Какая ткань образует скелетные мышцы. Строение скелетной мышечной ткани

Мышцы - одна из основных составляющих тела. Они основаны на ткани, волокна которой сокращаются под воздействием нервных импульсов, что позволяет телу двигаться и удерживаться в окружающей среде.

Мышцы располагаются в каждой части нашего тела. И даже если мы не знаем об их существовании, они все равно есть. Достаточно, например, первый раз сходить в тренажерный зал или позаниматься аэробикой - на следующий день у вас начнут болеть даже те мышцы, о наличии которых вы и не догадывались.

Они отвечают не только за движение. В состоянии покоя мышцы тоже требуют энергии, чтобы поддерживать себя в тонусе. Это необходимо для того, чтобы в любой момент определенная смогла ответить на нервный импульс соответствующим движением, а не тратила время на подготовку.

Чтобы понять, как устроены мышцы, предлагаем вспомнить основы, повторить классификацию и заглянуть в клеточное Также мы узнаем о болезнях, которые могут ухудшить их работу, и о том, как укрепить скелетную мускулатуру.

Общие понятия

По своему наполнению и происходящим реакциям мышечные волокна делятся на:

  • поперечно-полосатые;
  • гладкие.

Скелетные мышцы - продолговатые трубчатые структуры, количество ядер в одной клетке которых может доходить до нескольких сотен. Состоят они из мышечной ткани, которая прикреплена к различным частям костного скелета. Сокращения поперечно-полосатых мышц способствуют движениям человека.

Разновидности форм

Чем различаются мышцы? Фото, представленные в нашей статье, помогут нам в этом разобраться.

Скелетные мышцы являются одной из главных составляющих опорно-двигательной системы. Они позволяют двигаться и сохранять равновесие, а также задействованы в процессе дыхания, голосообразования и других функциях.

В организме человека насчитывается более 600 мышц. В процентном соотношении их общая масса составляет 40% от общей массы тела. Мышцы классифицируются по форме и строению:

  • толстые веретенообразные;
  • тонкие пластинчатые.

Классификация упрощает изучение

Деление скелетных мышц на группы осуществляется в зависимости от места нахождения и значения их в деятельности различных органов тела. Основные группы:

Мышцы головы и шеи:

  • мимические - задействуются при улыбке, общении и создании различных гримас, обеспечивая при этом движение составляющих частей лица;
  • жевательные - способствуют смене положения челюстно-лицевого отдела;
  • произвольные мышцы внутренних органов головы (мягкого неба, языка, глаз, среднего уха).

Группы скелетных мышц шейного отдела:

  • поверхностные - способствуют наклонным и вращательным движениям головы;
  • средние - создают нижнюю стенку ротовой полости и способствуют движению вниз челюсти, и гортанных хрящей;
  • глубокие осуществляют наклоны и повороты головы, создают поднятие первого и второго ребер.

Мышцы, фото которых вы видите здесь, отвечают за туловище и делятся на мышечные пучки следующих отделов:

  • грудной - приводит в действие верхнюю часть торса и руки, а также способствует изменению положения ребер при дыхании;
  • отдел живота - дает движение крови по венам, осуществляет изменения положения грудной клетки при дыхании, воздействует на функционирование кишечного тракта, способствует сгибанию туловища;
  • спинной - создает двигательную систему верхних конечностей.

Мышцы конечностей:

  • верхние - состоят из мышечных тканей плечевого пояса и свободной верхней конечности, помогают двигать рукой в плечевой суставной сумке и создают движения запястья и пальцев;
  • нижние - играют основную роль при передвижении человека в пространстве, подразделяются на мышцы тазового пояса и свободную часть.

Строение скелетной мышцы

В своей структуре она имеет огромное количество продолговатой формы диаметром от 10 до 100 мкм, длина их колеблется от 1 до 12 см. Волокна (микрофибриллы) бывают тонкими - актиновые, и толстыми - миозиновые.

Первые состоят из белка, имеющего фибриллярную структуру. Он называется актин. Толстые волокна состоят из различных типов миозина. Отличаются они по времени, которое требуется на разложение молекулы АТФ, что обуславливает разную скорость сокращений.

Миозин в гладких мышечных клетках находится в дисперсном состоянии, хотя имеется большое количество белка, который, в свою очередь, является многозначащим в продолжительном тоническом сокращении.

Строение скелетной мышцы похоже на сплетенный из волокон канат или многожильный провод. Сверху ее окружает тонкий чехол из соединительной ткани, называемый эпимизиум. От его внутренней поверхности вглубь мышцы отходят более тонкие разветвления соединительной ткани, создающие перегородки. В них «завернуты» отдельные пучки мышечной ткани, которые содержат до 100 фибрилл в каждом. От них еще глубже отходят более узкие ответвления.

Сквозь все слои в скелетные мышцы проникают кровеносная и нервная системы. Артериальная вена проходит вдоль перимизиума - это соединительная ткань, покрывающая пучки мышечных волокон. Артериальные и венозные капилляры располагаются рядом.

Процесс развития

Скелетные мышцы развиваются из мезодермы. Со стороны нервного желобка образуются сомиты. По истечении времени в них выделяются миотомы. Их клетки, приобретая форму веретена, эволюционируют в миобласты, которые делятся. Некоторые из них прогрессируют, а другие остаются без изменений и образуют миосателлитоциты.

Незначительная часть миобластов, благодаря соприкосновению полюсов, создает контакт между собой, далее в контактной зоне плазмалеммы распадаются. Благодаря слиянию клеток создаются симпласты. К ним переселяются недифференцированные молодые мышечные клетки, находящиеся в одном окружении с миосимпластом базальной мембраны.

Функции скелетных мышц

Эта мускулатура является основой опорно-двигательного аппарата. Если она сильна, тело проще поддерживать в нужном положении, а вероятность появления сутулости или сколиоза сводится к минимуму. О плюсах занятий спортом знают все, поэтому рассмотрим роль, которую играет в этом мускулатура.

Сократительная ткань скелетных мышц выполняет в организме человека множество различных функций, которые нужны для правильного расположения тела и взаимодействия его отдельных частей друг с другом.

Мышцы выполняют следующие функции:

  • создают подвижность тела;
  • берегут тепловую энергию, созданную внутри тела;
  • способствуют перемещению и вертикальному удержанию в пространстве;
  • содействуют сокращению дыхательных путей и помогают при глотании;
  • формируют мимику;
  • способствуют выработке тепла.

Постоянная поддержка

Когда мышечная ткань находится в покое, в ней всегда остается незначительное напряжение, называемое мышечным тонусом. Оно образуется из-за незначительных импульсных частот, которые поступают в мышцы из спинного мозга. Их действие обуславливается сигналами, проникающими из головы к спинным мотонейронам. Тонус мышц также зависит от их общего состояния:

  • растяжения;
  • уровня наполняемости мышечных футляров;
  • обогащения кровью;
  • общего водного и солевого баланса.

Человек обладает способностью регулировать уровень нагрузки мышц. В результате длительных физических упражнений либо сильного эмоционального и нервного перенапряжения тонус мышц непроизвольно увеличивается.

Сокращения скелетных мышц и их разновидности

Эта функция является основной. Но даже она, при кажущейся простоте, может делиться на несколько видов.

Виды сократительных мышц:

  • изотонические - способность мышечной ткани укорачиваться без изменений мышечных волокон;
  • изометрические - при реакции волокно сокращается, но его длина остается прежней;
  • ауксотонические - процесс сокращения мышечной ткани, где длина и напряжение мышц подвергнута изменениям.

Рассмотрим этот процесс более подробно

Сначала мозг посылает через систему нейронов импульс, которых доходит до мотонейрона, примыкающего к мышечному пучку. Далее эфферентный нейрон иннервируется из синоптического пузырька, и выделяется нейромедиатор. Он соединяется с рецепторами на сарколемме мышечного волокна и открывает натриевый канал, который приводит к деполяризации мембраны, вызывающей При достаточном количестве нейромедиатор стимулирует выработку ионов кальция. Затем он соединяется с тропонином и стимулирует его сокращение. Тот, в свою очередь, оттягивает тропомеазин, позволяя актину соединиться с миозином.

Дальше начинается процесс скольжения актинового филамента относительно миозинового, вследствие чего происходит сокращение скелетных мышц. Разобраться в процессе сжатия поперечно-полосатых мышечных пучков поможет схематическое изображение.

Принцип работы скелетных мышц

Взаимодействие большого количества мышечных пучков способствует различным движениям туловища.

Работа скелетных мышц может происходить такими способами:

  • мышцы-синергисты работают в одном направлении;
  • мышцы-антагонисты способствуют выполнению противоположных движений для осуществления напряжения.

Антагонистическое действие мышц является одним из главных факторов в деятельности опорно-двигательного аппарата. При осуществлении какого-либо действия в работу включаются не только мышечные волокна, которые совершают его, но и их антагонисты. Они способствуют противодействию и придают движению конкретность и грациозность.

Поперечно-полосатая скелетная мышца при воздействии на сустав совершает сложную работу. Ее характер определяется расположением оси сустава и относительным положением мышцы.

Некоторые функции скелетных мышц являются недостаточно освещенными, и зачастую о них не говорят. Например, некоторые из пучков выступают рычагом для работы костей скелета.

Работа мышц на клеточном уровне

Действие скелетной мускулатуры осуществляется за счет двух белков: актина и миозина. Эти составляющие обладают способностью передвигаться относительно друг друга.

Для осуществления работоспособности мышечной ткани необходим расход энергии, заключенной в химических связях органических соединений. Распад и окисление таких веществ происходят в мышцах. Здесь обязательно присутствует воздух, и выделяется энергия, 33% из всего этого расходуется на работоспособность мышечной ткани, а 67% передается другим тканям и тратится на поддержание постоянной температуры тела.

Болезни мускулатуры скелета

В большинстве случаев отклонения от нормы при функционировании мышц обусловлены патологическим состоянием ответственных отделов нервной системы.

Наиболее распространенные патологии скелетных мышц:

  • Мышечные судороги - нарушение электролитного баланса во внеклеточной жидкости, окружающей мышечные и нервные волокна, а также изменения осмотического давления в ней, особенно его повышение.
  • Гипокальциемическая тетания - непроизвольные тетанические сокращения скелетных мышц, наблюдаемые при падении внеклеточной концентрации Са2+ примерно до 40% от нормального уровня.
  • характеризуется прогрессирующей дегенерацией волокон скелетных мышц и миокарда, а также мышечной нетрудоспособностью, которая может привести к летальному исходу из-за дыхательной либо сердечной недостаточности.
  • Миастения - хроническое аутоиммунное заболевание, при котором в организме образуются антитела к никотиновому ACh-рецептору.

Релаксация и восстановление скелетных мышц

Правильное питание, образ жизни и регулярные тренировки помогут вам стать обладателем здоровых и красивых скелетных мышц. Необязательно заниматься и наращивать мышечную массу. Достаточно регулярных кардиотренировок и занятий йогой.

Не стоит забывать про обязательный прием необходимых витаминов и минералов, а также регулярные посещения саун и бань с вениками, которые позволяют обогатить кислородом мышечную ткань и кровеносные сосуды.

Систематические расслабляющие массажи повысят эластичность и репродуктивность мышечных пучков. Также положительное воздействие на структуру и функционирование скелетных мышц оказывает посещение криосауны.

    Общая характеристика мышечных тканей. Классификация.

    Морфофункциональная характеристика. Регенерация мышечных тканей.

а) поперечно-полосатой скелетной мышечной ткани;

б) поперечно-полосатой сердечной мышечной ткани;

в) гладкой мышечной ткани.

1. Общая характеристика мышечных тканей. Классификация.

Мышечные ткани обеспечивают сократительные процессы в полых внутренних органах и сосудах, перемещение частей тела относительно друг друга, поддержание позы и перемещение организма в пространстве. Помимо движения, при сокращении выделяется большое количество тепла, и, таким образом, мышечные ткани участвуют в терморегуляции организма.

Свойством сократимости обладают практически все виды клеток благодаря наличию в их цитоплазме сократительного аппарата, представленного сетью тонких микрофиламентов (5–7 нм), состоящих из сократительных белков – актина, миозина, тропомиозина и др. За счет взаимодействия названных белков микрофиламентов осуществляются сократительные процессы и обеспечивается движение в цитоплазме гиалоплазмы, органелл, вакуолей, образование псевдоподий и инвагинаций плазмолеммы, а также процессы фаго- и пиноцитоза, экзоцитоза, деления и перемещения клеток.

Любая разновидность мышечной ткани помимо сократительных элементов (мышечных клеток и мышечных волокон) включает в себя клеточные элементы и волокна рыхлой волокнистой соединительной ткани и сосуды, которые обеспечивают трофику мышечных элементов, осуществляют передачу усилий сокращения мышечных элементов на скелет. Однако функционально ведущими элементами мышечных тканей являются мышечные клетки, или мышечные волокна.

Мышечные ткани классифицируются по строению, источникам происхождения и иннервации, по функциональным особенностям.

Основные группы мышечных тканей по строению:

    гладкая (неисчерченная) – мезенхимная; включает специальную:

    нейрального происхождения;

    эпидермального происхождения;

    поперечно-полосатая (исчерченная):

скелетная;

сердечная.

Каждая из 2 групп, в свою очередь, подразделяется на разновидности как по источникам происхождения, так и по строению и функциональным особенностям.

Гладкая мышечная ткань, входящая в состав внутренних органов и сосудов, развивается из мезенхимы.

К специальным мышечным тканям нейрального происхождения относятся гладкомышечные клетки радужной оболочки, эпидермального происхождения - миоэпителиальные клетки слюнных, слезных, потовых и молочных желез.

Поперечно-полосатая мышечная ткань подразделяется на скелетную и сердечную.

Обе эти разновидности развиваются из разных частей мезодермы:

  • скелетная – из миотомов сомитов;

    сердечная - из висцерального листка спланхнотома.

Каждая разновидность мышечной ткани имеет свою структурно-функциональную единицу.

Гладкая мышечная ткань внутренних органов и радужной оболочки -гладкомышечная клетка – миоцит;

    специальная эпидермального происхождения – корзинчатый миоэпителиоцит-

    сердечная – кардиомиоцит;

    скелетная– мышечное волокно.

2. Морфофункциональная характеристика

а) поперечно-полосатой скелетной мышечной ткани

Структурно-функциональной единицей поперечно-полосатой мышечной ткани является мышечное волокно.

Оно представляет собой вытянутое цилиндрическое образование с заостренными концами длиной от 1 до 40 мм (а по некоторым данным, до 120 мм), диаметром 0,1 мм.

Мышечное волокно окружено оболочкой – сарколеммой, в которой под электронным микроскопом отчетливо выделяются 2 листка: внутренний – типичная плазмолемма, а наружный представляет собой тонкую соединительнотканную пластинку – базальную пластинку.

В узкой щели между плазмолеммой и базальной пластинкой располагаются мелкие клетки – миосателлиты.

Таким образом, мышечное волокно является комплексным образованием и состоит из следующих основных структурных компонентов:

    миосимпласта;

    клеток-миосателлитов;

    базальной пластинки.

Базалъная пластинка образована тонкими коллагеновыми и ретикулярными волокнами, относится к опорному аппарату и выполняет вспомогательную функцию передачи сил сокращения на соединительнотканные элементы мышцы.

Клетки-миосателлиты являются камбиальными (ростковыми) элементами мышечных волокон и играют роль в процессах их физиологической и репаративной регенерации.

Миосимпласт является основным структурным компонентом мышечного волокна как по объему, так и по выполняемым функциям. Он образуется посредством слияния самостоятельных недифференцированных мышечных клеток – миобластов.

Миосимпласт можно рассматривать как вытянутую гигантскую многоядерную клетку, состоящую из большого числа ядер, цитоплазмы (саркоплазмы), плазмолеммы, включений, общих и специальных органелл. В миосимпласте содержится несколько тысяч (до 10 тыс.) продольно вытянутых светлых ядер, располагающихся на периферии под плазмолеммой. Вблизи ядер локализуются фрагменты слабовыраженной зернистой эндоплазматической сети, пластинчатого комплекса и небольшое число митохондрий. Центриоли в симпласте отсутствуют. В саркоплазме содержатся включения гликогена и миоглобина, аналога гемоглобина эритроцитов.

Отличительной особенностью миосимпласта является также наличие в нем специализированных органелл, к которым относятся:

    миофибриллы;

    саркоплазматическая сеть;

    канальцы Т-системы.

Миофибриллы – сократительные элементы миосимпласта – в большом количестве (до 1–2 тыс.) локализуются в центральной части саркоплазмы миосимпласта. Они объединяются в пучки, между которыми содержатся прослойки саркоплазмы. Между миофибриллами локализуется большое число митохондрий (саркосом). Каждая миофибрилла простирается продольно на протяжении всего миосимпласта и своими свободными концами прикрепляется к его плазмолемме у конических концов. Диаметр миофибриллы составляет 0,2–0,5 мкм.

Миофибриллы неоднородны по протяжению и подразделяются:

    на темные (анизотропные), или А-диски, которые образованы более толстыми миофиламентами (10–12 нм), состоящими из белка миозина;

    светлые (изотропные), или I-диски, которые образованы тонкими миофиламентами (5–7 нм), состоящими из белка актина.

Темные и светлые диски всех миофибрилл располагаются на одном уровне и обусловливают поперечную исчерченность всего мышечного волокна.

Темные и светлые диски состоят из еще более тонких волоконец - протофибрилл, или миофиламентов.

Посередине I-диска поперечно актиновым миофиламентам проходит темная полоска – телофрагма, или Z-линия, посредине А-диска проходит менее выраженная М-линия, или мезофрагма.

Актиновые миофиламенты посередине I-диска скрепляются белками, составляющими Z-линию, свободными концами частично входят в А-диск между толстыми миофиламентами. При этом вокруг 1 миозинового филамента располагаются в актиновых.

При частичном сокращении миофибриллы актиновые миофиламенты как бы втягиваются в А-диск, и в нем образуется светлая зона, или Н-полоска, ограниченная свободными концами актиновых миофиламентов. Ширина Н-полоски зависит от степени сокращения миофибриллы.

Участок миофибриллы, расположенный между 2 Z-линиями, носит название саркомера и является структурно-функциональной единицей миофибриллы.

Саркомер включает в себя А-диск и расположенные по сторонам от него 2 половины 1-диска.

Следовательно, каждая миофибрилла представляет собой совокупность саркомеров.

Именно в саркомере осуществляется процесс сокращения.

Конечные саркомеры каждой миофибриллы прикрепляются к плазмолемме миосимпласта актиновыми миофиламентами.

Структурные элементы саркомера в расслабленном состоянии можно, выразить формулой

Z + 1/21 + 1/2А + М + 1/2А + 1/21 + Z.

Процесс сокращения осуществляется посредством взаимодействия актиновых и миозиновых филаментов и образования между ними актинмиозиновых мостиков, посредством которых происходит втягивание актиновых миофиламентов в А-диски – укорочение саркомера. Для развития этого процесса необходимы 3 условия.

Наличие энергии в виде АТФ;

    наличие ионов кальция; наличие биопотенциала.

АТФ образуется в саркосомах (митохондриях), в большом числе локализованных между миофибриллами.

Выполнение 2 последних условий осуществляется с помощью еще 2 специализированных органелл – саркоплазматической сети и Т-каналъцев.

Саркоплазматическая сеть представляет собой видоизмененную гладкую эндоплазматическую сеть и состоит из расширенных полостей и анастомозирующих канальцев, окружающих миофибриллы. Она подразделяется на фрагменты, окружающие отдельные саркомеры. Каждый фрагмент состоит из 2 терминальных цистерн, соединенных полыми анастомозируюшими канальцами – L-каналъцами. При этом терминальные цистерны охватывают саркомер в области I-дисков, а канальцы – в области А-дисков.

В терминальных цистернах и канальцах содержатся ионы кальция, которые при поступлении нервного импульса и достижении волны деполяризации мембран саркоплазматической сети выходят из цистерн и канальцев и распределяются между актиновыми и миозиновыми миофиламентами, инициируя их взаимодействие. После прекращения волны деполяризации ионы кальция устремляются обратно в терминальные цистерны и канальцы.

Таким образом, саркоплазматическая сеть не только является резервуаром для ионов кальция, но и играет роль кальциевого насоса.

Волна деполяризации передается на саркоплазматическую сеть от нервного окончания вначале по плазмолемме, а затем по Т-канальцам. Они не являются самостоятельными структурными элементами и представляют собой трубчатые выпячивания плазмолеммы в саркоплазму.

Проникая вглубь, Т-канальцы разветвляются и охватывают каждую миофибриллу в пределах 1 пучка строго на одном уровне, обычно на уровне Z-полоски или несколько медиальнее - в области соединения актиновых и миозиновых миофиламентов. Следовательно, к каждому саркомеру подходят и окружают его 2 Т-канальца.

По сторонам от каждого Т-канальца располагаются 2 терминальные цистерны саркоплазматической сети соседних саркомеров, которые вместе с Т-канальцами составляют триаду. Между стенкой Т-канальца и стенками терминальных цистерн имеются контакты, через которые волна деполяризации передается на мембраны цистерн и обусловливает выход из них ионов кальция и начало сокращения. Таким образом, функциональная роль Т-канальцев заключается в передаче биопотенциала с плазмолеммы на саркоплазматическую сеть.

Регенерация скелетной мышечной ткани, как и у других тканей, подразделяется на 2 типа – физиологическую и репаративную.

Физиологическая регенерация проявляется в форме гипертрофии мышечных волокон, что выражается в увеличении их толщины и даже длины, увеличении числа органелл, главным образом миофибрилл, а также нарастании числа ядер, что в конечном счете проявляется увеличением функциональной способности мышечного волокна. Радиоизотопным методом установлено, что увеличение числа ядер в мышечных волокнах в условиях гипертрофии достигается за счет деления клеток миосателлитов и последующего вхождения в миосимпласт дочерних клеток.

Увеличение числа миофибрилл осуществляется посредством синтеза актиновых и миозиновых белков свободными рибосомами и последующей сборки этих белков в актиновые и миозиновые миофиламенты параллельно с соответствующими филаментами саркомеров. В результате этого вначале происходит утолщение миофибрилл, а затем их расщепление и образование дочерних миофибрилл. Кроме того, возможно образование новых актиновых и миозиновых миофиламентов не параллельно, а встык предшествующим миофибриллам, чем достигается их удлинение.

Саркоплазматическая сеть и Т-канальцы в гипертрофирующемся волокне образуются за счет разрастания предшествующих элементов.

При определенных видах мышечной тренировки может формироваться Преимущественно красный тип мышечных волокон (у стайеров) или белый тип мышечных волокон (у спринтеров).

Возрастная гипертрофия мышечных волокон интенсивно проявляется с началом двигательной активности организма (1–2 года), что обусловлено прежде всего усилением нервной стимуляции.

В старческом возрасте, а также в условиях малой мышечной нагрузки

наступают атрофия специальных и общих органелл, истончение мышечных волокон и снижение их функциональной способности.

Репаративная регенерация развивается после повреждения мышечных волокон.

Способ регенерации зависит от величины дефекта:

При значительных повреждениях на протяжении мышечного волокна миосателлиты в области повреждения и в прилежащих участках растормаживаются, усиленно пролиферируют, а затем мигрируют в область дефекта мышечного волокна, где выстраиваются в цепочки, формируя миотрубку. Последующая дифференцировка миотрубки приводит к восполнению дефекта и восстановлению целостности мышечного волокна;

В условиях небольшого дефекта мышечного волокна на его концах за счет регенерации внутриклеточных органелл образуются мышечные

почки, которые растут навстречу друг другу, а затем сливаются, приводя к закрытию дефекта.

Репаративная регенераиия и восстановление целостности мышечных волокон могут осуществляться лишь в следующих случаях.

    во-первых, при сохраненной двигательной иннервации мышечныхволокон;

    во-вторых, если в область повреждения не попадают элементы соединительной ткани (фибробласты), – иначе на месте дефекта мышечного волокна развивается соединительнотканный рубец.

Советским ученым А.Н. Студитским доказана возможность амтотрансплантаиии скелетной мышечной ткани и даже целых мышц при соблюдении определенных условий:

    механическое измельчение мышечной ткани трансплантата с целью растормаживания клеток-сателлитов и последующей их пролиферации;

    помещение измельченной ткани в фасциальное ложе;

    подшивание двигательного нервного волокна к измельченному трансплантату;

    наличие сократительных движений мышц-антагонистов и синергистов.

2. Скелетные мышцы получают следующую иннервацию:

    двигательную (эфферентную);

    чувствительную (афферентную);

    трофическую (вегетативную).

Двигательную (эфферентную) иннервацию скелетные мышцы туловища и конечностей получают от мотонейронов передних рогов спинного мозга, а мышцы лица и головы – от двигательных нейронов определенных черепных нервов.

К каждому мышечному волокну подходит или ответвление от аксона мотонейрона, или же весь аксон. В мышцах, обеспечивающих тонкие координированные движения (мышцы кистей, предплечий, шеи), каждое мышечное волокно иннервируется 1 мотонейроном. В мышцах, обеспечивающих преимущественно поддержание позы, десятки и даже

сотни мышечных волокон получают двигательную иннервацию от 1 мотонейрона посредством разветвления его аксона.

Двигательное нервное волокно, подойдя к мышечному волокну, проникает под эндомизий и базальную пластинку и распадается на терминали, которые вместе с прилежащим специфическим участком миосимпласта образуют аксо-мышечный синапс или моторную бляшку. Под влиянием нервного импульса волна деполяризации с нервного окончания передается на плазмолемму миосимпласта, распространяется далее по Т-канальцам и в области триад передается на терминальные цистерны саркоплазматической сети, обусловливая выход ионов кальция и начало процесса сокращения мышечного волокна.

Чувствительная (афферентная) иннервация скелетных мышц осуществляется псевдоуниполярными нейронами спинальных ганглиев, посредством разнообразных рецепторных окончаний дендритов этих клеток.

Рецепторные окончания скелетных мыши можно разделить на 2 группы: специфические рецепторные приборы, характерные только для скелетных мышц:

    мышечное веретено;

    сухожильный орган Гольджи;

неспецифические рецепторные окончания кустиковидной или древовидной формы, распределяющиеся в рыхлой соединительной ткани:

    эндомизия;

    перимизия;

    эпимизия.

Мышечные веретена – довольно сложно устроенные инкапсулированные приборы. В каждой мышце содержится от нескольких единиц до нескольких десятков и даже сотен мышечных веретен. Каждое мышечное веретено содержит не только нервные элементы, но и 10–12 специфических мышечных волокон – интрафузальных, окруженных капсулой. Эти волокна располагаются параллельно сократительным мышечным волокнам (экстрафузальным) и получают не только чувствительную, но и специальную двигательную иннервацию. Мышечные веретена воспринимают раздражения как при растяжении данной мышцы, вызванном сокращением мышц-антагонистов, так и при ее сокращении.

Сухожильные органы представляют собой специализированные инкапсулированные рецепторы, включающие несколько сухожильных волокон, окруженных капсулой, среди которых распределяются терминальные ветвления дендрита псевдоуниполярного нейрона. При сокращении мышцы сухожильные волокна сближаются и сдавливают нервные окончания. Сухожильные органы воспринимают только степень сокращения данной мышцы. Посредством мышечных веретен и сухожильных органов при участии спинальных центров обеспечивается автоматизм движений (например, при ходьбе).

Трофическая (вегетативная) иннервация обеспечивается вегетативной нервной системой (ВНС) (ее симпатической частью) и осуществляется в основном опосредованно, посредством иннервации сосудов.

Скелетные мышцы богато снабжаются кровью. В рыхлой соединительной ткани перимизия в большом количестве содержатся артерии и вены, артериолы, венулы и артериоло-венулярные анастомозы. В эндомизии располагаются только капилляры, преимущественно узкие (4,5–7 мкм), которые и обеспечивают трофику мышечного волокна. Мышечное волокно вместе с окружающими его капиллярами и двигательным окончанием составляет мион.

В мышцах содержится большое количество артериоло-венулярных анастомозов, обеспечивающих адекватное кровоснабжение при различной мышечной активности.

б) поперечно-полосатая сердечная мышечная ткань

Структурно-функциональной единицей сердечной поперечно-полосатой мышечной ткани является клетка – кардиомиоцит .

По строению и функциям кардиомиоииты подразделяются на 2 основные группы:

    типичные, или сократительные, кардиомиоциты, образующие своей совокупностью миокард;

    атипичные кардиомиоциты, составляющие проводящую систему сердца и подразделяющиеся, в свою очередь, на 3 разновидности.

Сократительный кардиомиоцит представляет собой почти прямоугольную клетку 50–120 мкм в длину, шириной 15–20 мкм, покрытую снаружи базальной пластинкой. В центре локализуется обычно 1 ядро. В саркоплазме кардиомиоцита по периферии от ядра располагаются миофибриллы, а между ними и около ядра локализуются в большом количестве митохондрии.

В отличие от скелетной мышечной ткани миофибриллы кардиомиоцитов представляют собой не отдельные цилиндрические образования, а по существу сеть, состоящую из анастомозирующих миофибрилл, так как некоторые миофиламенты как бы отщепляются от одной миофибриллы и наискось продолжаются в другую. Кроме того, темные и светлые диски соседних миофибрилл не всегда располагаются на одном уровне, и поэтому поперечная исчерченность в кардиомиоцитах выражена не столь отчетливо, как в скелетных мышечных волокнах.

Саркоплазматическая сеть, охватывающая миофибриллы, представлена расширенными анастомозирующими канальцами. Терминальные цистерны и триады отсутствуют. Т-канальцы имеются, но они короткие, широкие и образованы углублениями не только плазмолеммы, но и базальной пластинки. Механизм сокращения в кардиомиоцита практически не отличается от такового в скелетных мышечных волокнах.

Сократительные кардиомиоциты, соединяясь встык друг с другом, образуют функциональные мышечные волокна, между которыми имеются многочисленные анастомозы. Благодаря этому из отдельных кардиомиоцитов формируется сеть – функциональный синцитий. Наличие щелевидных контактов между кардиомиоцитами обеспечивает одновременное и содружественное их сокращение вначале в предсердиях, а затем и в желудочках.

Области контактов соседних кардиомиоцитов носят название вставочных дисков, хотя фактически никаких дополнительных структур (дисков) между кардиомиоцитами нет: вставочные диски – это места V контактов цитолеммы соседних кардйомиоцитов, включающие в себя простые, десмосомные и щелевидные контакты.

Обычно во вставочных дисках различают поперечный и продольный фрагменты.

В области поперечных фрагментов имеются расширенные десмосомные соединения. В этих же местах с внутренней стороны плазмолемм прикрепляются актиновые филаменты саркомеров.

В области продольных фрагментов локализуются щелевидные контакты.

Посредством вставочных дисков обеспечивается как механическая, так и метаболическая (прежде всего ионная) связь кардиомиоцитов.

Сократительные кардиомиоциты предсердий и желудочков несколько различаются по морфологии и функциям.

Кардиомиоциты предсердий в саркоплазме содержат меньше миофибрилл и митохондрий, в них почти не выражены Т-канальцы, а вместо них под плазмолеммой выявляются в большом числе везикулы и кавеолы – аналоги Т-канальцев. Кроме того, в саркоплазме предсердных кардиомиоцитов у полюсов ядер локализуются специфические предсердные гранулы, состоящие из гликопротеиновых комплексов, Л Выделяясь из кардйомиоцитов в кровь предсердий, эти вещества влияют на уровень давления крови в сердце и сосудах, а также препятствуют образованию тромбов в предсердиях. Следовательно, предсердные кардиомиоциты кроме сократительной обладают и секреторной функцией.

В желудочковых кардиомиоцитах более выражены сократительные элементы, а секреторные гранулы отсутствуют.

Вторая разновидность кардиомиоцитов – атипичные кардиомиоциты .

Они образуют проводящую систему сердца, в которую входят:

синусо-предсердный узел;

предсердно-желудочковый узел;

предсердно-желудочковый пучок (пучок Гиса),

ствол, правая и левая

концевые разветвления ножек – волокна Пуркинье.

Атипичные кардиомиоциты обеспечивают генерирование биопотенциалов, их проведение и передачу на сократительные кардиомиоциты По своей морфологии атипичные кардиомиоииты отличаются от типичных рядом особенностей: они крупнее (длина 100 мкм, толщина 50 мкм);

в цитоплазме содержится мало миофибрилл, которые расположены неупорядоченно, и поэтому атипичные кардиомиоциты не имеют поперечной исчерченности; плазмолемма не образует Т-канальцев;

во вставочных дисках между этими клетками отсутствуют десмосомы и щелевидные контакты.

Атипичные кардиомиоииты различных отделов проводящей системы ото-

основные разновидности:

Р-клетки (пейсмейкеры) - водители ритма (I тип);

переходные клетки (II тип);

клетки пучка Гиса и волокон Пуркинье (III тип).

Клетки I типа (Р-клетки,) составляют основу синусо-предсердного узла, а также в небольшом количестве содержатся в атриовентрикуляр-ном узле. Эти клетки способны самостоятельно генерировать с определенной частотой биопотенциалы и передавать их на переходные клетки (II типа), а последние передают импульсы на клетки III типа, от которых биопотенциалы передаются на сократительные кардиомиоциты.

Источники развития кардиомиоцитов - миоэпителиалъные пластинки, представляющие собой определенные участки висцеральных листков спланхнотома, а конкретнее, из целомического эпителия этих участков.

Биопотеншалы сократительные кардиомиоииты получают из 2 источников:

проводящей системы сердца (прежде всего из синусо-предсердного узла);

ВНС (из ее симпатической и парасимпатической части).

Регенерация сердечной мышечной ткани отличается тем, что кардиомиоциты регенерируют только по внутриклеточному типу. Пролиферации кардиомиоцитов не наблюдается. Камбиальные элементы в сердечной мышечной ткани отсутствуют. При поражении значительных участков миокарда (в частности, при инфаркте миокарда) восстановление дефекта происходит за счет разрастания соединительной ткани и образования рубцов (пластическаярегенерация). Естественно, что сократительная функция в этих участках отсутствует.

Поражение проводящей системы сопровождается нарушением ритма сердечных сокращений.

в) гладкая мышечная ткань

Подавляющая часть гладкой мышечной ткани организма (внутренних органов и сосудов) имеет мезенхимальное происхождение. Структурно-функциональной единицей гладкой мышечной ткани внутренних органов и сосудов является миоцит.

Представляет собой чаше всего веретенообразную клетку (длиной 20– 500 мкм, диаметром 5-8 мкм), покрытую снаружи базальной пластинкой, но встречаются и отростчатые миоциты. В центре располагается вытянутое ядро, по полюсам которого локализуются общие органеллы: зернистая эндоплазматическая сеть, пластинчатый комплекс, митохондрии, цитоцентр.

В цитоплазме содержатся толстые (17 нм) миозиновые и тонкие (7 нм) актиновые миофиламенты, которые располагаются в основном параллельно друг другу вдоль оси миоцита и не образуют А- и I-диски, чем и объясняется отсутствие поперечной исчерченности миоцитов. В цитоплазме миоцитов и на внутренней поверхности плазмолеммы встречаются многочисленные плотные тельца, к которым прикрепляются актиновые, миозиновые, а также промежуточные филаменты. Плазмолемма образует небольшие углубления – кавеолы, которые рассматриваются как аналоги Т-канальцев. Под плазмолеммой локализуются многочисленные везикулы, которые вместе с тонкими канальцами цитоплазмы являются элементами саркоплазматической сети.

Механизм сокращения в миоцитах в принципе сходен с сокращением саркомеров в миофибриллах в скелетных мышечных волокнах. Он осуществляется за счет взаимодействия и скольжения актиновых миофила-ментов вдоль миозиновых.

Для такого взаимодействия необходимы энергия в виде АТФ, ионы кальция и наличие биопотенциала. Биопотенциалы поступают от эфферентных окончаний вегетативных нервных волокон непосредственно На миоциты или опосредованно от соседних клеток через щелевидные Контакты и передаются через кавеолы на элементы саркоплазматической сети, обусловливая выход из них ионов кальция в саркоплазму. Под влиянием ионов кальция развиваются механизмы взаимодействия между актиновыми и миозиновыми филаментами, аналогичные тем, которые происходят в саркомерах скелетных мышечных волокон, В результате чего происходит скольжение названных миофиламентов и перемещение плотных телец в цитоплазме. В миоцитах кроме актиновых и миозиновых филаментов имеются еще промежуточные, которые одним концом прикрепляются к цитоплазматическим плотным Тельцам, а другим – к прикрепительным тельцам на плазмолемме и Таким образом передают усилия взаимодействия актиновых и миозиновых филаментов на сарколемму миоцита, чем и достигается его укорочение.

Миоциты окружены снаружи рыхлой волокнистой соединительной тканью – эндомизием и связаны друг с другом боковыми поверхностями.

В области тесного контакта соседних миоцитов базальные пластинки прерываются. Миоциты соприкасаются непосредственно плазмолеммами и в этих местах имеются щелевидные контакты, через которые осуществляется ионная связь и передача биопотенциала с одного миоцита на другой, что приводит к одновременному и содружественному их сокращению.

Цепь миоцитов, объединенных механической и метаболической связью, составляет функциональное мышечное волокно. В эндомизии проходят кровеносные капилляры, обеспечивающие трофику миоцитов, а в прослойках соединительной ткани между пучками и слоями миоцитов в перимизии проходят более крупные сосуды и нервы, а также сосудистые и нервные сплетения.

Эфферентная иннервация гладкой мышечной ткани осуществляется ВНС. При этом терминальные веточки аксонов эфферентных вегетативных нейронов, проходя по поверхности нескольких миоцитов, образуют на них небольшие варикозные утолщения, которые несколько прогибают плазмолемму и образуют мионевральные синапсы. При поступлении нервных импульсов в синаптическую щель выделяются медиаторы (ацетилхолин или норадреналин), и обусловливают деполяризацию мембран миоцитов и последующее их сокращение. Через щелевидные контакты биопотенциалы переходят из одного миоцита на другой, что сопровождается возбуждением и сокращением и тех гладкомышечных клеток, которые не содержат нервных окончаний. Возбуждение и сокращение миоцитов обычно продолжительны и обеспечивают тоническое сокращение гладкой мышечной ткани сосудов и полых внутренних органов, в том числе гладкомышечных сфинктеров. В этих органах содержатся и многочисленные рецепторные окончания в виде кустиков, деревцев или диффузных полей.

Регенерация гладкой мышечной ткани осуществляется несколькими способами:

    посредством внутриклеточной регенерации гипертрофии при усилении функциональной нагрузки;

    посредством митотического деления миоцитов при их повреждении (репаративная регенерация);

    посредством дифференцировки из камбиальных элементов – из адвентициальных клеток и миофибробластов.

Специальные гладкомышечные ткани нейрального происхождения развиваются из нейроэктодермы, из краев стенки глазного бокала, являющегося выпячиванием промежуточного мозга. Из этого источника развиваются миоциты, которые образуют 2 мышцы радужной оболочки глаза – мышцу, суживающую зрачок, и мышцу, расширяющую зрачок. По своей морфологии миоциты радужной оболочки не отличаются oт мезенхимных миоцитов, однако каждый миоцит получает вегетативную эфферентную иннервацию (мышца, расширяющая зрачок, – симпатическую, мышца, суживающая зрачок, – парасимпатическую). Благодаря этому названные мышцы сокращаются быстро и координирование, в зависимости от мощности светового пучка. Миоциты эпидермального происхождения развиваются из кожной эктодермы и представляют собой не типичные веретеновидные, а клетки звездчатой формы - миоэпителиальные клетки, располагающиеся на концевых отделах слюнных, молочных, слезных и потовых желез снаружи от секреторных клеток.

В своих отростках миоэпителиальные клетки содержат актиновые и миозиновые филаменты, благодаря взаимодействию которых отросла клеток сокращаются и способствуют выделению секрета из концевых отделов и мелких протоков названных желез в более крупные протоки. Эфферентную иннервацию получают также из вегетативного отдел, нервной системы.

Развитие. Скелетная мышечная ткань человека разви­вается из миотомов мезодермальных сомитов, поэтому называется соматической. Клетки миотомов дифференци­руются в 2 направлениях: 1) из одних образуются миосателлитоциты; 2) из других образуются миосимпласты.

Образование миосимпластов. Клетки миотомов диф­ференцируются в миобласты, которые сливаются вместе, образуя мышечные трубочки. В процессе созревания мы­шечные трубочки превращаются в миосимпласты. При этом ядра смещаются к периферии, а миофибриллы - к центру.

Мышечное волокно (myofibra). Состоит из 2 компонен­тов: 1) миосателлитоцитов и 2) миосимпласта. Мышечное во­локно имеет примерно такую же длину, как и сама мышца, диаметр - 20-50 мкм. Снаружи волокно покрыто оболоч­кой - сарколеммой, состоящей из 2 мембран. Наружная мембрана называется базальной мембраной , а внутренняя - плазмолеммой . Между этими двумя мембранами располага­ются миосателлитоциты.

Ядра мышечных волокон располагаются под плазмолем­мой, их количество может достигать нескольких десятков ты­сяч. Имеют вытянутую форму, не обладают способностью к дальнейшему митотическому делению. Цитоплазма мы­шечного волокна называется саркоплазмой. В саркоплазме содержится большое количество миоглобина, включений гликогена и липидов; имеются органеллы общего значения, одни из которых развиты хорошо, другие - хуже. Такие орга­неллы, как комплекс Гольджи, гранулярная ЭПС, лизосомы, развиты слабо и располагаются у полюсов ядер. Хорошо ра­звиты митохондрии и гладкая ЭПС.

В мышечных волокнах хорошо развиты миофибриллы, являющиеся сократительным аппаратом волокна. В миофибриллах имеется исчерченность, потому что миофиламенты в них расположены в строго определенном порядке (в отли­чие от гладкой мускулатуры). В миофибриллах 2 вида миофиламентов: 1) тонкие актиновые, состоящие из белка актина, тропонина и тропомиозина; 2) толстые миозиновые, состоя­щие из белка миозина. Актиновые филаменты располагают­ся продольно, их концы находятся на одинаковом уровне и несколько заходят между концами миозиновых филаментов. Вокруг каждого миозинового филамента расположено 6 концов актиновых филаментов.

В мышечном волокне имеется цитоскелет, включающий промежуточные нити (филаменты), тело фрагму, мезофpaгму, сарколемму. Благодаря цитоскслету одинаковые структуры миофибрилл (актиновые, миозиновые филаменты и др.) рас­полагаются упорядоченно.

Тот участок миофибриллы, в котором находятся только актиновые филаменты, называется диском I (изотропный или светлый диск). Через центр диска I проходит Z-полоска, или телофрагма, толщиной около 100 нм и состоящая из альфа-актинина. К телофрагме прикрепляются актиновые нити (зона прикрепления тонких нитей).

Миозиновые филаменты тоже располагаются в строго определенном порядке, их концы также находятся на одном уровне. Миозиновые филаменты вместе с заходящими между ними концами актиновых филаментов образуют диск А (ани­зотропный диск, обладающий двулучепреломлением). Диск А также разделяется мезофрагмой, аналогичной телофрагме и состоящей из М-белка (миомизина).

В средней части диска А имеется Н-полоска, ограниченная концами актиновых филаментов, заходящих между концами миозиновых нитей. Поэтому чем ближе концы актиновых фи­ламентов расположены друг к другу, тем эже Н-полоска.

Саркомер - это структурно-функциональная единица миофибрилл, представляющая собой участок, расположен­ный между двумя телофрагмами.

Формула саркомера: 0,5 диска I + диск А + 0,5 диска I.

Миофибриллы окружены хорошо развитыми митохон­дриями и хорошо развитой гладкой ЭПС.

Гладкая ЭПС образует систему L-канальцев, образующих в каждом диске сложные структуры. Эти структуры состоят из L-канальцев, расположенных вдоль миофибрилл и соеди­няющихся с поперечно направленными L-канальцами (лате­ральными цистернами).

Функции гладкой ЭПС (системы L-канальцев):

1) транспортная;

2) синтез липидов и гликоге­на;

3) депонирование ионов Са 2+ .

Т-каналы - это впячивания плазмолеммы. На границе дисков из плазмолеммы в глубь волокна происходит впячивание в виде трубочки, располагающейся между двумя лате­ральными цистернами.

Триада включает: 1) Т-канал и 2) две латеральные цистер­ны гладкой ЭПС. Функция триад заключается в том, что в расслабленном состоянии миофибрилл в латеральных ци­стернах накапливаются ионы Са 2+ ; в тот момент, когда по плазмолемме движется импульс (потенциал действия), он пе­реходит на Т-каналы. При движении импульса по Т-каналу из латеральных цистерн выходят ионы Са 2+ . Без последних не­возможно сокращение миофибрилл, потому что в актиновых филаментах центры взаимодействия с миозиновыми нитями заблокированы тропомиозином. Ионы Са 2+ осуществляют разблокированиё этйх центров, после чего начинается взаи­модействие актиновых нитей с миозиновыми и сокращение.

Механизм сокращения миофибрилл. При взаимодей­ствии актиновых филаментов с миозиновыми происходит разблокирование ионами Са 2+ центров сцепления актино­вых филаментов с головками молекул миозина, после чего эти выросты присоединяются к центрам сцепления на ак­тиновых нитях и, как веслом, осуществляют движение ак­тиновых филаментов между концами миозиновых. В это время телофрагма приближается к концам миозиновых фи­ламентов, и, поскольку концы актиновых филаментов тоже приближаются к мезофрагме и друг к другу, происходит су­жение Н-полоски.

Таким образом, во время сокращения миофибрилл проис­ходит сужение диска I и Н-полоски.

После прекращения потенциала действия ионы Са 2+ воз­вращаются в L-канальцы гладкой ЭПС, тропомиозин снова блокирует в актиновых филаментах центры взаимодействия с миозиновыми нитями. Это приводит к прекращению со­кращения миофибрилл, происходит их расслабление, т. е. актиновые нити возвращаются в исходное положение, восста­навливается ширина диска I и Н-полоски.

Миосателлитоциты мышечного волокна располагаются между базальной мембраной и плазмолеммой сарколеммы. Эти клетки имеют овальную форму, их овальное ядро окруже­но тонким слоем бедной органеллами и слабо окрашиваемой цитоплазмы. Функция миосателлитоцитов - это камбиаль­ные клетки, участвующие в регенерации мышечных волокон при их повреждении.

Строение мышцы как органа. Каждая мышца тела чело­века представляет собой своеобразный орган, имеющий свою структуру. Каждая мышца состоит из мышечных воло­кон. Каждое волокно окружено тонкой прослойкой рыхлой соединительной ткани - эндомизием. В эндомизии проходят кровеносные и лимфатические сосуды и нервные волокна. Мышечное волокно вместе с сосудами и нервными волокна­ми имеет название «мион». Несколько мышечных волокон образуют пучок, окружен­ный слоем рыхлой соединительной ткани, называемой перимизием. Вся мышца окружена прослойкой соединительной ткани, называемой эпимизием.

Связь мышечных волокон с коллагеновыми волокна­ми сухожилий. На концах мышечных волокон имеются впячивания сарколеммы. В эти впячивания входят коллагеновые и ретикулярные волокна сухожилий. Ретикулярные волокна прободают базальную мембрану и при помощи моле­кулярных сцеплений соединяются с плазмолеммой. Затем эти волокна возвращаются в просвет впячивания и оплетают коллагеновые волокна сухожилия, как бы привязывая их к мышечному волокну. Коллагеновые волокна образуют сухо­жилия, которые прикрепляются к костному скелету.

Типы мышечных волокон. Имеется 2 основных типа мышечных волокон: I тип (красные волокна) и II тип (белые волокна). Они различаются главным образом быстротой со­кращения, содержанием миоглобина, гликогена ми, активно­стью ферментов.

I-й тип (красные волокна) характеризуется большим со­держанием миоглобина (поэтому волокна красные), высокой активностью сукцинатдегидрогеназы, АТФазой медленного типа, не очень богатым содержанием гликогена, длительно­стью сокращения и малой утомляемостью.

II-й тип (белые волокна) характеризуется малым содержа­нием миоглобина, низкой активностью сукцинатдегидроге­назы, АТФазой быстрого типа, богатым содержанием глико­гена, быстрым сокращением и большой утомляемостью.

Медленный (красный) и быстрый (белый) типы мышеч­ных волокон иннервируются разными типами моторных нейронов: медленным и быстрым.

Кроме I и II типов мышечных волокон имеются еще проме­жуточные, обладающие свойствами тех и других.

В каждой мышце присутствуют все типы мышечных воло­кон. Их количество может меняться в зависимости от физи­ческой нагрузки.

Регенерация поперечно-полосатой мышечной ткани. При повреждении мышечных волокон их концы на месте Повреждения подвергаются некрозу. После разрыва волокон к их обрывкам поступают макрофаги, которые фагоцитиру­ют некротизированные участки, очищая их от мертвой тка­ни. Затем процесс регенерации осуществляется 2 путями: 1) за счет повышения реактивности в мышечных волокнах и образования мышечных почек в местах разрыва; 2) за счет миосателлитоцитов.

1 -й путь регенерации заключается в том, что на концах ра­зорванных волокон гипертрофируется гранулярная ЭПС, на поверхности которой синтезируются белки миофибрилл, мембранных структур внутри волокна и сарколеммы. В резуль­тате этого концы мышечных волокон утолщаются и преобразу­ются в мышечные почки. Эти почки по мере своего увеличения приближаются друг к другу от одного оборванного конца к дру­гому и в конце концов соединяются и срастаются.

Между тем за счет клеток эндомизия происходит новооб­разование соединительной ткани между растущими нав­стречу друг к другу мышечными почками. Поэтому к момен­ту соединения мышечных почек формируется соединитель­нотканная прослойка, которая войдет в состав мышечного волокна. Следовательно, формируется соединительноткан­ный рубец.

2-й путь регенерации заключается в том, что миосателлитоциты покидают места своего обитания и подвергаются дифференцировке, в результате которой превращаются в миобласты. Часть миобластов присоединяется к мышеч­ным почкам, часть соединяется в мышечные трубочки, кото­рые дифференцируются в новые мышечные волокна.

Таким образом, при репаративной регенерации мышц восстанавливаются старые мышечные волокна и образуются новые.

Иннервация скелетной мышечной ткани осуществляется двигательными и чувствительными нервными волокнами, заканчивающимися нервными окончаниями.

Двигательные (моторные) нервные окончания являются концевыми приборами аксонов моторных нервных клеток передних рогов спинного мозга. Конец аксона, подходя к мы­шечному волокну, делится на несколько веточек - терминалей. Терминал и прободают базальную мембрану сарколеммы и далее погружаются в глубь мышечного волокна, увлекая за собой плазмолемму. В результате этого образуется нервно-мышечное окончание - моторная бляшка.

Строение нервно-мышечного окончания. В нервно-мышечном окончании имеются 2 части (полюса): нервная и мышечная. Между нервной и мышечной частью имеется синаптическая щель. В нервной части (терминалях аксона моторного нейрона) имеются митохондрии и синаптические пузырьки, заполненные медиатором-ацетилхолином. В мышечной части нервно-мышечного окончания есть митохон­дрии, скопление ядер, отсутствуют миофибриллы. Синаптическая щель шириной 50 нм ограничена пресинаптической мембраной (плазмолеммой аксона) и постсинаптической мембраной (плазмолеммой мышечного волокна). Постсинаптическая мембрана образует складки (вторичные синаптические щели), на ней имеются рецепторы к ацетилхолину и фермент - ацетилхолинэстераза.

Функция нервно-мышечных окончаний. Импульс дви­жется по плазмолемме аксона (пресинаптической мембране). В это время синаптические пузырьки с ацетилхолином под­ходят к плазмолемме, из пузырьков ацетилхолин изливается в синаптическую щель и захватывается рецепторами постси­наптической мембраны. Это повышает проницаемость этой мембраны (плазмолеммы мышечного волокна), в результате чего ионы Na + с наружной поверхности плазмолеммы пере­ходят на внутреннюю, а ионы К + переходят на наружную по­верхность - это и есть волна деполяризации, или нервный импульс (потенциал действия). После возникновения потен­циала действия ацетилхолинэстераза постсинаптической мембраны разрушает ацетилхолин, и переход импульса че­рез синаптическую щель прекращается.

Чувствительными нервными окончаниями (нервно-мы­шечными веретенами - fusi neuromuscularis) заканчиваются дендриты чувствительных нейронов спинномозговых узлов. Нервно-мышечные веретена покрыты соединительнотканной капсулой, внутри которой имеются 2 типа интрафузальных (внутриверетенных) мышечных волокон:

1) с ядерной сумкой (в центре волокна есть утолщение, в котором имеется скопле­ние ядер), они более длинные и более толстые;

2) с ядерной це­почкой (ядра в виде цепочки располагаются по центру волок­на), они тоньше и короче.

В окончания проникают толстые нервные волокна, кото­рые кольцеобразно оплетают оба вида интрафузальных мы­шечных волокон и тонкие нервные волокна, заканчиваю­щиеся гроздевидными окончаниями на мышечных волокнах с ядерной цепочкой. На концах интрафузальных волокон имеются миофибриллы, и к ним подходят двигательные нер­вные окончания. Сокращения интрафузальных волокон не обладают большой силой и не суммируются с остальными (экстрафузальными) волокнами мышцы.

Функция нервно-мышечных веретен заключается в вос­приятии скорости и силы растяжения мышцы. Если сила растяжения такова, что угрожает разрывом мышцы, то на со­кращающиеся мышцы-антагонисты от этих окончаний рефлекторно поступают тормозные импульсы.

Профессор Суворова Г.Н.

Мышечные ткани.

Представляют собой группу тканей, которые осуществляют двигательные функции организма:

1) сократительные процессы в полых внутренних органах и сосудах

2) перемещение частей тела относительно друг друга

3) поддержание позы

4) перемещение организма в пространстве.

Мышечные ткани имеют следующие морфофункциональные характеристики:

1) Их структурные элементы имеют удлиненную форму.

2) Сократимые структуры (миофиламенты и миофибриллы) располагаются продольно.

3) Для мышечного сокращения необходимо большое количество энергии, поэтому в них:

Содержится большое число митохондрий

Имеются трофические включения

Может присутствовать железосодержащий белок миоглобин

Хорошо развиты структуры, в которых депонируются ионы Са ++

Мышечная ткань подразделяется на две основные группы

1) гладкую (неисчерченную)

2) Поперечнополосатую (исчерченную)

Гладкая мышечная ткань: имеет мезенхимное происхождение.

Кроме того, выделяют группу миоидных клеток, к ним относятся

Миоидные клетки, имеющие нейральное происхождение (образует мышцы радужки)

Миоидные клетки, имеющие эпидермальное происхождение (миоэпителиальные клетки потовых, слюнных, слезных и молочных желез)

Поперечнополосатая мышечная ткань подразделяется на скелетную и сердечную. Обе эти разновидности развиваются из мезодермы, но из разных ее частей:

Скелетная – из миотомов сомитов

Сердечная – из висцерального листка спланхнотома.

Скелетная мышечная ткань

Составляет около 35-40% массы тела человека. В качестве основного компонента входит в состав скелетных мышц, кроме того, образует мышечную основу языка, входит в состав мышечной оболочки пищевода и т.д.

Развитие скелетных мышц . Источник развития – клетки миотомов сомитьов мезодермы, детерминированные в направлении миогенеза. Стадии:

Миобласты

Мышечные трубочки

Дефинитивная форма миогенеза – мышечное волокно.

Строение скелетной мышечной ткани.

Структурно-функциональной единицей скелетной мышечной ткани является мышечное волокно. Оно представляет собой вытянутое цилиндрическое образование с заостренными концами, диаметром от 10 до 100 мкм, вариабельной длины (до 10-30 см.).

Мышечное волокно является комплексным (клеточно-симпластическим) образованием, которое состоит их двух основных компонентов

1. миосимпласта

2. миосателлитоцитов.

Снаружи мышечное волокно покрыто базальной мембраной, которая вместе с плазмолеммой миосимпласта образует так называемую сарколемму.

Миосимпласт является основным компонентом мышечного волокна как по объему, так и по выполняемой функции. Миосимпласт является гигантской надклеточной структурой, которая образуется путем слияния огромного числа миобластов в эмбриогенезе. На периферии миосимпласта располагается от нескольких сотен до нескольких тысяч ядер. Вблизи ядер локализуются фрагменты пластинчатого комплекса, ЭПС, единичные митохондрии.


Центральная часть миосимпласта заполнена саркоплазмой. Саркоплазма содержит все органеллы общего значения, а также специализированные аппараты. К ним относятся:

Сократительный

Аппарат передачи возбуждения с сарколеммы

на сократительный аппарат.

Энергетический

Опорный

Сократительный аппарат мышечного волокна представлен миофибриллами.

Миофибриллы имеют вид нитей (длина мышечного волокна) диаметром 1-2 мкм. Они обладают поперечной исчерченностью, обусловленной чередованием различно преломляющих поляризованный свет участков (дисков) – изотропных (светлых) и анизотропных (темных). Причем миофибриллы располагаются в мышечном волокне с такой степенью упорядоченности, что светлые и темные диски соседних миофибрилл точно совпадают. Это и обусловливает исчерченность всего волокна.

Темные и светлые диски в свою очередь состоят из толстых и тонких нитей, которые называются миофиламентами.

Посередине светлого диска, поперечно тонким миофиламентам проходит темная полоска – телофрагма, или Z-линия.

Участок миофибриллы, расположенный между двумя телофрагмами называют саркомером.

Саркомер считается структурно-функциональной единицей миофибриллы - он включает в себя А-диск и расположенные по обе стороны от него две половины I-диска.

Толстые нити (миофиламенты) образованы упорядоченно упакованными молекулами фибриллярного белка миозина. Каждая толстая нить состоит из 300-400 молекул миозина.

Тонкие нити содержат сократимый белок актин и два регуляторных белка: тропонин и тропомиозин.

Механизм мышечного сокращения описывается теорией скользящих нитей, которая была предложена Хью Хаксли.

В покое, при очень низкой концентрации ионов Са ++ в миофибрилле расслабленного волокна толстые и тонкие нити не соприкасаются. Толстые и тонкие филаменты беспрепятственно скользят относительно друг друга, в результате мышечные волокна не сопротивляются пассивному растяжению. Такое состояние свойственно мышце-разгибателю при сокращении соответствующего сгибателя.

Мышечное сокращение вызывается резким повышением концентрации ионов Са ++ и состоит из нескольких этапов:

Ионы Са ++ связыватся с молекулой тропонина, которая смещается, открывая на тонких нитях участки связывания миозина.

Головка миозина прикрепляется к миозин-связывающим участкам тонкой нити.

Головка миозина изменяет конформацию и совершает гребковое движение, продвигающее тонкую нить к центру саркомера.

Головка миозина связывается с молекулой АТФ, что приводит к отделению миозина от актина.

Саркотубулярная система – обеспечивает накопление ионов кальция и является аппаратом передачи возбуждения. Необходима для того волна деполяризации, проходящая по плазмолемме привела к эффективному сокращению миофибрилл. Она состоит из саркоплазматической сети и Т-трубочек.

Саркоплазматическая сеть представляет собой видоизмененую гладкую эндоплазматическую сеть и состоит из системы полостей и канальцев, которая в виде муфты окружает каждую миофибриллу. На границе А- и I-дисков трубочки сливаются, образуя пары плоских терминальных цистерн. Саркоплазматическая сеть выполняет функции депонирования и выделения ионов кальция.

Волна деполяризации, распространяемая по плазмолемме доходит вначале до Т-трубочек. Между стенкой Т-трубочки и терминальной цистерны имеются специализированные контакты, через которые волна деполяризации доходит до мембраны терминальных цистерн, после чего высвобождаются ионы кальция.

Опорный аппарат мышечного волокна представлен элементами цитоскелета, которые обеспечивают упорядоченное расположение миофиламентов и миофибрилл. К ним относятся:

Телофрагма (Z-линия) – область прикрепления тонких миофиламентов двух соседних саркомеров.

Мезофрагма (М-линия) – плотная линия, расположенная в центре А-диска, к ней прикрепляются толстые филаменты.

Кроме того, в составе мышечного волокна имеются белки, стабилизирующие его структуру, например:

Дистрофин – одним концом прикрепляется к актиновым филаментам, а другим – к комплеку гликопротеидов, которые проникают в сарколемму.

Титин – эластический белок, который тянется от М- к Z-линии, препятствует перерастяжению мышцы.

Кроме миосимпласта в состав мышечных волокон входят миосателлитоциты. Это мелкие клетки, которые располагаются между плазмолеммой и базальной мембраной, представляют собой камбиальные элементы скелетной мышечной ткани. Они активизируются при повреждении мышечных волокон и обеспечивают их репаративную регенерацию.

Различают три основных типа волокон:

Тип I (красные)

Тип IIВ (белые)

Тип IIА (промежуточные)

Волокна I типа – красные мышечные волокна, характеризуются высоким содержанием в цитоплазме миоглобина, который и придает им красный цвет, большим числом саркосом, высокой активностью окислительных ферментов(СДГ), пребладанием аэробных процессов.Эти волокна обладают способностью медленного,но длительного тонического сокращения и малой утомляемостью.

Волокна IIВ типа – белые - гликолитические, характеризуютс относительно низким содержанием миоглобина, но высоким –гликогена. Имеют больший диаметр, быстрые, тетанические, с большой силой сокращения, быстро утомляются.

Волокна IIА типа – промежуточные, быстрые, устойчивые к утомлению, окислительно-гликолитические.

Мышца как орган – состоит из мышечных волокон, связанных воедино системой соединительной ткани, сосудов и нервов.

Каждое волокно окружено прослойкой рыхлой соединительной ткани, которая содержит кровеносные и лимфатические капилляры, обеспечивающие трофику волокна. Коллагеновые и ретикулярные волокна эндомизия вплетаются в базальную мембрану волокон.

Перимизий – окружает пучки мышечных волокон. В нем содержатся более крупные сосуды

Эпимизий – фасция. Тонкий соединительно-тканный чехол из плотной соединительной ткани, окружающий всю мышцу.

Скелетная мышечная ткань

Схема скелетной мышцы в разрезе.

Строение скелетной мышцы

Скелетная (поперечно-полосатая) мышечная ткань - упругая, эластичная ткань , способная сокращаться под влиянием нервных импульсов : один из типов мышечной ткани . Образует скелетную мускулатуру человека и животных, предназначенную для выполнения различных действий: движения тела, сокращения голосовых связок, дыхания. Мышцы состоят на 70-75 % из воды.

Гистогенез

Источником развития скелетной мускулатуры являются клетки миотомов - миобласты. Часть из них дифференцируется в местах образования так называемых аутохтонных мышц. Прочие же мигрируют из миотомов в мезенхиму ; при этом они уже детерминированы, хотя внешне не отличаются от других клеток мезенхимы. Их дифференцировка продолжается в местах закладки других мышц тела. В ходе дифференцировки возникает 2 клеточные линии. Клетки первой сливаются, образуя симпласты - мышечные трубки (миотубы). Клетки второй группы остаются самостоятельными и дифференцируются в миосателлиты (миосателлитоциты).

В первой группе происходит дифференцировка специфических органелл миофибрилл , постепенно они занимают большую часть просвета миотубы, оттесняя ядра клеток к периферии.

Клетки второй группы остаются самостоятельными и располагаются на поверхности мышечных трубок.

Строение

Структурной единицей мышечной ткани является мышечное волокно. Оно состоит из миосимпласта и миосателлитоцитов (клеток-спутниц), покрытых общей базальной мембраной .

Длина мышечного волокна может достигать нескольких сантиметров при толщине в 50-100 микрометров.

Строение миосимпласта

Строение миосателлитов

Миосателлиты - одноядерные клетки, прилежащие к поверхности миосимпласта. Эти клетки отличаются низкой дифференцировкой и служат взрослыми стволовыми клетками мышечной ткани. В случае повреждения волокна или длительном увеличении нагрузки клетки начинают делиться, обеспечивая рост миосимпласта.

Механизм действия

Функциональной единицей скелетной мышцы является моторная единица (МЕ). МЕ включает в себя группу мышечных волокон и иннервирующий их мотонейрон . Число мышечных волокон, входящих в состав одной МЕ, варьирует в разных мышцах. Например, там, где требуется тонкий контроль движений (в пальцах или в мышцах глаза), Моторные единицы небольшие, они содержат не более 30 волокон. А в икроножной мышце, где тонкий контроль не нужен, в МЕ насчитывается более 1000 мышечных волокон.

Моторные единицы одной мышцы могут быть разными. В зависимости от скорости сокращения моторные единицы разделяют на медленные (slow (S-МЕ)) и быстрые (fast (F-МЕ)). А F-МЕ в свою очередь делят по устойчивости к утомлению на устойчивые к утомлению (fast-fatigue-resistant (FR-МЕ)) и быстроутомляемые (fast-fatigable (FF-МЕ)).

Соответствующим образом подразделяют иннервирующие данные МЕ мотонейроны. Существуют S-мотонейроны (S-МН), FF-мотонейроны (F-МН) и FR -мотонейроны (FR-МН) S-МЕ характеризуются высоким содержанием белка миоглобина, который способен связывать кислород (О2). Мышцы, преимущественно состоящие из МЕ этого типа, за их темно-красный цвет называются красными. Красные мышцы выполняют функцию поддержания позы человека. Предельное утомление таких мышц наступает очень медленно, а восстановление функций происходит наоборот, очень быстро.

Такая способность обуславливается наличием миоглобина и большого числа митохондрий . МЕ красных мышц, как правило, содержат большое количество мышечных волокон. FR-МЕ составляют мышцы, способные выполнять быстрые сокращения без заметного утомления. Волокна FR-ME содержат большое количество митохондрий и способны образовывать АТФ путем окислительного фосфорилирования.

Как правило, число волокон в FR-ME меньше, чем в S-ME. Волокна FF-ME характеризуются меньшим содержанием митохондрий, чем в FR-ME, а также тем, что АТФ в них образуется за счет гликолиза . В них отсутствует миоглобин , поэтому мышцы, состоящие из МЕ этого типа, называют белыми. Белые мышцы развивают сильное и быстрое сокращение, но довольно быстро утомляются.

Функция

Данный вид мышечной ткани обеспечивает возможность выполнения произвольных движений. Сокращающаяся мышца воздействует на кости или кожу, к которым она прикрепляется. При этом один из пунктов прикрепления остаётся неподвижным - так называемая точка фиксации (лат. púnctum fíxsum ), которая в большинстве случаев рассматривается в качестве начального участка мышцы. Перемещающийся фрагмент мышцы называют подвижной точкой , (лат. púnctum móbile ), которая является местом её прикрепления. Тем не менее, в зависимости от выполняемой функции, punctum fixum может выступать в качестве punctum mobile , и наоборот.

Примечания

См. также

Литература

  • Ю.И. Афанасьев, Н.А. Юрина, Е.Ф. Котовский Гистология. - 5-е изд., перераб. и доп.. - Москва: Медицина, 2002. - 744 с. - ISBN 5-225-04523-5

Ссылки

  • - Механизмы развития мышечной ткани (англ.)

Wikimedia Foundation . 2010 .