположенная ближе к ядру клетки (проксимальный полюс) вмещает «незрелые» белки, к ней постоянно присоединяются везикулы, отсоединившиеся от ЭПС, транс-сторона (дистальный, зрелый полюс) содержит уже модифицированные белки.

При разрушении чужеродными агентами пластинчатого комплекса, происходит разделение аппарата Гольджи на отдельные части, но его основные функции при этом сохраняются. После возобновления системы микротрубочек, которые были хаотично разбросаны в цитоплазме, части аппарата собираются, и снова превращаются в нормально функционирующий пластинчатый комплекс. Физиологическое разделение происходит и в обычных условиях жизнедеятельности клеток, во время непрямого деления.

ЭПС и комплекс Гольджи

ЭПС – это часть комплекса Гольджи?

Однозначно нет. Эндоплазматическая сеть – это самостоятельная мембранная органелла, которая построена из системы замкнутых канальцев, цистерн, сформированных непрерывной мембраной. Основная функция – синтез белков, с помощью рибосом, размещенных на поверхности гранулярной ЭПС.

Существует ряд сходных признаков между ЭПС и аппаратом Гольджи:

  • Это внутриклеточные образования, отграниченные от цитоплазмы мембраной;
  • отделяют мембранные пузырьки, которые наполнены органическими продуктами синтеза;
  • вместе формируют единую синтезирующую систему;
  • в секретирующих клетках имеют наибольшие размеры и высокий уровень развития.

Чем образованы стенки эндоплазматической сети и комплекса Гольджи?

Стенки ЭПС и аппарата Гольджи представлены в виде однослойной мембраны. Эти органеллы вместе с лизосомами, пероксисомами и митохондриями объединены в группу мембранных органоидов.

Что происходит в комплексе Гольджи с гормонами и ферментами?

За синтез гормонов отвечает эндоплазматическая сеть, на поверхности ее мембраны идет производство гормональных веществ. В комплекс Гольджи поступают синтезированные гормоны, здесь они накапливаются, затем идет переработка и выведение их наружу. Поэтому в клетках эндокринных органов встречаются комплексы больших размеров (до 10 мкм).

Функции комплекса Гольджи

Протеолиз белковых веществ, что приводит к активации белков, так проинсулин переходит в инсулин.

Обеспечивает транспорт из клетки продуктов синтеза ЭПС.

Самой важной функцией комплекса Гольджи считают выведение из клетки продуктов синтеза, поэтому его еще называют транспортным аппаратом клетки.

Синтез полисахаридов , таких как пектин, гемицеллюлоза, которые входят в состав мембран растительных клеток, образование гликозаминогликанов, одного из составляющих межклеточной жидкости.

В цистернах пластинчатого комплекса идет созревание белковых веществ , необходимых для секреции, трансмембранных протеинов клеточной мембраны, ферментов лизосом и др. В процессе созревания белки постепенно перемещаются по отделам органоида, в которых завершается их формирование и происходит гликозилирование и фосфорилирование.

Формирование липоптротеидных веществ. Синтез и накопление слизистых веществ (муцина). Образование гликолипидов, которые входят в состав мембранного гликокаликса.

Передает белки в трех направлениях: к лизосомам (перенос контролируется ферментом – маннозой- 6-фосфат), к мембранам или внутриклеточной среде, и к межклеточному пространству.

Вместе с зернистой ЭПС образует лизосомы , путем слияния отпочковавшихся везикул с автолитическими ферментами.

Экзоцитозный перенос – везикула, подойдя к мембране, встраивается в нее и оставляет свое содержимое с наружной стороны клетки.

Сводная таблица функций комплекса Гольджи

Структурная единица Функции
Цис-цистерна Захват синтезированных ЭПС белков, мембранных липидов
Срединные цистерны Посттрансляционные модификации связанные с переносом ацетилглюкозамина.
Транс-цистерна Завершается гликозилирование, присоединение галактозы и сиаловой кислоты, идет сортировка веществ для дальнейшего транспорта из клетки.
Пузырьки Отвечают за перенос липидов, белков в аппарат Гольджи и между цистернами, а также за выведение продуктов синтеза.

Эндоплазматическая сеть, или эндоплазматический ретикулум, представляет собой систему трубочек и полостей, пронизывающих цитоплазму клетки. ЭПС образована мембраной, которая имеет такое же строение, как и плазматическая мембрана. Трубочки и полости ЭПС могут занимать до 50% объема клетки и нигде не обрываются и не открываются в цитоплазму. Различают гладкую и шероховатую (гранулярную) ЭПС. На шероховатой ЭПС расположено множество рибосом. Именно здесь синтезируется большинство белков. На поверхности гладкой ЭПС идет синтез углеводов и липидов.

Функции гранулярной эндоплазматической сети:

  • · синтез белков, предназначенных для выведения из клетки ("на экспорт");
  • · отделение (сегрегация) синтезированного продукта от гиалоплазмы;
  • · конденсация и модификация синтезированного белка;
  • · транспорт синтезированных продуктов в цистерны пластинчатого комплекса или непосредственно из клетки;
  • · синтез билипидных мембран.

Гладкая эндоплазматическая сеть представлена цистернами, более широкими каналами и отдельными везикулами, на внешней поверхности которых отсутствуют рибосомы.

Функции гладкой эндоплазматической сети:

  • · участие в синтезе гликогена;
  • · синтез липидов;
  • · дезинтоксикационная функция - нейтрализация токсических веществ, посредством соединения их с другими веществами.

Комплекс (аппарат) Гольджи.

Система внутриклеточных цистерн, в которых накапливаются вещества, синтезированные клеткой, носит название комплекса (аппарата) Гольджи. Здесь же эти вещества претерпевают дальнейшие биохимические превращения, упаковываются в мембранные пузырьки и переносятся в те места цитоплазмы, где они необходимы, или же транспортируются к клеточной мембране и выходят за пределы клетки (рис. 32). Комплекс Гольджи построен из мембран и расположен рядом с ЭПС, но не сообщается с ее каналами. Поэтому все вещества, синтезированные на мембранах ЭПС, переносятся в комплекс Гольджи внутри мембранных пузырьков, отпочковывающихся от ЭПС и сливающихся затем с комплексом Гольджи. Еще одна важная функция комплекса Гольджи -- это сборка мембран клетки. Вещества, из которых состоят мембраны (белки, липиды), поступают в комплекс Гольджи из ЭПС, в полостях комплекса Гольджи собираются участки мембран, из которых изготовляются особые мембранные пузырьки. Они передвигаются по цитоплазме в те места клетки, где требуется достроить мембрану.

Функции аппарата Гольджи:

  • · сортировку, накопление и выведение секреторных продуктов;
  • · накопление молекул липидов и образование липопротеидов;
  • · образование лизосом;
  • · синтез полисахаридов для образования гликопротеидов, восков, камеди, слизей, веществ матрикса клеточных стенок растений;
  • · формирование клеточной пластинки после деления ядра в растительных клетках;
  • · формирование сократимых вакуолей простейших.

Комплекс Гольджи представляет собой стопку мембранных мешочков (цистерн) и связанную с ней систему пузырьков.

На наружной, вогнутой стороне стопки из пузырьков, отпочковывающихся от глад. ЭПС, постоянно формируются новые цистерны, а на внутренней стороне цистерны превращаются обратно в пузырьки.

Основная функция комплекса Гольджи - транспорт веществ в цитоплазму и внеклеточную среду, а также синтез жиров и углеводов. Комплекс Гольджи участвует в росте и обновлении плазматической мембраны и в формировании лизосом.

Комплекс Гольджи был открыт в 1898 г. К. Гольджи. Располагая крайне примитивным оборудованием и ограниченным набором реактивов, он сделал открытие, благодаря которому совместно с Рамон-и-Кахалом получил Нобелевскую премию. Он обработал нервные клетки раствором бихромата, после чего добавил нитраты серебра и осмия. С помощью осаждения солей осмия или серебра с клеточными структурами Гольджи обнаружил в нейронах темноокрашенную сеть, которую назвал внутренним сетчатым аппаратом. При окраске общими методами пластинчатый комплекс не накапливает красителей, поэтому зона его концентрации видна как светлый участок. Например, вблизи ядра плазмоцита видна светлая зона, соответствующая области расположения органеллы.

Чаще всего комплекс Гольджи прилежит к ядру. При световой микроскопии он может распределяться в виде сложных сетей или отдельных диффузно расположенных участков (диктиосом). Форма и положение органеллы не имеют принципиального значения и могут изменяться в зависимости от функционального состояния клетки.

Комплекс Гольджи - это место конденсации и накопления продуктов секреции, вырабатываемых в других участках клетки, в основном в ЭПС. Во время синтеза белков меченные радиоизотопом аминокислоты накапливаются в гр. ЭПС, а затем их находят в комплексе Гольджи, секреторных включениях или лизосомах. Такое явление позволяет определить значение комплекса Гольджи в синтетических процессах в клетке.

При электронной микроскопии видно, что комплекс Гольджи состоит из скоплений плоских цистерн, которые называются диктиосомами. Цистерны плотно прилежат друг к другу на расстоянии 20…25 нм. Просвет цистерн в центральной части около 25 нм, а на периферии образуются расширения - ампулы, ширина которых непостоянна. В каждой стопке около 5…10 цистерн. Кроме плотно расположенных плоских цистерн в зоне комплекса Гольджи находится большое количество мелких пузырьков (везикул), особенно по краям органеллы. Иногда они отшнуровываются от ампул.

Со стороны, прилежащей к ЭПС и к ядру, в комплексе Гольджи имеется зона, содержащая значительное количество мелких пузырьков и небольших цистерн.

Комплекс Гольджи поляризован, то есть качественно неоднороден с разных сторон. Он имеет незрелую цис-поверхность, лежащую ближе к ядру, и зрелую - транс-поверхность, обращенную к поверхности клетки. Соответственно органелла состоит из нескольких взаимосвязанных компартментов, выполняющих специфические функции.

Цис-компартмент обычно обращен к клеточному центру. Его внешняя поверхность имеет выпуклую форму. С цистернами сливаются микровезикулы (транспортные пиноцитозные пузырьки), направляющиеся из ЭПС. Мембраны постоянно обновляются за счет пузырьков и, в свою очередь, восполняют содержимое мембранных образований других компартментов. В компартменте начинается посттрансляционная обработка белков, которая продолжается в следующих частях комплекса.

Промежуточный компаргмент осуществляет гликозилирование, фосфорилирование, карбоксилирование, сульфатирование биополимерных белковых комплексов. Происходит так называемая посттрансляционная модификация полипептидных цепочек. Идет синтез гликолипидов и липопротеидов. В промежуточном компартмснте, как и в цис-компартменте, формируются третичные и четвертичные белковые комплексы. Часть белков подвергается частичному протеолизу (разрушению), что сопровождается их трансформацией, необходимой для созревания. Таким образом, цис — и промежуточный компартменты необходимы для созревания белков и других сложных биополимерных соединений.

Транс-компартмент располагается ближе к периферии клетки. Внешняя поверхность его обычно вогнутая. Частично транс-компартмент переходит в транс-сеть - систему везикул, вакуолей и канальцев.

В клетках отдельные диктиосомы могут быть связаны друг с другом системой везикул и цистерн, примыкающих к дистальному концу скопления плоских мешков, так что образуется рыхлая трехмерная сеть - транс-сеть.

В структурах транс-компартмента и транс-сети происходят сортировка белков и других веществ, образование секреторных гранул, предшественников первичных лизосом и пузырьков спонтанной секреции. Секреторные пузырьки и прелизосомы окружают белки - клатрины.

Клатрины осаждаются на мембране формирующегося пузырька, постепенно отщепляя его от дистальной цистерны комплекса. Окаймленные пузырьки отходят от транс-сети, их перемещение гормонозависимое и контролируется функциональным состоянием клетки. Процесс транспортировки окаймленных пузырьков находится под влиянием микротрубочек. Белковые (клатриновые) комплексы вокруг пузырьков распадаются после отщепления пузырька от транс-сети и вновь формируются в момент секреции. В момент секреции белковые комплексы пузырьков взаимодействуют с белками микротрубочек, и пузырек транспортируется к наружной мембране. Пузырьки спонтанной секреции не окружены клатринами, их формирование происходит непрерывно и они, направляясь к клеточной мембране, сливаются с ней, обеспечивая восстановление цитолеммы.

В целом комплекс Гольджи участвует в сегрегации - это разделение, отделение определенных частей от основной массы, и накоплении продуктов, синтезированных в ЭПС, в их химических перестройках, созревании. В цистернах происходит синтез полисахаридов, их соединение с белками, что приводит к образованию сложных комплексов пептидогликанов (гликопротеинов). С помощью элементов комплекса Гольджи выводятся готовые секреты за пределы секреторной клетки.

Мелкие транспортные пузырьки отщепляются от гр. ЭПС в зонах, свободных от рибосом. Пузырьки восстанавливают мембраны комплекса Гольджи и доставляют в него полимерные комплексы, синтезируемые в ЭПС. Пузырьки транспортируются в цис-компартмент, где сливаются с его мембранами. Следовательно, в комплекс Гольджи поступают новые порции мембран и продуктов, синтезированных в гр. ЭПС.

В цистернах комплекса Гольджи происходят вторичные изменения в белках, синтезированных в гр. ЭПС. Эти изменения связаны с перестройкой олигосахаридных цепочек гликопротеинов. Внутри полостей комплекса Гольджи с помощью трансглюкозидаз модифицируются лизосомальные белки и белки секретов: происходит последовательная замена и наращивание олигосахаридных цепочек. Модифицирующиеся белки переходят от цистерны цис-компартмента в цистерны транс-компартмента за счет транспорта в пузырьках, содержащих белок.

В транс-компартменте белки сортируются: на внутренних поверхностях мембран цистерн располагаются белковые рецепторы, которые узнают секреторные белки, белки мембран и лизосом (гидролазы). В результате от дистальных транс-участков диктиосом отщепляются три типа мелких вакуолей: содержащие гидролазы - прелизосомы; с секреторными включениями, вакуоли, восполняющие клеточную мембрану.

Секреторная функция комплекса Гольджи заключается в том, что синтезированный на рибосомах экспортируемый белок, отделяющийся и накапливающийся внутри цистерн ЭПС, транспортируется в вакуоли пластинчатого аппарата. Затем накопленный белок может конденсироваться, образуя секреторные белковые гранулы (в поджелудочной, молочной и других железах), или оставаться в растворенном виде (иммуноглобулины в плазматических клетках). От ампулярных расширений цистерн комплекса Гольджи отщепляются пузырьки, содержащие эти белки. Такие пузырьки могут сливаться между собой, увеличиваться в размерах, образуя секреторные гранулы.

После этого секреторные гранулы начинают двигаться к поверхности клетки, соприкасаются с плазмолеммой, с которой сливаются их собственные мембраны, и содержимое гранул оказывается за пределами клетки. Морфологически этот процесс называется экструзией, или экскрецией (выбрасывание, экзоцитоз) и напоминает эндоцитоз, только с обратной последовательностью стадий.

Комплекс Гольджи может резко увеличиваться в размерах в клетках, активно осуществляющих секреторную функцию, что обычно сопровождается развитием ЭПС, а в случае синтеза белков - ядрышка.

Во время деления клетки комплекс Гольджи распадается до отдельных цистерн (диктиосом) и/или пузырьков, которые распределяются между двумя делящимися клетками и в конце телофазы восстанавливают структурную целостность органеллы. Вне деления происходит непрерывное обновление мембранного аппарата за счет пузырьков, мигрирующих из ЭПС и дистальных цистерн диктиосомы за счет проксимальных компартментов.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Лизосома - это одномембранный органоид эукариотической клетки, имеющий в основном шаровидную форму и не превышающий по размеру 1 мкм. Характерны для клеток животных, где могут содержаться в больших количествах (особенно в клетках, способных к фагоцитозу). В растительных клетках многие функции лизосом выполняет центральная вакуоль.

Строение лизосомы

Лизосомы отграничивает от цитоплазмы несколько десятков гидролитических (пищеварительных) ферментов , расщепляющих белки, жиры, углеводы и нуклеиновые кислоты. Ферменты относятся к группам протеаз, липаз, нуклеаз, фосфатаз и др.

В отличие от гиалоплазмы, внутренняя среда лизосом имеет кислую реакцию, а содержащиеся здесь ферменты активны только при низком pH.

Изоляция ферментов лизосом необходима, иначе, оказавшись в цитоплазме, они могут разрушить клеточные структуры.

Образование лизосом

Лизосомы образуются в . Ферменты (по-сути белки) лизосом синтезируются на шероховатой , после чего транспортируются в Гольджи с помощью везикул (пузырьков, ограниченных мембраной). Здесь белки модифицируются, приобретают свою функциональную структуру, упаковываются в другие пузырьки – первичны лизосомы , – которые отрываются от аппарата Гольджи. Далее, превращаясь во вторичные лизосомы , выполняют функцию внутриклеточного переваривания. В некоторых клетках первичные лизосомы секретируют свои ферменты за пределы цитоплазматической мембраны.

Функции лизосом

О функциях лизосом говорит уже их название: lysis - расщепление, soma - тело.

При попадании в клетку питательных веществ, каких-либо микроорганизмов лизосомы принимают участие в их переваривании. Кроме того, они разрушают ненужные структуры самой клетки и даже целые органы организмов (например, хвост и жабры в процессе развития многих земноводных).

Ниже дается описание основным, но не единственным функциям лизосом.

Переваривание частиц, поступивших в клетку путем эндоцитоза

Путем эндоцитоза (фогоцитоза и пиноцитоза) в клетку поступают относительно крупные материалы (питательные вещества, бактерии и др.). При этом цитоплазматическая мембрана впячивается внутрь клетки, во впячивание попадает структура или вещество, после чего впячивание отшнуровывается во внутрь, и образуется пузырек (эндосома ), окруженный мембраной, – фагоцитарный (с твердыми частицами) или пиноцитарный (с растворами).

Подобным способом может происходить усваивание пищи (например, у амеб). В данном случае вторичную лизосому также называют пищеварительной вакуолью . Переваренные вещества поступают из вторичной лизосомы в цитоплазму. Другой вариант - переваривание попавших в клетку бактерий (наблюдается у фагоцитов - специализированных для защиты организма лейкоцитов).

Оставшиеся во вторичной лизосоме ненужные вещества удаляются из клетки путем экзоцитоза (обратен эндоцитозу). Лизосома с непереваренными подлежащими удалению веществами называются остаточным тельцем .

Автофагия

Путем автофагии (аутофагии) клетка избавляется от ненужных ей собственных структур (различных органелл и др.).

Сначала такой органоид окружается элементарной мембраной, отделившейся от гладкой ЭПС. После этого образовавшийся пузырек сливается с первичной лизосомой. Образуется вторичная лизосома, которая называется автофагической вакуолью . В ней происходит переваривание клеточной структуры.

Автофагия особенно выражена в клетках, находящихся в процессе дифференциации.

Автолиз

Под автолизом понимают саморазрушение клетки. Характерен при метаморфозах, омертвении тканей.

Автолиз наступает, когда содержимое многих лизосом высвобождается в цитоплазму. Обычно в достаточно нейтральной среде гиалоплазмы ферменты лизосом, которым необходима кислая среда, становятся неактивными. Однако, когда разрушается много лизосом, то кислотность среды повышается, а ферменты остаются активными и расщепляют клеточные структуры.

Мембранные органеллы . Каждая мембранная органелла представляет структуру цитоплазмы, ограниченную мембраной. Вследствие этого внутри нее образуется пространство, отграниченное от гиалоплазмы. Цитоплазма оказывается таким образом разделенной на отдельные отсеки со своими свойствами - компарт- менты (англ. compartment - отделение, купе, отсек). Наличие компартментов - одна из важных особенностей эукариотичес- ких клеток.

К мембранным органеллам относятся митохондрии, эндоплазматическая сеть (ЭПС), комплекс Гольджи, лизосомы и пероксисомы.

Митохондрии - «энергетические станции клетки», участвуют в процессах клеточного дыхания и преобразуют энергию, которая при этом освобождается, в форму, доступную для использования другими структурами клетки.

Митохондрии, в отличие от других органелл, обладают собственной генетической системой, необходимой для их самовоспроизведения и синтеза белков. Они имеют свои ДНК, РНК и рибосомы, отличающиеся от таковых в ядре и в других отделах цитоплазмы собственной клетки. В то же время митохондриальные ДНК, РНК и рибосомы весьма сходны с прокариотическими. Это послужило толчком для разработки симбиотической гипотезы, согласно которой митохондрии (и хлоропласты) возникли из сим- биотических бактерий. Митохондриальная ДНК кольцевидная (как у бактерий), на нее приходится около 2% ДНК клетки.

Митохондрии (и хлоропласты ) способны размножаться в клетке путем бинарного деления. Таким образом, они являются самовоспроизводящимися органеллами. Вместе с тем генетическая информация, содержащаяся в их ДНК, не обеспечивает их всеми необходимыми для полного самовоспроизведения белками; часть этих белков кодируется ядерными генами и поступает в митохондрии из гиалоплазмы. Поэтому митохондрии в отношении их самовоспроизведения называют полуавтономными структурами. У человека и других млекопитающих митохондриальный геном наследуется от матери: при оплодотворении яйцеклетки митохондрии спермия в нее не проникают.

Каждая митохондрия образована двумя мембранами - внешней и внутренней (13). Между ними расположено межмембранное пространство шириной 10 - 20 нм. Внешняя мембрана ровная, внутренняя же образует многочисленные кристы, которые могут иметь вид складок, трубочек и гребней. Благодаря кристам площадь внутренней мембраны существенно увеличивается.

Пространство, ограниченное внутренней мембраной, заполнено коллоидным митохондриальныш матриксом. Он имеет мелкозернистую структуру и содержит множество различных ферментов. В матриксе также заключен собственный генетический аппарат митохондрий (у растений, кроме митохондрий, ДНК содержится также и в хлоропластах).

Со стороны матрикса к поверхности крист прикреплено множество электроноплотных субмитохондриальных элементарных частиц (до 4000 на 1 мкм2 мембраны). Каждая из них имеет форму гриба (см. 13). В этих частицах сосредоточены ATP-азы - ферменты, непосредственно обеспечивающие синтез и распад ATP. Эти процессы неразрывно связаны с циклом трикарбоновых кислот (циклом Кребса).

Количество, размеры и расположение митохондрий зависят от функции клетки, в частности от ее потребности в энергии и от места, где энергия расходуется. Так, в одной печеночной клетке их количество достигает 2500. Множество крупных митохондрий содержится в кардиомиоцитах и миосимпластах мышечных волокон. В спермиях богатые кристами митохондрии окружают аксонему промежуточной части жгутика.

Эндоплазматическая сеть (ЭПС), или эндоплазматический ретикулум (ЭР ), представляет собой единый непрерывный компарт- мент, ограниченный мембраной, образующей множество инвагинаций и складок (14). Поэтому на электронно-микроскопических фотографиях эндоплазматическая сеть выглядит в виде множества трубочек, плоских или округлых цистерн, мембранных пузырьков. На мембранах ЭПС совершаются многообразные первичные синтезы веществ, необходимых для жизнедеятельности клетки. Молекулы этих веществ будут подвергаться дальнейшим химическим превращениям в других компартментах клетки.

Большинство веществ синтезируется на наружной поверхности мембран ЭПС. Затем эти вещества переносятся через мембрану внутрь компартмента и там транспортируются к местам дальнейших биохимических превращений, в частности к комплексу Гольджи. На концах трубочек ЭПС они накапливаются и затем отделяются

от них в виде транспортных пузырьков. Каждый пузырек окружен, таким образом, мембраной и перемещается в гиалоплазме к месту назначения. Как всегда, в транспорте принимают участие микротрубочки.

Различают два типа ЭПС: гранулярную (зернистую, шероховатую) и агра- нулярную (гладкую). Обе они представляют собой единую структуру.

Наружная, обращенная к гиалоплазме сторона мембраны гранулярной ЭПС покрыта рибосомами. Здесь осуществляется синтез белков. В клетках, специализирующихся на синтезе белков, гранулярная эндо- плазматическая сеть выглядит в виде параллельных окончатых (фенестри- рованных), сообщающихся между собой и с перинуклеарным пространством ламеллярных структур, между которыми лежит множество свободных рибосом.

Поверхность гладкой ЭПС лишена рибосом. Сама сеть представляет собой множество мелких трубочек диаметром около 50 нм каждая.

На мембранах гладкой сети синтезируются углеводы и липиды, среди них - гликоген и холестерин. Являясь депо ионов кальция, гладкая эндоплазматическая сеть участвует в сокращении кардио- миоцитов и волокон скелетной мышечной ткани. Она же разграничивает будущие тромбоциты в мегакариоцитах. Чрезвычайно важна ее роль в детоксикации гепатоцитами веществ, которые поступают из полости кишки по воротной вене в печеночные капилляры.

По просветам эндоплазматической сети синтезированные вещества транспортируются к комплексу Гольджи (но просветы сети не сообщаются с просветами цистерн последнего). К комплексу Гольджи вещества поступают в пузырьках, которые сначала от- шнуровываются от сети, транспортируются к комплексу и, наконец, сливаются с ним. От комплекса Гольджи вещества транспортируются к местам своего использования также в мембранных пузырьках. Следует подчеркнуть, что одной из важнейших функций эндоплазматической сети является синтез белков и липи- дов для всех клеточных органелл.

Чаще всего в КГ выявляются три мембранных элемента: уплощенные мешочки (цистерны), пузырьки и вакуоли (15). Основные элементы комплекса Гольджи - диктиосомы (греч. dyction - сеть). Число их колеблется в разных клетках от одной до нескольких сотен. Концы цистерн расширены. От них отщепляются пузырьки и вакуоли, окруженные мембраной и содержащие различные вещества.

Наиболее широкие уплощенные цистерны обращены в сторону ЭПС. К ним присоединяются транспортные пузырьки, несущие вещества - продукты первичных синтезов. В цистернах приносимые макромолекулы модифицируются. Здесь происходит синтез полисахаридов, модификация олигосахаридов, образование белково-углеводных комплексов и ковалентная модификация переносимых макромолекул.

По мере модификации вещества переходят из одних цистерн в другие. На боковых поверхностях цистерн возникают выросты, куда перемещаются вещества. Выросты отщепляются в виде пузырьков, которые удаляются от КГ в различных направлениях по гиалоплазме.

Сторону КГ, куда поступают вещества от ЭПС, называют цис- полюсом (формирующаяся поверхность), противоположную - транс-полюсом (зрелая поверхность). Таким образом, комплекс Гольджи структурно и биохимически поляризован.

Судьба пузырьков, отщепляющихся от КГ, различна. Одни из них направляются к поверхности клетки и выводят синтезированные вещества в межклеточный матрикс. Часть этих веществ представляет собой продукты метаболизма, часть же - специально синтезированные продукты, обладающие биологической активностью (секреты). В процессе упаковки веществ в пузырьки расходуется значительное количество материала мембран. Сборка мембран - еще одна из функций КГ. Эта сборка совершается из веществ, поступающих, как обычно, от ЭПС.

Во всех случаях вблизи комплекса Гольджи концентрируются митохондрии. Это связано с происходящими в нем энергозависимыми реакциями.

Лизосомы . Каждая лизосома представляет собой мембранный пузырек диаметром 0,4 - 0,5 мкм. В нем содержится около 50 видов различных гидролитических ферментов в дезактивированном состоянии (протеазы, липазы, фосфолипазы, нуклеазы, гликозидазы, фосфатазы, в том числе кислая фосфатаза; последняя является маркером лизосом). Молекулы этих ферментов, как всегда, синтезируются на рибосомах гранулярной ЭПС, откуда переносятся транспортными пузырьками в КГ, где модифицируются. От зрелой поверхности цистерн КГ отпочковываются первичные лизосомы.

Все лизосомы клетки формируют лизосомное пространство, в котором с помощью протонного насоса постоянно поддерживается кислая среда - рН колеблется в пределах 3,5-5,0. Мембраны лизосом устойчивы к заключенным в них ферментам и предохраняют цитоплазму от их действия.

Функция лизосом - внутриклеточный лизис («переваривание») высокомолекулярных соединений и частиц. Захваченные частицы обычно окружены мембраной. Такой комплекс называют фа- госомой.

Процесс внутриклеточного лизиса осуществляется в несколько этапов. Сначала первичная лизосома сливается с фагосомой. Их комплекс называют вторичной лизосомой (фаголизосомой). Во вторичной лизосоме ферменты активируются и расщепляют поступившие в клетку полимеры до мономеров. Продукты расщепления транспортируются через лизосомную мембрану в цитозоль. Непереваренные вещества остаются в лизосоме и могут сохраняться в клетке очень долго в виде остаточных телец, окруженных мембраной.

Остаточные тельца относят не к органеллам, а к включениям. Возможен и другой путь превращений: вещества в фагосоме расщепляются полностью, после чего мембрана фагосомы распадается. Вторичные лизосомы могут сливаться между собой, а также с другими первичными лизосомами. При этом иногда образуются своеобразные вторичные лизосомы - мультивезикулярные тельца.

В процессе жизнедеятельности клетки на разных иерархических уровнях ее организации, начиная от молекул и кончая орга- неллами, постоянно происходит перестройка структур. Вблизи поврежденных или требующих замены участков цитоплазмы, обычно по соседству с комплексом Гольджи, образуется полулунная двойная мембрана, которая растет, окружая со всех сторон поврежденные зоны. Затем эта структура сливается с лизосомами. В такой аутофагосоме (аутосоме) совершается лизис структур органеллы.

В других случаях в процессе макро- или микроаутофагии подлежащие перевариванию структуры (например, гранулы секрета) впячиваются в лизосомную мембрану, окружаются ею и подвергаются перевариванию. Образуется аутофагическая вакуоль. В результате множественной микроаутофагии тоже формируются мультивезикулярные тельца (например, в нейронах мозга и карди- омиоцитах). Наряду с аутофагией в некоторых клетках происходит и кринофагия (греч. krinein - просеивать, отделять) - слияние