Нормирование точности, допуски и посадки. Нормирование точности и технические измерения


Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Алтайский государственный технический университет

имени И.И. Ползунова»

В.А. Вагнер,

В.П. Звездаков,

В.В. Собачкин

НОРМИРОВАНИЕ ТОЧНОСТИ В МАШИНОСТРОЕНИИ

Учебное пособие

по дисциплине "Метрология, стандартизация и сертификация"

Допущено Учебно-методическим объединением вузов по университетскому политехническому образованию в качестве пособия для студентов высших учебных заведений, обучающихся по машиностроительным направлениям подготовки

Из-во АлтГТУ

Барнаул – 2011

Вагнер В.А. Нормирование точности в машиностроении. Учебное пособие по дисциплине «Метрология, стандартизация и сертификация»/ В.А. Вагнер, В.П. Звездаков, В.В. Собачкин. - Барнаул: Изд-во Алт.гос.техн. ун-т им. И.И.Ползунова.- 2011, 84 с.: ил.

В учебном пособии представлены сведения о нормировании точности в машиностроении при разработке деталей и узлов машин.

Целью работы является изучение теоретических вопросов по разделу «взаимозаменяемость» дисциплины «Метрология, стандартизация и сертификация», развитие навыков самостоятельной деятельности студентов по практическому закреплению рассмотренных в теоретической части курса задач, а также работы со справочной литературой и стандартами.

Учебное пособие предназначено для студентов высших учебных заведений всех специальностей, обучающихся по машиностроительным направлениям подготовки очной, очно-заочной и заочной форм обучения , изучающих курс «Метрология, стандартизация и сертификация».

Рецензенты:
Профессор кафедры «Метрология и взаимозаменяемость» МГТУ им. Н.Э.Баумана,

д.т.н. Пронякин В.И.
Профессор кафедры «Детали машин» Уральского федерального университета,

д.т.н. Чечулин Ю.Б.

1 Определение номинальных размеров деталей сборочной единицы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Общие сведения о размерах, допусках, посадках и предельных отклонениях. . . . . . . . . . . . . . . . . . . . . .

3 Допуски и посадки в «Единой системе допусков и посадок» . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Выбор посадок при проектировании конструкций. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.1 Посадки с зазором. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2 Переходные посадки. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3 Посадки с натягом. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Расчет посадки с натягом. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Допуски и посадки шпоночных соединений. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.1 Соединения с призматическими шпонками. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.2 Соединения с сегментными шпонками. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 Допуски и посадки зубчатых (шлицевых) соединений. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.1 Зубчатое соединение с прямобочными шлицами. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.2 Зубчатое соединение с эвольвентными шлицами. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 Посадки подшипников качения. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 Размерные цепи. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 Нормирование точности формы и расположения поверхностей типовых деталей машин, определение требуемой шероховатости поверхности. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10.1 Допуски формы и взаимного расположения поверхностей. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10.2 Шероховатость поверхностей деталей. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 Допуски расположения осей отверстий для крепежных деталей. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 Обоснование технических требований на чертеж сборочной единицы. . . . . . . . . . . . . . . . . . . . . . . . . . .

12.1 Общие положения. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12.2 Определение величин технических требований. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12.2.1 Определение величин боковых зазоров в зацеплении. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12.2.2 Определение полноты контакта сопряженных боковых поверхностей зубьев. . . . . . . . . . . . . . . . . .

13 Указания по составлению технических требований и оформлению рабочего чертежа зубчатого колеса. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13.2 Рекомендации по составлению технических требований для цилиндрического и конического зубчатых колес. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14 Указания по составлению технических требований и оформлению рабочего чертежа вала редуктора

15 Рекомендации по составлению технических требований, разработке и оформлению чертежа крышки подшипника и стакана. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Список литературы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Приложение А. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Приложение Б. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


4
ВВЕДЕНИЕ

В соответствии с образовательным стандартом для студентов технических специальностей машиностроительного направления, изучающих дисциплину «Метрология, стандартизация и сертификация» в разделе взаимозаменяемость, предусмотрена курсовая работа или расчетное задание.

Целью курсовой работы (расчетного задания) является закрепление знаний, полученных из теоретического курса и приобретение навыков их практического применения , поэтому в данной работе приводятся как сведения теоретического характера по основным разделам дисциплины, так и примеры решения типовых задач курса. В приложении к работе дается справочный материал, необходимый для решения задач.

Выполнение курсовой работы проводится по индивидуальным заданиям, выданным преподавателем .

Требования к содержанию и оформлению курсовой работы (расчетного задания) изложены в методических рекомендациях .

1 Определение номинальных размеров деталей сборочной единицы

Размеры деталей, составляющих сборочную единицу, зависят от задания и варианта на курсовую работу. Для определения их номинальных значений необходимо вычислить масштабный коэффициент. Рассчитывается он следующим образом. На чертеже задания на курсовую работу измеряется размер, соответствующий диаметру вала под подшипником качения (d 3 измеренный). Заданный по заданию размер (d 3 заданный) делят на этот измеренный размер и получают масштабный коэффициент μ

Измеряя все другие размеры деталей сборочной единицы и умножая их на этот масштабный коэффициент, определяют расчётные размеры.

Для сокращения числа типоразмеров заготовок и деталей, режущего и измерительного инструмента значения номинальных размеров , полученные расчетом, необходимо округлить до значений, указанных в ГОСТ 6636-69 «Нормальные линейные размеры» (таблица А.1). После этого округленные значения номинальных размеров следует занести в таблицу 1.1. Размеры, связанные с подшипником качения, при этом, следует принять по стандарту на это изделие, независимо от величины расчётного размера. Для этого следует расшифровать условное обозначение заданного подшипника качения, определив его серию, тип и конструктивные особенности, а затем по ГОСТ 520-2002 или справочникам выписать все параметры подшипника качения, необходимые для дальнейших расчетов (присоединительный диаметр наружного кольца, ширину колец, динамическую грузоподъемность подшипника).

Затем назначают размеры, связанные с подшипником качения. Такими размерами являются размер d 1 (посадочный диаметр сквозной крышки подшипника), d 2 (диаметр отверстия в корпусе для установки подшипника), d 4 (внутренний диаметр дистанционной втулки), d 5 (посадочный диаметр глухой крышки подшипника). Обозначения по .

Например, если по заданию известно , что d 3 = 30 мм, тип подшипника 7300, то это значит, что типоразмер подшипника 7306 (d 3 /5=30/5 = 6), подшипник роликовый конический и наружный его диаметр D = 72 мм . В соответствии с этим размеры d 1 = d 2 = d 5 = 72 мм, и d 4 = d 3 = 30 мм.

При заполнении таблицы 1.1 следует обращать внимание на размеры нормированных и стандартных деталей, которые необходимо также принимать согласно соответствующим нормативным документам. К таким деталям относятся уплотнения подшипниковых узлов, шпонки, гайки круглые шлицевые, крышки подшипников сквозные и глухие, стаканы подшипников .

По полученным размерам вычерчивают в соответствующем масштабе сборочную единицу.

2 Общие сведения о размерах, допусках, посадках и предельных отклонениях

Размер числовое значение линейной величины (диаметр, длина и т. п.) в выбранных единицах измерения. На чертежах все линейные размеры указываются в миллиметрах.

Действительный размер – размер элемента, установленный измерением с допускаемой погрешностью.

Предельные размеры – два предельно допустимых размера, между которыми должны находиться или которым может быть равен действительный размер годной детали. Больший из них называется наибольшим предельным размером, а меньший – наименьшим предельным размером. Обозначаются D max и D min для отверстия и d max и d min для вала.

Номинальный размер – размер, относительно которого определяются отклонения. Размер, который указан на чертеже является номинальным. Номинальный размер определяется конструктором в результате расчетов на прочность и жесткость или с учетом конструктивных и технологических особенностей. Для деталей, образующих посадочное соединение , номинальный размер является общим.

В
Таблица 1.1 - Размеры сборочной единицы


№ п/п

Обозначение размера

Размер измеренный, мм

Размер расчетный, мм

Размер по ГОСТ 6636-69

1

. . .

. . .

. . .

. . .

2

. . .

. . .

. . .

. . .

n

. . .

. . .

. . .

. . .

ерхнее отклонение ES, es – алгебраическая разность между наибольшим предельным и соответствующим номинальным размерами.

ES = D max – D - для отверстия, (2.1)

es = d max – d - для вала. (2.2)

Нижнее отклонение EI, ei – алгебраическая разность между наименьшим предельным и соответствующим номинальным размерами.

EI = D min – D - для отверстия, (2.3)

ei = d min – d - для вала. (2.4)

Действительное отклонение – алгебраическая разность между действительным и номинальным размерами.

Допуск Т – разность между наибольшим и наименьшим предельными размерами или алгебраическая разность между верхним и нижним отклонениями.

Т D = D max – D min = ES - EI - для отверстий, (2.5)

Т d = d max – d min = es - ei - для вала. (2.6)

Допуск всегда положителен. Он определяет допускаемое поле рассеивания действительных размеров годных деталей в партии, то есть заданную точность изготовления.

Поле допуска – поле, ограниченное наибольшим и наименьшим предельными размерами и определяемое величиной допуска Т и его положением относительно номинального размера. При графическом изображении поле допуска заключено между двумя линиями, соответствующими верхнему и нижнему отклонениям относительно нулевой линии (рисунок 2.1).

Основное отклонение – одно из двух отклонений (верхнее или нижнее), определяющее положение поля допуска относительно нулевой линии. Основным является отклонение ближайшее к нулевой линии. Второе отклонение определяется через допуск.

Нулевая линия – линия, соответствующая номинальному размеру, от которой откладывают отклонения размеров при графическом изображении допусков и посадок.

Вал – термин, условно применяемый для обозначения наружных (охватываемых) элементов деталей, включая и нецилиндрические элементы.

Отверстие – термин, условно применяемый для обозначения внутренних (охватывающих) элементов деталей, включая и нецилиндрические элементы.

Допуск отверстия обозначается T D , а вала T d . Помимо охватывающих и охватываемых элементов, называемых отверстиями и валами, в деталях имеются элементы, которые нельзя отнести ни к отверстию, ни к валу (уступы, расстояния между осями отверстий и т. д.).

Посадка - характер соединения двух деталей , определяемый разностью их размеров до сборки. Посадка характеризует свободу относительного перемещения соединяемых деталей или степень сопротивления их взаимному смещению. По характеру соединения различают три группы посадок: посадки с зазором, посадки с натягом и переходные посадки.

Зазор S – разность размеров отверстия и вала, если размер отверстия больше размера вала. Зазор обеспечивает возможность относительного перемещения собранных деталей. Наибольший, наименьший и средний зазоры определяются по формулам:

S max = D max – d min = ES - ei; (2.7)

S

Рисунок 2.1. а – сопряжение

б – схема расположения полей допусков вала и отверстия
min = D min – d max = EI - es (2.8)

Конспект лекций

по дисциплине

МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ и сертификация

Часть 1

НОРМИРОВАНИЕ ПАРАМЕТРОВ ТОЧНОСТИ

г. Егорьевск 2014

Составитель: _____________ Л.С. Французова, доцент кафедры «Технологии автоматизированного производства»

Конспект лекций предназначен для студентов, обучающихся по направлениям: 151900 Конструкторско-технологическое обеспечение машиностроительных производств; 220700 Автоматизация технологических процессов и производств; 280700 Техносферная безопасность. Дисциплина «Метрология, стандартизация и сертификация».

Конспект лекций обсужден и одобрен на заседании учебно-методической группы (УМГ) кафедры ТАП

(протокол № _____ от _______ 2014 г.)

Председатель УМГ кафедры ТАП _________ А.А. Махов


1.1. Основные понятия о точности и виды точности, используемые в машиностроении.
1.2. Причины появления погрешностей геометрических параметров элементов деталей.
1.3. Взаимозаменяемость.
1.4. Нормирование точности размеров
1.4.1. Понятия «вал» и «отверстие».
1.4.2. Основные понятия о размерах, отклонениях и допуске
1.4.3. Посадки. Типы посадок и их характеристики. Графическое изображение допусков и посадок.
1.4.4. Единая система допусков и посадок. (ЕСДП).
1.4.5. Обозначение полей допусков, предельных отклонений и посадок на чертежах.
1.5. Нормирование точности формы и расположения поверхностей
1.6. Шероховатость поверхности.
1.6.1. Основные понятия.
1.6.2. Параметры шероховатости.
1.6.3 Обозначение шероховатости поверхности на чертежах.
1.7. Нормирование точности метрической резьбы. Резьбовые соединения.
1.7.1 Основные понятия и классификация резьб.
1.7.2. Параметры крепежных метрических резьб.
1.7.3. Система допусков и посадок с зазором метрических резьб.
1.7.4. Особенности систем допусков и посадок с натягом и переходных посадок метрических резьб.
1.8. Допуски и посадки шпоночных соединений.
1.8.1. Соединения с призматическими шпонками.
1.8.2. Соединение с сегментными шпонками.
1.9 Допуски и посадки шлицевых соединений.
1.10 Допуски и посадки подшипников качения.
1.10.1 Точность геометрических параметров подшипников качения.
1.10.2 Выбор посадок подшипников качения.
1.10.3 Условные обозначения подшипников.
1.11 Нормирование точности зубчатых колес и передач.
1.11.1 Основные виды зубчатых колес и передач.
1.11.2 Система допусков цилиндрических зубчатых колес и передач
1.11.3 Обозначение точности колес и передач. Особенности оформлений чертежей зубчатых колес.
1.12. Расчет допусков размеров, входящих в размерные цепи.
1.12.1 Основные понятия и определения.
1.12.2 Расчет точности размерных цепей.
1.13. Список литературы

ОСНОВНЫЕ ПОНЯТИЯ О ТОЧНОСТИ И ВИДЫ ТОЧНОСТИ, ИСПОЛЬЗУЕМЫЕ В МАШИНОСТРОЕНИИ.

Точность - это степень приближения истинного зна­чения параметра, процесса, предмета к его заданному значению.

Термин "погрешность" используется для количественной оценки точности. Погрешность - разность между приближенным значением некоторой величины и ее точным значением.

Любая деталь, даже простейшая, состоит из нескольких элементов. Так, цилиндрический валик состоит из элемента в виде цилиндрической поверхности и двух элементов в виде плоскостей, требования к точности у которых разные. В машиностроении нормируются требования к точности элементов детали, но иногда и всего механизма.

Изготовление абсолютно точного элемента детали невозмож­но, да и не нужно:

а) в зависимости от назначения элемента детали требования к его точности должны быть разные;

б) невозможно изготовить абсолютно точно элемент детали, даже самый простой;

в) чем точнее требуется изготовить элемент детали, тем дороже будет его изготовление;

В отношении элементов деталей в машиностроении нормиро­вание точности – это установление требований о степени приближения к заданному значению.

Существует четыре нормируемых параметра характеризующих геометри­ческую точность элементов деталей:

1. Точность размера.

Размер элементов деталей должен нахо­диться в определенных пределах и отличаться от номинального на определенное значение. Нормирование точности в отношении размера заключается в указании отклонений от номинального значения.

2. Точность формы поверхности.

В машиностроении элементы детали должны иметь определенную номинальную геометрическую форму (цилиндр, плоскость, сфера и т.д.). В этом случае точность нормируется, как допускаемое искажение конфигурации по сравне­нию с идеальной правильной формой. Эти искажения формы должны находиться в определенных заданных пределах. Нормирование точ­ности формы заключается в указании значений, насколько форма может отличаться от идеальной, а иногда нормируется и допустимый вид искажений.

Рис.1.1. Искажение размеров и формы цилиндра после изготовления

3. Точность расположения поверхностей.

Любая деталь состоит из набора элементов (поверхностей) определенной формы. Эти эле­менты должны быть расположены одна относительно другой в задан­ном положении. Сделать это абсолютно точно невозможно, а следовательно, возникает необходимость нормировать точность, т.е. степень отклонения расположения одной поверхности относительно другой. Например, в цилиндрическом валике торцевые поверхности должны быть расположены перпендикулярно оси цилиндра, но прак­тически так сделать невозможно и поэтому необходимо установить требования к точности этого расположения. При нормировании требу­ется указать допускаемые значения, насколько одна поверхность мо­жет смещаться относительно другой.

4.Точность по шероховатости поверхности.

После любого вида обработки поверхности детали будут иметь неровность. Поэтому воз­никает необходимость нормировать точность в отношении степени приближения реальной поверхности к идеальной в отношении малых неровностей на этих поверхностях. Раньше требование к высоте по­верхностных неровностей называли требование к "чистоте поверх­ности", а теперь - требование к "шероховатости". Нормировать точность в отношении шероховатости - это значит установить допу­скаемые значения в основном высоты неровностей на рассматривае­мых поверхностях.

ВЗАИМОЗАМЕНЯЕМОСТЬ.

Взаимозаменяемость - свойство независимо изготовленных де­талей и сборочных единиц обеспечивать сборку изделий при изго­товлении или замену одноименных деталей и сборочных единиц при ремонте без применения подбора, пригонки или регулиров­ки; при этом должно быть обеспечено соответствие готового изде­лия предъявляемым к нему требованиям по всем показателям ка­чества.

Взаимозаменяемость, соответствующую этому определению, называют полной. Полная взаимозаменяемость возможна при ус­ловии, когда размеры, форма, механические, электрические и другие характеристики деталей и сборочных единиц удовлетворя­ют заданным техническим требованиям. Полную взаимозаменяе­мость экономически целесообразно применять для деталей, изго­товленных с допусками не точнее 6-го квалитета, и в сборочных единицах, имеющих не более четырех сопрягаемых размеров. Взаимозаменяемость деталей и сборочных единиц достигается изготовлением их эле­ментов по всем геометрическим и физико-химическим парамет­рам в определенных заранее нормируемых пределах - допусках.

Использование принципов взаимозаменяемости определено рядом дос­тоинств:

Существенным сокращением трудоемкости и четким норми­рованием сборочных процессов;

Возможностью широкого применения специализации и коо­перирования производств;

Возможностью широкой автоматизации процессов изготов­ления и сборки, организации современных автоматизированных массовых производств на основе прогрессивных методов техно­логии;

Возможностью организации быстрого, дешевого и легкого ре­монта изделий.

Наряду с использованием метода полной взаимозаменяемости находят применение методы неполной взаимозаменяемости , осно­ванные на вероятностных расчетах; групповой взаимозаменяемо­сти, основанные на предварительной сортировке деталей по груп­пам; регулирования с помощью конструктивных компенсаторов, а также методы непосредственного подбора или пригонки деталей «по месту».

Различают внешнюю и внутреннюю взаимозаменяемость.

Внешняя взаимозаменяемость – это взаимозаменяемость по выходным данным узла: его присоединительным размерам или эксплуатационным параметрам. Принцип внешней взаимозаменяемости относится к покупным и кооперируемым изделиям и сборочным единицам. Признаками внешней взаимозаменяемости являются эксплуатационные пока­затели, размеры и форма присоединительных поверхностей, на­пример в электродвигателе - частота вращения вала и мощность, а также размеры присоединительных поверхностей; в подшипни­ках качения - наружный диаметр наружного кольца и внутрен­ний диаметр внутреннего кольца и точность вращения.

Внутренняя взаимозаменяемость – это взаимозаменяемость деталей, входящих в узел или узлов, входящих в изделие.

ОСНОВНЫЕ ПОНЯТИЯ О РАЗМЕРАХ, ОТКЛОНЕНИЯХ И ДОПУСКЕ

Размер - числовое значение линейной величины (диаметра, длины и т.п.) в выбранных единицах измерения.

Различают действительный, номинальный и предельные размеры.

Действительный размер – размер, установленный измерением с помощью средства измерения с допускаемой погрешностью измерения.

Под погрешностью измерения понимается отклонение резуль­тата измерения от истинного значения измеряемой величины. Истинный размер – размер, полученный в результате изготов­ления и значение которого нам не известно.

Номинальный размер - размер, относительно которого опреде­ляются предельные размеры и который служит началом отсчета от­клонений.

Номинальный размер указывается на чертеже и является общий для отверстия и вала, об­разующих соединение и определяется на стадии разработки изделия исходя из функционального назначения деталей путем вы­полнения кинематических, динамических и прочностных расчетов с учетом конструктивных, технологических, эстетических и других условий.

Полученный таким образом номинальный размер должен быть округлен до значений, установленных ГОСТ 6636-69 «Нор­мальные линейные размеры». Стандартом в диапазоне от 0,001 до 20 000 мм предусмотрено четыре основных ряда размеров: Ra 5, Ra 10, Ra 20, Ra 40, а также один дополнительный ряд Ra 80. В каждом ряду размеры изменяются по геометрической профессии со следующи­ми значениями знаменателей соответственно рядам: (Геометрическая прогрессия - это ряд чисел, в котором каждое последующее число получается умножением предыдущего на одно и то же число - знаменатель прогрессии.)

В каждом десятичном интервале для каждого ряда содержится соответственно номеру ряда 5; 10; 20; 40 и 80 чисел. При установ­лении номинальных размеров предпочтение должно отдаваться рядам с более крупной градацией, например ряд Ra 5 следует пред­почесть ряду Ra 10, ряд Ra 10 - ряду Ra 20 и т.д. Ряды нормальных линейных размеров построены на базе рядов предпочтительных чисел (ГОСТ 8032-84) с некоторым округлением. Например, по R5 (знаменатель 1,6) берутся значения 10; 16; 25; 40; 63; 100; 250; 400; 630 и т.д.

Стандарт на нормальные линейные размеры имеет большое экономическое значение, состоящее в том, что при сокращении числа номинальных размеров сокращается потребная номенклату­ра мерных режущих и измерительных инструментов (сверла, зен­керы, развертки, протяжки, калибры), штампов, приспособле­ний и другой технологической оснастки. При этом создаются усло­вия для организации централизованного изготовления названных инструментов и оснастки на специализированных машинострои­тельных заводах.

Стандарт не распространяется на технологические межопера­ционные размеры и на размеры, связанные расчетными зависи­мостями с другими принятыми размерами или размерами стан­дартных комплектующих изделий.

Предельные размеры - два предельно допустимых размера, меж­ду которыми должен находиться или которым может быть равен действительный размер.

Когда необходимо изготовить деталь, то размер должен задаваться двумя значениями, т.е. предельными допустимыми значениями. Больший из двух предельных размеров называется наибольшим предельным размером, а меньший - наи­меньшим предельным размером. Размер годного элемента детали должен находиться между наибольшим и наименьшим допускаемыми предельными размерами.

Нормировать точность размера - это значит указать два его возможных (допускаемых) предельных размера.

Принято обозначать номинальный, действительный и предель­ные размеры соответственно: для отверстий - D, D Д, D max , D min ; для валов - d, d Д, d max , d mln .

Сравнивая действительный размер с предельными, можно судить о годности элемента детали. Условиями годности являются соотношения: для отверстий D min <D Д ; для валов D min Предельные размеры определяют характер соединения деталей и их допустимую неточность изго­товления; при этом предельные размеры могут быть больше или меньше номинального размера или совпадать с ним.

Отклонение - алгебраическая разность между размером (предельным или действительным) и соответствующим номиналь­ным размером.

Для упрощения простановки размеров на чертежах вместо пре­дельных размеров проставляют предельные отклонения: верхнее от­клонение - алгебраическая разность между наибольшим предель­ным и номинальным размерами; нижнее отклонение - алгебраи­ческая разность между наименьшим предельным и номинальным размерами.

Верхнее отклонение обозначается ES (Ecart Superieur) для от­верстий и es - для валов; нижнее отклонение обозначается El (Ecart Interieur) для отверстий и ei - для валов.

Согласно определениям: для отверстий ES=D max -D; EI= D min -D; для валов es=d max –d; ei= d mln -d

Особенность отклонений заключается в том, что они всегда име­ют знак (+) или (-). В частном случае одно из отклонений может быть равно нулю, т.е. один из предельных размеров может совпадать с номинальным зна­чением.

Допуском размера называется разность между наибольшим и наименьшим предельными размерами или алгебраическая разность между верхним и нижним отклонениями.

Допуск обозначается IT (International Tolerance) или T D - допуск отверстия и T d - допуск вала.

Согласно определению: допуск отверстия T D =D max -D min ; допуск вала Td=d max -d min . Допуск размера всегда положительная величина.

Допуск раз­мера выражает разброс действительных размеров в пределах от наибольшего до наименьшего предельных размеров, физически определяет величину официально разрешенной погрешности дей­ствительного размера элемента детали в процессе его изготовле­ния.

Поле допуска - это поле, ограниченное верхним и нижним отклонениями. Поле допуска определяется величиной допуска и его положением относительно номинального размера. При одном и том же допуске для одного и того же номинального размера могут быть разные поля допусков.

Для графического изображения полей допусков, позволяющего понять соотношения номинального и предельных размеров, пре­дельных отклонений и допуска, введено понятие нулевой линии.

Нулевой линией называется линия, соответствующая номиналь­ному размеру, от которой откладываются предельные отклонения размеров при графическом изображении полей допусков. Положительные отклонения откладываются вверх, а отрицатель­ные - вниз от нее (рис. 1.4 и 1.5)

Рис. 1.5. Схема расположения полей допусков валов

Чем меньше допуск, тем точнее будет изготовлен элемент детали. Чем больше допуск, тем грубее элемент детали. Но в то же время, чем меньше допуск, тем труднее, сложнее и отсюда дороже изготовление элемента деталей; чем допуски больше, тем проще и дешевле изготовить элемент детали.

ШЕРОХОВАТОСТЬ ПОВЕРХНОСТИ.

ОСНОВНЫЕ ПОНЯТИЯ.

Шероховатостью поверхности называют совокупность неровностей поверхности с относительно малыми шагами, выделенную с помо­щью базовой длины.

Рассматриваемые микронеровности образуются в процессе ме­ханической обработки путем копирования формы режущих инст­рументов, пластической деформации поверхностного слоя дета­лей под воздействием обрабатывающего инструмента, трения его о деталь, вибраций и т.д.

Шероховатость поверхностей деталей оказывает существенное влияние на износостойкость, усталостную прочность, герметич­ность и другие эксплуатационные свойства.

Шероховатость поверхности в виде профилограммы на рис. 1.44.


Рис. 1.44. Профилограмма поверхности

Для от­деления шероховатости поверхности от других неровностей с от­носительно большими шагами (отклонения формы и волнисто­сти) ее рассматривают в пределах ограниченного участка, длина которого называется базовой длиной L. Базовая длина L нормируется в зависимости от параметров шероховатости в пределах ряда: 0,01; 0,03; 0,08; 0,25; 0,8; 2,5; 8; 25, т.е. чем больше микронеровности, тем больше базовая длина.

Линия, на которой выделяется совокупность поверхностных неровностей, называется базовой линией. Базовая линия - это линия заданной геометрической формы, проведенная определенным образом относительно профиля и слу­жащая для оценки геометрических параметров поверхностных не­ровностей. Вид этой линии зависит от вида поверхности элемента детали. Таким образом, базовая линия поверхности элемента дета­ли имеет форму линии номинального профиля и расположена экви­дистантно этому профилю.

В качестве базовой линии при оценке поверхностных неровнос­тей используется средняя линия, которая является базой для от­счета отклонения профиля.

ПАРАМЕТРЫ ШЕРОХОВАТОСТИ.

1. Среднее арифметическое отклонение профиля Ra - среднее арифметическое из абсолютных значений отклонений профиля в пределах базовой длины:

где l - базовая длина;

n - число выбранных точек профиля на базовой длине;

у - расстояние между любой точкой профиля и средней линией (отклоне­ние профиля).

2. Высота неровностей профиля по десяти точкам Rz - сумма средних абсо­лютных значений высот пяти наибольших выступов профиля и глубин пяти наибольших впадин профиля в пределах базовой длины:

или

где H imax , H imin определяются относительно средней линии;

h jmax , h imin - относительно произвольной прямой, параллельной средней линии и не пересекающей профиль.

3. Наибольшая высота неровностей профиля R max - расстояние между линией
выступов профиля и линией впадин профиля в пределах базовой длины.

4. Средний шаг неровностей профиля S m - среднее арифметическое значение
шага неровностей профиля в пределах базовой длины:

где S mi - шаг неровностей профиля, равный длине отрезка средней линии, за­ключенного между точками пересечения смежных выступов и впадин профи­ля со средней линией.

5. Средний шаг неровностей профиля по вершинам S - среднее арифметическое
значение шага неровностей профиля по вершинам в пределах базовой длины:

где S i - шаг неровностей профиля, равный длине отрезка средней линии, за­ключенного между проекциями на нее наивысших точек двух соседних мест­ных выступов профиля.

6. Относительная опорная длина профиля t p - отношение опорной длины профиля к базовой длине:

где h p - опорная длина профиля - сумма длин отрезков отсекаемых на за­данном уровне в материале профиля линией, эквидистантной средней ли­нии т в пределах базовой длины.

Из перечисленных параметров шероховатости наиболее часто применяют параметры Ra и Rz. Параметр Ra является пред­почтительным, так как его определяют по значительно большему числу точек профиля, чем Rz. Использование параметра Rz в каче­стве контрольного в значительной степени определяется способа­ми измерения рассматриваемых параметров. Значения Ra преиму­щественно измеряют с помощью приборов, снабженных датчика­ми с алмазной иглой. Определение Ra на грубых поверхностях свя­зано с опасностью поломки алмазной иглы, а на очень гладких - с низкой достоверностью результатов из-за того, что радиус конца иглы не может фиксировать очень малые неровности. Поэтому Rz рекомендуется использовать при значениях высоты неровнос­тей 320... 10 и 0,1 ...0,025 мкм, в остальных случаях - Ra.

При расчетах ответственных подвижных и прессовых соедине­ний необходимо учитывать параметр Rz, тогда как на чертежах в большинстве случаев заданы значения Ra. В этих случаях можно воспользоваться зависимостью

Где К=4 при R a =80…2,5 мкм; К=5 при Ra=1,25…0,02 мкм.

Таблица 1.3 Соответствие числовых значений Rа, Rz, Rmax числовым значениям базовой длины

Ra,мкм До 0,025 0,025-0,4 0,4-3,2 3,2-12,5 12,5-100
Rz, мкм До 0,1 0,1-1,6 1,6-12,5 12,5-50 50-400
L, мм 0,25 0,8 2,5

Для трущихся поверхностей ответственных деталей назначают параметры Ra (или Rz), t p и задают направление неровностей, для поверхностей циклически нагруженных деталей - R max , S m (или S) и направление неровностей, для соединений с натягом - только Ra (Rz). Для неответственных деталей можно не указывать параметры шероховатости, в таком случае она не подлежит контролю.

Таблица 1.4 Типы направления неровностей шероховатости.

Типы направления неровностей Схематическое изображение Условное обозначение
Параллельное
Перпендикулярное
Перекрещивающееся
Произвольное
Круговое
Радиальное
Точечное

НА ЧЕРТЕЖАХ.

Обозначение шероховатости на чертежах устанавливает обо­значения шероховатости поверхностей и правила нанесения их на чертежах из­делий.

В обозначении шероховатости применяют три знака:

При обозначении шероховатости только по параметру применяют знак без полки.

Значения всех параметров шероховатости указывают после соответствующего символа, причем высотные параметры Ra, Rz, Rmax проставляются в микрометрах, шаговые параметры Sm, S - в мил­лиметрах, параметр формы t p - в процентах.

1. Знаки, указывающие требования к поверхностным неровно­стям - шероховатости, располагаются (рис. 1.46):

а) на линиях контура элементов детали,

б) на выносных линиях, при этом по возможности ближе к размерной линии,

в) на полках линий - выносок,

г) на размерных линиях или на их продолжениях при недостатке места, при этом разрешается разрывать выносную линию.

2. Знаки, указывающие требования к шероховатости и имеющие полку, дол­жны располагаться относительно основ­ной надписи чертежа (штампа), как
указано на рис. 1.47.

4. Если требования к поверхностным неровностям одинаковы для всех элемен­тов детали, то знак шероховатости на­носится один раз и помещают его в правом верхнем углу чертежа, а на поверхности элементов детали не наносят (рис. 1.48).

Это значит, что поверхности, на которых не указано требование к шерохова­тости, по данному черте­жу не обрабатываются вообще, т.е. эти поверх­ности будут иметь неров­ности, которые имеются у заготовки.

Знаки, которыми указываются требования к шероховатости и поме­щенные в правом верхнем углу чертежа, должны иметь размеры и толщину линий приблизительно в 1.5 раза больше, чем знаки, нанесенные непос­редственно на поверх­ности детали,

Рис. 1.50

6. Когда поверхность элемента детали имеет мало места для размеще­ния знака, допускается применять упрощенное обозначение к поверхно­стным неровностям (рис.1.) с разъяснением этого обозначения в технических требованиях на чертеже детали.

7. Когда поверхность детали представляет собой контур, например многогранную фигуру, и требования к поверх­ностным неровностям должны быть одинаковы, то знак шероховатости наносится один раз.

РЕЗЬБОВЫЕ СОЕДИНЕНИЯ.

ОСНОВНЫЕ ПОНЯТИЯ И КЛАССИФИКАЦИЯ РЕЗЬБ.

Резьбовым соединением называется соединение двух деталей с помощью резьбы, т.е. элементов деталей, имеющих один или несколько равномерно расположенных винтовых выступов резьбы постоянного сечения, образованных на боковой поверхности цилиндра или конуса.

Контур сечения канавок и выступов в плоскости, проходящей через ось резьбы, общий для наружной и внутренней резьбы, называется профилем резьбы.

Классификация резьб.

Разнообразные условия использования резьбы привели к мно­гообразию их типов по конструктивным признакам и назначению.

· В зависимости от формы поверхности, на которой образуются резьбы:

Цилиндрические; - конические резьбы;

· По про­филю сечения (т.е. от вида фигуры в сечении) резьбы разделяют на:

Рис. 1.51.

Треугольные (Рис. 1.51 а)

Трапецеидаль­ные (рис.1.51 б)

Пилообразные (рис.1.51 в)

Круглые (рис.1.51 г)

Прямоугольные (рис.1.51 д)

·по числу заходов:

Однозаходные; - многозаходные

· по направлению витков:

Пра­вые; - левые;

· по единице измерения линейных величин

На мет­рические; - дюймовые.

· По назначению резьбы делят на резьбы общего назначения и специальные.

К общего назначения относят крепежные, кинематические, трубные и арматурные.

Крепежные резьбы применяют для разъемных неподвижных соединений деталей машин. Основное их назначение - обеспече­ние прочности соединений и сохранение плотности (нераскры­тия) стыка в процессе эксплуатации.

Кинематические резьбы применяют для подвижных соедине­ний в передачах типа винт-гайка (ходовые винты и винты суп­портов металлорежущих станков, винты измерительных приборов, винты прессов, домкратов и т.д.).

Трубные и арматурные резьбы , имеющие треугольный профиль, применяют для трубопроводов и арматуры с основным назначе­нием обеспечения герметичности соединений.

К резьбам специального назначения относятся такие, которые применяют только в определенных изделиях некоторых отраслей промышленности (например, резьба для цоколей и патронов элек­трических ламп, беззазорная резьба в ходовых винтах координатно-расточных станков и т.д.).

Общими требованиями являются полная взаимозаменяемость, т.е. обеспечение безусловной свинчиваемости деталей, образующих резьбовое соединение при их независимом изготовлении без под­гонки или подбора, и надежное выполнение предписанных эксплуа­тационных функций.

МЕТРИЧЕСКИХ РЕЗЬБ.

Основы этой системы допусков и посадок, включающие степе­ни точности, классы точности резьб, нормирование длин свинчи­вания, методики расчета допусков отдельных параметров резьбы, обозначение точности и посадок метрических резьб на чертежах, контроль метрических резьб и другие вопросы.

Степени точности и классы точности резьбы .

Метрическая резь­ба определяется пятью параметрами: средним, наружным и внут­ренним диаметрами, шагом и углом профиля резьбы.

Допуски назначаются только для двух параметров наружной резьбы (болта); среднего и наружного диаметров и для двух параметров внут­ренней резьбы (гайки); среднего и внутреннего диаметров. Для этих параметров для метрической резьбы установлены степени точнос­ти 3... 10 (табл. 1.5).

Таблица 1.5. Степени точности диаметров наружной и внутренней резьбы.

Вид резьбы Диаметр резьбы Степень точности
Наружная d 2 3,4,5,6,7,8,9,10
D 4,6,8
Внутренняя D 2 4,5,6,7,8,9
D 1 4,5,6,7

В соответствии со сложившейся практикой степени точности сгруппированы в 3 класса точности:

точный (3-5степень точности),

средний(5-7степень точности),

грубый . (7-9 степень точности),

По­нятие класса точности условное. При отнесении степеней точнос­ти к классу точности учитывают длину свинчивания, так как при изготовлении трудность обеспечения заданной точности резьбы зависит от имеющейся у нее длины свинчивания.

Установлены три группы длин свинчивания:

S - короткие (меньше нормальных),

N - нормальные (длины свинчивания от 2,24Pd 0,2 мм до 6,7Pd 0,2 мм),

L -длинные (больше нормальных).

КОЛЕС И ПЕРЕДАЧ.

Каждая из групп по эксплуатационному назначению характеризуется своим ос­новным показателем точности. Так, для отсчетиых передач основным точност­ным требованием является кинематическая точность; для высокоскоростных - плавность работы; для тяжелонагруженных тихоходных - полнота контактных зубьев; для реверсивных (особенно отсчетных) - ограничение величины и коле­бания бокового зазора.

С учетом условий эксплуатации в стандартах на допуски для зубчатых и червяч­ных передач установлены нормы точности:

- Кинематической точности,

- плавности работы;

- контакта зубьев;

- бокового зазора.

По точности изготовления все зубчатые колеса и передачи разделены на 12 сте­пеней.

Плавность работы передачи

Эта характеристика передачи определяется параметрами, погрешности которых многократно (циклически) проявляются за оборот зубчатого колеса.

Циклический характер погрешностей, нарушающих плавность работы передачи, и возможность гармонического анализа дали основание определять и нормиро­вать эти погрешности по спектру кинематической погрешности.

Под циклической погрешностью передачи f zkor (рис. 1.72,а) и зубчатого колеса f zkr (рис. 1.72,б) понимают удвоенную амплитуду гармонической составляющей ки­нематической погрешности соответственно передачи или колеса. Для ограниче­ния циклической погрешности установлены допуски:

f zok - на циклическую погрешность передачи;

f zk - на циклическую погрешность зубчатого колеса.

Рис. 1.73

Для ограничения циклической погрешности с частотой повторения, равной час­тоте входа зубьев в зацепление f zzor и f zzr установлены допуски на циклическую погрешность зубцовой частоты в передаче f zzo и f zz . Эти допуски зависят от часто­ты циклической погрешности (равной числу зубьев колес z), степени точности, коэффициента осевого перекрытия ε β и модуля т.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Федеральное агентство по образованию

Сибирский государственный аэрокосмический университет им. академика М. Ф. Решетнёва

Кафедра УКС

Курсовая работа по курсу

« Нормирование точности в машиностроении »

Вариант №14

Выполнил: студент

Проверил преподаватель:

Кревина Т.Е.

Красноярск 2008

  • Введение 3
  • 4
  • 1.1 Нормирование посадок с натягом 4
  • 1.2 Переходные посадки 7
  • 11
  • 3. Выбор посадок для шлицевого соединения 15
  • 4. Зубчатые соединения 18
  • 5.Расчет размерных цепей 21
  • 5.1 Расчет методом полной взаимозаменяемости 21
  • 5 .2 24
  • Список литературы 28

Введение

Машиностроение является важнейшей ведущей отраслью промышленности. Но машиностроение играет не меньшую роль и в других сферах таких как наука, культура, просвещения, коммунальное и жилищное хозяйство. Человечество растет и развивается, тем самым давая пищу для развития машиностроения и расширения его номенклатуры. Главный упор в наши дни делается на электрификацию, а также механизацию и автоматизацию производства и труда, в общем делается все для того, чтобы облегчить физический труд человека.

Курсовая работа по курсу «Нормирование точности в машиностроении» является первой самостоятельной конструкторской работой студента. Курсовая работа позволяет закрепить теоретические положения курса, излагаемые в лекциях, прививает навыки пользования справочным материалом, стандартами ЕСКД, знакомит студентов с основными типами расчетов.

Важное место в курсовой работе занимают вопросы, связанные с обеспечением точности взаимозаменяемых деталей сборочных единиц. Нормы точности взаимозаменяемости соединений всех типов регламентируются единой системой допусков и посадок (ЕСДП).

Цель курсовой работы - привить навыки назначения точности деталей и узлов и навыки ее обозначения на чертежах.

При выполнении курсовой работы прорабатываются основные стандарты на допуски и посадки типовых сопряжений, затрагиваются вопросы контроля размеров и технических требований.

1. Гладкие цилиндрические соединения

1. 1 Нормирование посадок с натягом

Номинальный диаметр соединения, мм……………………………..75;

Максимальный предельный натяг N max р, мкм………………………80;

Минимальный предельный натяг N min p , мкм………………………..60.

Расчетный номинальный диаметр d = 75 мм соответствует ряду Ra40 и округлять его нет необходимости.

Определяем средний натяг предельных натягов, данных в задаче:

где N max р и N min p - расчетные предельные натяги данные в задаче, мкм.

По среднему натягу подбираем посадку в любой системе (системе вала или системе отверстия) по табл.5 и выписываем табличные натяги N max T =72 мкм и N min T = 40 мкм подобранной посадки.

где N max T и N min T - табличные предельные натяги, мкм.

Табличный средний натяг близок к расчетному и ему в системе отверстия соответствует посадка

Находим отклонения для полей допусков отверстия и вала по табл.6,9,14 .

Записываем комбинированное обозначение посадки с отклонениями

Строим схему расположения полей допусков выбранной посадки. Указываем натяги. Отклонения на схеме допусков проставляем в микрометрах.

Рис.1. Поля допусков для посадки с натягом

Подсчитываем максимальный и минимальный натяги (проверка) для выбранной посадки, согласно схеме полей допусков по формулам:

где ES , es , EI , ei - верхние и нижние отклонения отверстия и вала соответственно.

Полученные предельные натяги совпадают с табличными предельными натягами.

Определяем допуск вала и допуск отверстия:

Посадка выбрана так, что при неодинаковых допусках вала и отверстия больший допуск у отверстия.

Рис. 2. Эскиз соединения

TN = TD+Td = N max -N min = 72-40=32

Не гарантирована неподвижность соединения под нагрузкой.

1. 2 Переходные посад ки

Дано:

Номинальный ди аметр соединения ……………………………… 209 мм;

Максимальный предельный натяг N нб ……………………………40 мкм;

Максимальный предельный зазор S нб ………………….……........14 мкм

Решение:

1) Округлим заданный диаметр соединения до значения 210 мм, соответствующего ряду Ra40 по ГОСТ 6636-69

2) Табличные значения переходных посадок:

N нм = - S нб N нб =40 мкм N нм = -14мкм

Этим значениям соответствует посадка в системе вала

3) Предельные отклонения отверстия и вала:

210

210 h5

4) Схема расположения полей допусков в посадке:

S нб = ES - ei S нб = -8 - (-20) = 12 мкм

S нм = EI - es S нм = -37 - 0 = - 37 мкм

S нм = - N нб N нб = 37 мкм

Табличные значения зазора и натяга совпадают с заданными

Рис. 3. Поля допусков для переходной посадки

5) Полное обозначение посадки:

6) Допуск переходной посадки:

T(S,N) = TD + Td

T(S,N) = (-0.008-(-0.037))+(0-(-0.02)) = 0.029+0.02 = 0.049 мкм

7) Допуск отверстия больше допуска вала, значит, отверстие изготовлено менее точно, чем вал.

9) Расчеты для построения кривой Гаусса:

а) среднеквадратичное отклонение посадки:

б) зона рассеивания зазоров натягов и максимальная ордината:

в) относительное отклонение:

действительное отклонение ординаты с нулевым зазором

г) вероятное количество сопряжений с зазором:

д) вероятное количество сопряжений с натягом:

10) Кривая Гаусса:

По оси y откладываем число сопряжений, т.е. число посадок.

По оси х - рассеивания зазоров или натягов. На этой кривой центр группирования посадки соответствует центру посадки N ср.

Рис. 4. Кривая Гауса

На расстоянии х =12,5 мкм от центра группирования расположена ордината соответствующая нулевому натягу (зазору). Условимся отсчитывать эту ординату влево от центра группирования, когда переходная посадка обладает средним зазором и вправо при натяге. Вся площадь под кривой, ограниченная по ординате интервалом рассеивания R , соответствует общему числу сопряжений данной посадки, т.е. вероятность равна от 1 до 100%. Вероятность появления сопряжений с натягом соответствует заштрихованной площади слева, с зазором - заштрихованной справа.

2. Расчет посадок для подшипников качения

Дано:

Подшипник 97516, класс точности 60, вращается внутреннее кольцо, радиальная нагрузка 30000 Н, умеренная, с малой вибрацией, нагрузка осевая 10000 Н, =0,6

Решение:

1) Тип подшипника: шарикоподшипник конический, двухрядный, легкой серии.

Размеры: d=80мм, D=140мм, T=80мм,

Вращается внутреннее кольцо, следовательно, оно является циркуляционно-нагруженным.

2) Вал сплошной, корпус тонкостенный, так как указаны отношения

3) Интенсивность радиальной нагрузки:

а) R=30000 Н, радиальная нагрузка

б) b=0.08 м, ширина кольца

в) -коэффициент, зависящий от характера нагрузки. =1

г) -коэффициент, учитывающий ослабление посадочного натяга при полом вале или тонкостенном корпусе. =1,1, так как в задаче даны сплошной вал и тонкостенный корпус. д) -коэффициент неравномерности распределения радиальной нагрузки R между рядами роликов в двухрядных подшипниках. Для нахождения подсчитаем выражение

, тогда =2

е) подсчитаем:

4) Поле допуска для посадочного отверстия:

Нагрузке в 825 и диаметру наружного кольца D=140 мм соответствует поле допуска G . Так как по условию класс точности подшипника 6, то квалитет для отверстия в корпусе 7, тогда записываем G7

5) Поле допуска для циркуляционно-нагруженного внутреннего кольца:

Диаметру вала 80мм соответствует посадка на вал k6

6) Отклонения для полей допусков посадочного отверстия:

ES=+54; EI= 14 мкм

7) Отклонения для циркуляционно-нагруженного кольца:

es=21; ei=2 мкм

8) Отклонения для полей допусков внутреннего и наружного колец подшипника качения:

Для внутреннего кольца: ES=0; EI= -15мкм

Для наружного кольца: es=0; ei= -12 мкм

10) Посадка для соединения «внутреннее кольцо-вал»:

80, где L0-поле допуска внутреннего кольца (0-обозначение класса точности)

11) Посадка для соединения «отверстие в корпусе - наружное кольцо»: 140, где l 0-поле допуска наружного кольца (0-класс точности)

12) Схема расположения полей допусков соединения «вал - внутреннее кольцо»:

13) Схема расположения полей допусков соединения «отверстие в корпусе - наружное кольцо»:

Так как, то корпус не будет вращаться.

14) Эскиз корпуса и вала для подшипника качения:

3. Выбор п осадок для шлицевого соединения

Определить вид центрирования, точность и характер сопряжения для шлицевого соединения.

Построить схему расположения полей допусков с указанием отклонений, определить предельные размеры всех элементов сопряжения.

1) Число шлицев Z =10, внутренний диаметр d =72, наружный диаметр D =82

2) Ширина зуба (шлица) b=12мм, наименьший внутренний диаметр d 1 = 67,4мм , серия - средняя.

3) Вид центрирования: центрирование по b (боковым поверхностям зубьев)

4)По табл. 3.1 ищем посадку для центрирующего параметра b.

Так как соединение подвижное, выбираем посадку с зазором

5) Для нецентрирующих диаметров d и D выбираем посадки 5, по табл. 3.4.] Для D - , для внутреннего диаметра d : для втулки H 11, а для вала находим допуск d - d 1.

6). Найдем отклонения для всех параметров, пользуясь табл. 6, 7, 12 .

для Н 12 ЕS = +350 мкм; EI = 0 (D = 82 мм)

для Н 11 ЕS =+ 190 мкм, E I = 0 (d =72 мм);

для F 8 ЕS = +43 мкм; EI = +16 (b =12 мм)

для f 87 е s = - 16 мкм; е i = - 43 мкм (b =12 мм);

для a 11 es = -380 мкм; ei = -600 мкм (D = 82 мм);

для внутреннего диаметра вала найдем d - d 1 =72- 67,4= 4,6мм= 4600 мкм.

7)Строим схемы расположения полей допусков:

8)Запишем условное обозначение данного в задаче шлицевого соединения с соответствующими посадками.

где b - вид центрирования; 10- число зубьев;72- внутренний диаметр соединения. Посадка в обозначении не проставляется, так как в знаменателе поле допуска отсутствует; 82- наружный диаметр соединения;

Посадка для наружного диаметра соединения; 12- ширина зуба (шлицы);

Посадка для ширины шлицы.

Запишем обозначения для шлицевого вала и шлицевой втулки отдельно

Обозначение втулки

В этом обозначении у внутреннего диаметра d = 72 мм проставляется поле допуска втулки H 11.

Обозначение вала.

4. Зубчатые соединения

Вид зубчатых колес - цилиндрические, прямозубые, некоррегированные. Параметры: m =4, Z 1 = 60, Z 2 =35. Назначение - колеса авиастроения.

1. Согласно назначению зубчатой передачи определяем, что контакт зубьев и боковой зазор являются группой показателей плавности работы, которая имеет наибольшее значение для данной передачи (см. подраздел 4.1 3).

2. Определяем степень точности для выбранной группы показателей по табл. 24 5. Из той же таблицы выпишем окружную скорость.

Степень точности для группы плавность равна 6, окружная скорость - 15 м/с.

3. В данной задаче для групп точности и контакта зубьев назначим одинаковые степени точности на одну ниже, чем для группы плавность, т. е. степень точности 7.

4. Исходя из величины окружной скорости, определяем вид сопряжения, учитывая, что наименьший боковой зазор назначается для тихоходных передач, а наибольший - для быстроходных.

В данной задаче передача высокоскоростная, т. к. скорость 15 м/с, поэтому выбираем вид сопряжения В

5. Пользуясь табл. 4.1 , назначим допуск на боковой зазор и укажем класс отклонения межосевого расстояния.

Допуск на боковой зазор -b, класс отклонения межосевого расстояния -V.

6. Запишем обозначение точности зубчатой цилиндрической передачи:

7-7-6 B ГОСТ 1643-81,

где 7 - степень точности контакта зубьев показателей; 7 - степень точности группы точности; 6 - степень точности группы плавности; В - вид сопряжения; b - допуск на боковой зазор.

7. Для одной группы показателей плавности, которая имеет наибольшее значение для данной передачи, определяем нормируемые показатели. Показатели выписываем по табл.28 и 29 1. Для этого надо подсчитать делительные диаметры двух данных в задаче колес d 1 и d 2 ,ширину каждого зубчатого колеса b 1 и b 2 ,межосевое расстояние передачи a w . Ширину зубчатого венца положим равной 1/3 делительного диаметра.

По табл. 28 5 определяем суммарное пятно контакта по высоте и длине зуба, допуски на параллельность f , перекос осей f y и напряжение зуба F .

Суммарное пятно контакта для 6 степени точности по высоте зубьев не менее 50 , по длине зубьев не менее 70 .

Для определения следующих показателей подсчитаем делительные диаметры d 1 и d 2 .

d 1 = mz 1 = 4 60= 240мм;

d 2 = mz 2 = 4 35 = 140 мм

Ширина венца зубчатого колеса

b 1 = 1/3d 1 ;

b 2 = 1/3d 2 ;

b 1 = 80 мм;

b 2 = 46,6 мм,

Для 6-й степени точности f x 1 = 12 мкм, f x 2 = 12 мкм, f y 1 = 6,3 мкм; f y 2 = 6,3 мкм,

F 1 = 10 мкм, F 2 = 10 мкм.

По табл. 29 5 выпишем значения гарантированного бокового зазора j n min и отклонения межосевого расстояния f a . Для этого подсчитаем межосевое расстояние.

Виду сопряжения В , классу межосевого расстояния V, его величиной, равной 190мм, отклонению межосевого расстояния f a = ± 90 мкм, соответствует гарантированный боковой зазор j n min = 185 мкм.

Нормы плавности работы: кинематическая погрешность мкм, допуск на погрешность профиля мкм, предельные отклонения шага мкм.

5 .Расчет размерных цепей

5 .1 Расчет ме тодом полной взаимозаменяемости

Дано:

;; ; ; ; ; ;

Решение:

1) Номинальный размер замыкающего звена:

,

где А? - замыкающее звено, А I У B - увеличивающий размер, А I УM - уменьшающий размер, m - число увеличивающих звеньев, n - число составляющих звеньев.

Таблица 1

Номинальные размеры составляющих звеньев,Ai,мм

Допуск замыкающего звена TA, мкм

Единица допуска, i мкм

Допуски составляющих звеньев, TAi,мкм

Размеры звеньев с отклонениями,мм

Табличные

Откорректированные

A 1 =20

A 2 =20

A 3 =28

A 4 =25

A 5 =25

A 6 =71

A 7 =90

1.31

1.31

1.56

1.31

1.31

1.86

2.17

21

21

21

21

21

30

35

20 -0,0 21

20 -0,0 21

28 -0, 021

25 -0, 021

25 -0, 021

71 -0, 0 4 6

90 -0, 03 5

2) Средний коэффициент точности a :

где TA - допуск замыкающего звена; I - единица допуска; n - число составляющих звеньев.

Для данной задачи i 1 =i 2 =1.31мкм; i 3 = 1,56 мкм; i 4 =i 5 =1,31 , i 6 =1.86мкм; i 7 =2,17 мкм; i 8 =3,23 мкм.

3) Единицы допуска для интервалов размеров заносим в таблицу

4) Квалитет точности 7

5) Значения допусков составляющих звеньев согласно квалитета и размера заносим в таблицу

6) Проверка допуска:

; мкм;

Сумма допусков составляющих звеньев меньше допуска замыкающего звена, следовательно, необходима корректировка.

В данном случае (когда?ТАi < ТА?) рекомендуется провести корректировку следующим образом. Поскольку вычисленное значение среднего коэффициента а находилось между 7 и 8 квалитетами, то часть допусков можно взять по 8 квалитету и таким образом увеличить?ТАi до необходимого значения.

Например, назначим по 8 квалитету допуски на размеры А 6 (см. табл. 5.4).

В этом случае ТА 6 =46, тогда?ТАi = 238 мкм.

?TAi < ТА? на 0.8 % , что находится в пределах допустимого.

7) Размеры уменьшающих звеньев с отклонениями заносим в таблицу. Так как размеры с по охватываемые, то назначаем отклонения как для валов.

8) Размеры увеличивающего звена:

Будем считать отклонение замыкающего звена симметричным, то есть

;

;

5 .2 Расчет теоретико-вероятностным методом

Составить схему размерной цепи с обозначением увеличивающих и уменьшающих размеров. Для этого провести анализ и выявить уменьшающие и увеличивающие размеры.

Номинальные размеры, мм: ;; ; ; ; ; ; .

Законы распределения А 1 =3; А 2 =3; А 3 =2; А 4 =2; А 5 =1; А 6 =1; А 7 =1; А 8 =1.

Допуск замыкающего звена ТА = 240 мкм.

1) Составляем таблицу, в которую заносим размеры звеньев и числовые значения единиц допусков составляющих звеньев

Таблица 2.

Номинальные размеры составляющих звеньев, мм

Допуск замыкающего звена ТА, мкм

Законы распределения

Единица допуска, i 2 , мкм

Допуски составляющих звеньев TA i , мкм

Размеры звеньев с отклонениями, мм

Табличные.

Откорректированные

2) Средний коэффициент точности подсчитываем по формуле

где - средний коэффициент точности;

ТА - допуск замыкающего звена;

Коэффициент, соответствующий закону распределения;

Единица допуска.

1-для закона нормального распределения;

2-для закона равной вероятности;

3-для закона треугольника.

3) Знаменатель выражения для а будет выглядеть следующим образом:

Подставив значения допусков, получим

4) По среднему коэффициенту точности а находим квалитет (см. табл.5.3 3). Выбираем 9 квалитет.

5) Согласно квалитету и размерам звеньев, находим допуски на составляющие размеры (табл 5.4 3) и заносим их в таблицу.

6) Проводим проверку по формуле

Сумма допусков составляющих звеньев может быть меньше допуска замыкающего звена на 5 … 6 % , что в данных условиях не выполняется.

Проводим корректировку. Для этого на размеры А 4 , А 5 назначим допуски по 13 квалитету и проставим значения этих допусков в таблицу. Вновь проводим проверку.

Проверка показала соответствие условию.

7) Проставим размеры с отклонениями в таблицу 2 (кроме увеличивающего звена), пользуясь следующим правилом: отклонения для всех охватываемых размеров (как для валов) назначим с допусками в «минус». Такими являются размеры A 1 … А 7

Отклонения для увеличивающего звена А8 , подсчитываем. Для этого определим средние отклонения для уменьшающих размеров с A1 по А7:

где?с А - среднее отклонение размера; ES A i , - верхнее предельное отклонение размера; EI A i , - нижнее предельное отклонение размера.

Расчет проводится с учетом знаков отклонений в мкм:

8) Для замыкающего звена (А?) положим верхнее отклонение, равным допуску, а нижнее - равным 0. ES A? = TA? = 1300 мкм; EI A? = 0. Тогда среднее отклонение для замыкающего звена

Среднее отклонение для увеличивающего размера А 8 находим по уравнению

где c Ay м . - сумма средних отклонений уменьшающих звеньев;

c A y м = (- 75)*2 + (- 125) + (-230)*2 + (- 175) + (-200) = -1110 мкм;

c A 8 = - 1110 + 650 = - 460 мкм.

9) Верхнее и нижнее отклонения для увеличивающего размера А 8 определяем из следующих уравнений:

Е S A8 = c А8 + 1/2ТА8 ; Е I A8 = c А8 - 1/2ТА8 .

Табличный допуск для A 8 взять по таблице 2. Тогда

расчетные значения отклонений звена составят:

Е S A 8 = - 460 + 1/2570 = -175 мкм; Е I A 8 = - 460 - 1/2570 = - 745 мкм.

Запишем размер А 8 с расчетными отклонениями в таблицу 2.

Допуски, рассчитанные методом полной взаимозаменяемости, получаются менее жесткими, т. е. точность ниже, чем при расчете теоретико-вероятностным методом.

Список литературы

1. Допуски и посадки: Справочник: В 2 ч./ М.А. Палей, А.Б. Романов, В.А. Брагинский. -8-е изд., перераб. и доп. -СПб.: Машиностроение,2001. - Ч. 1.

2. Допуски и посадки: Справочник: В 2 ч./ В.Д. Мягков, М.А. Палей, А.Б. Романов, В.А. Брагинский. -8-е изд., перераб. и доп. -СПб.: Машиностроение,2001. - Ч.2.

3. Метрология, стандартизация и сертификация: Методические указания к выполнению курсовой работы для студентов технических специальностей заданной формы обучения/ Сост.: Белик Г.И., Пшенко Е.Б.; СибГАУ.- Красноярск, 2003.

4. Метрология, стандартизация и сертификация: Раздаточный материал к выполнению курсовой работы для студентов всех форм обучения/ Сост.: Белик Г.И., Пшенко Е.Б.; САА.-2002.

5. Нормирование точности в машиностроении. Сборник справочных материалов / Сост. Г. И. Белик. - Красноярск: САА, 1998..

Подобные документы

    Построение расположения полей допусков различных видов соединений. Определение значений предельных отклонений размеров, зазоров и натягов, допусков и посадок. Выбор поля допусков для шпонки и для пазов в зависимости от характера шпоночного соединения.

    контрольная работа , добавлен 03.06.2010

    Расчет параметров посадки с зазором в системе отверстия. Предельные размеры, допуски отверстия и вала. Числовые значения предельных отклонений. Обозначение размеров на рабочих чертежах. Схема расположения полей допусков. Условное обозначение допусков.

    курсовая работа , добавлен 30.06.2013

    Анализ стандартов на допуски и посадки типовых сопряжений. Расчет селективной сборки цилиндрического соединения. Назначение посадок подшипника качения, шпоночного, шлицевого и резьбового соединений, размерной цепи. Средства и контроль точности соединений.

    курсовая работа , добавлен 25.12.2015

    Построение для номинального размера детали расположения полей допусков трех видов соединений - шпоночного, шлицевого и профильного. Определение предельных отклонений размеров, зазоров и натягов, а также расчет допусков и посадок годного изделия.

    контрольная работа , добавлен 04.10.2011

    Основные понятия и определения по допускам и посадкам. Зависимость единиц допуска от номера квалитета. Образование и обозначение полей допусков и посадок. Расчёт размерной цепи методом максимума-минимума и вероятностным методом подшипников качения.

    контрольная работа , добавлен 07.08.2013

    Допуски и посадки гладких цилиндрических сопряжений и калибры для контроля их соединений. Выбор посадок подшипника качения. Понятие шероховатости, отклонения формы и расположения поверхностей. Прямобочное и эвольвентное шлицевое и шпоночное соединение.

    контрольная работа , добавлен 19.12.2010

    Допуски и посадки цилиндрических соединений. Допуски и посадки подшипников качения. Основные размеры подшипника. Предельные отклонения на изготовление колец подшипника. Допуски и посадки шпоночных соединений. Допуски и посадки шлицевых соединений.

    контрольная работа , добавлен 28.06.2005

    Детали и точность их соединения. Допуски линейных размеров. Посадки деталей, их особенности и полное описание их характеристик. Вычисление единиц допуска и определение формул вычисления. Причины возникновения ошибок механизмов и их предотвращение.

    реферат , добавлен 04.01.2009

    Расчет и выбор посадок гладких цилиндрических соединений. Метод аналогии, расчет посадки с натягом. Выбор допусков и посадок сложных соединений. Требования к точности размеров, формы, расположения и шероховатости поверхностей на рабочем чертеже.

    реферат , добавлен 22.04.2013

    Графическое оформление и спецификация чертежей деталей, сборочных единиц и общего вида привода. Простановка размеров и их предельных отклонений. Допуски формы и расположения поверхностей. Обозначение на чертежах указаний о термической обработке.

Организация серийного выпуска изделий потребовала сокращения вложенного в них овеществленного труда. Добиться снижения себестоимости изделий можно было за счет упрощения конструкции (в первую очередь отказа от излишеств – дорогих материалов, трудоемких украшений, нетехнологичных деталей и сборочных единиц) и изменения технологии (обеспечения разделения труда и кооперации производства).

Разделение труда в предельной форме можно представить, как членение технологического процесса изготовления изделия на операции – простейшие действия, каждое из которых выполняется одним работником (оператором). Научиться выполнению такой операции можно в течение нескольких минут, а достаточные навыки работы приобрести за 2...3 рабочие смены. Выигрыш от такой организации труда – высокая производительность при минимальных требованиях к квалификации работника.

Для обеспечения определенного уровня качества серийно выпускаемых изделий необходимо, чтобы все обработанные детали одного назначения (номенклатуры, типоразмера) были практически одинаковыми. Различия между деталями должны быть столь незначительны, чтобы любая из них собиралась с ответными, а собранные вместе они составляли изделие, неотличимое в работе от других. Детали, и более сложные изделия, если они отвечают поставленным требованиям, называются взаимозаменяемыми.

В бытовом смысле взаимозаменяемость можно рассматривать как одинаковость изделий, но поскольку абсолютно одинаковых изделий не существует, очевидно, что при изготовлении следует всего лишь не допустить таких различий, которые выходят за оговоренные нормы. Эти нормы фиксируют в документации (конструкторская документация, технические описания, паспорта и др.). Для придания наиболее часто употребляемым нормам официального статуса широко используется стандартизация. Стандартизуют сложные изделия и процессы, их составные части, вплоть до элементарных. Всем известны не только стандартные дома и машины, но и стандартное напряжение электрической сети, стандартные размеры магнитной ленты, магнитных и оптических дисков, скорости записи и воспроизведения информации.

Для получения стандартных изделий заданного уровня качества приходится организовывать разветвленную нормативную базу. Стандартизация является нормативной базой взаимозаменяемости серийно выпускаемых изделий и многократно воспроизводимых процессов.

В технике взаимозаменяемость изделий подразумевает возможность равноценной (с точки зрения оговоренных условий) замены одного другим в процессе изготовления или ремонта. Чем более подробно и жестко нормированы параметры изделий, тем проще реализуется замена, но тем сложнее обеспечить взаимозаменяемость.

Взаимозаменяемость изделий и их составных частей (узлов, деталей, элементов) следует рассматривать как единственную возможность обеспечения экономичного серийного и массового производства изделий заданного уровня качества. Одинаковый (колеблющийся в пределах пренебрежимых для потребителя различий) уровень качества конечных изделий конкретного производства обеспечивается выполнением определенного набора требований. Требования предъявляются ко всем элементам деталей и сопряжений, которые обеспечивают нормальную работу изделия. Обеспечение взаимозаменяемости, а значит и заданного уровня качества изделий подразумевает:

Установление комплекса требований ко всем параметрам, оказывающим влияние на взаимозаменяемость и качество изделий (нормирование номинальных значений и точности параметров);

Соблюдение при изготовлении установленных норм, единых для одинаковых объектов, и эффективный контроль нормируемых параметров.

При этом пробелы при назначении норм или неправильный, нечетко определенный выбор их границ могут привести к нарушению взаимозаменяемости изготавливаемых изделий, следовательно, к несоблюдению заданного уровня качества изделий. Неправильный или неполный набор при нормировании номенклатуры параметров или их предельных значений приведет к нарушению взаимозаменяемости (вплоть до издевательства над заказчиком: ...за время пути собака могла подрасти), при котором изготовитель формально не может быть обвинен в несоблюдении норм.

Итак, высшим достижением нормирования параметров изделия будет обеспечение полной взаимозаменяемости однотипных изделий в любой изготавливаемой партии. Полная взаимозаменяемость подразумевает взаимозаменяемость изделий по всем нормируемым параметрам. Параметры и свойства, не имеющие принципиального значения для функционирования изделий, не нормируются. Например, домохозяйку мало интересуют размеры частиц сахара-песка, который продается на вес, в то время как для макаронных изделий форма и размеры могут быть достаточно значимыми свойствами, поскольку лапша и вермишель развариваются неодинаково. Взаимозаменяемость (полная взаимозаменяемость) подразумевает соблюдение в процессе изготовления изделия всех его нормируемых параметров в заданных пределах. В число нормируемых параметров изделий могут входить:

Геометрические (размеры, форма, расположение и шероховатость поверхностей);

Физико-механические (твердость, масса, отражательная способность и т.д.);

Экономические (себестоимость, лимитная цена, производительность и др.);

Прочие (эргономические, эстетические, экологические и др.).

Можно отказаться от взаимозаменяемости еще в процессе проектирования, заложив в конструкцию компенсатор, который обеспечивает изменение в определенных пределах (регулирование) нормируемого параметра. Всем известны регулируемые опоры (ножки) приборов и мебели, которые позволяют компенсировать не только неточности изготовления самих изделий, но и несовершенство базовых поверхностей (стола, пола).

Функциональная взаимозаменяемость – аналог полной взаимозаменяемости, которая понимается не в буквальном смысле (одинаковость параметров), а ограничивается необходимым и достаточным набором требований к работе (выполнению функций) изделия. Например, функционально взаимозаменяемыми могут оказаться карандаш, шариковая или перьевая ручка, кусок мела, пишущая машинка, компьютер если необходимо записать краткое сообщение (перечень составлен без учета экономических затрат и квалификации). Наложение экономических ограничений может резко укоротить такой список. Особенностью, которую подчеркивает термин функциональная взаимозаменяемость, является приоритет выполняемых изделием функций (карандашом, мелом, ручкой...пишут) при возможных существенных технических отличиях используемых объектов. Функционально взаимозаменяемыми при определенной постановке задачи (своевременная явка на работу) могут быть признаны такие транспортные средства, как трамвай, троллейбус, автобус, такси, велосипед или собственные ноги.

Функционально взаимозаменяемыми по содержанию зафиксированной информации для владельца компьютера могут быть файлы, записанные на жестком диске, гибких дисках, компакт-дисках (при наличии соответствующих дисководов), а также твердая копия соответствующего файла, хотя параметрические отличия между носителями информации весьма существенны. В частности, распечаткой можно воспользоваться и тогда, когда компьютер перестал работать из-за временного отсутствия электроэнергии, технической неисправности, завирусованности.

Из рассмотренных примеров вытекают две акцентированных особенности функциональной взаимозаменяемости: нацеленность на результат при практически безразличном отношении к процессу (целеобеспечивающая взаимозаменяемость), либо гарантирующая результат за счет воспроизведения функций (процессуальная взаимозаменяемость). В частности, нам бывает безразлично, откуда и как получить необходимую текстовую информацию, если обеспечена ее полнота и доступность. С другой стороны, если эта информация подлежит редактированию или другому видоизменению (частичному заимствованию, объединению с дополнительной информацией и т.д.), для нас становится весьма важными свойствами не только форма ее представления (распечатка или электронная копия на дискете), но и система ее кодирования. Электронная копия текста становится бесполезной, если у нас в компьютере нет соответствующей среды (так называемый текстовый процессор, версия которого совместима с использованной). В данном случае речь идет о процессуальной взаимозаменяемости, поскольку принципиально описанные операции можно реализовать с помощью машинописи, но без компьютера здесь происходит скатывание к неполной взаимозаменяемости из-за затруднений в использовании шрифтов, математических знаков и прочих символов. Нарисованную картину можно продолжить до возврата к индивидуальному переписыванию текстов гусиными перьями.

Детали для изделий машиностроения (в отличие от ряда радиоэлектронных, оптических и др.) держат первый экзамен на взаимозаменяемость в процессе сборки. Неточно изготовленные детали могут не собраться друг с другом или сломаться при попытке собрать их силой, поэтому для механических деталей и узлов в первую очередь рассматривается такой аспект как геометрическая взаимозаменяемость.

Используемые для нормирования массивы значений геометрических параметров, как правило, оформлены в виде стандартов. Например, можно воспользоваться стандартами параметров макрогеометрии поверхностей (размеры, форма, расположение) и микрогеометрии (шероховатость). Стандарты пригодны для нормирования геометрических параметров любых типовых деталей и поверхностей в весьма широком диапазоне.

Годность изделия по данному параметру Q оценивают сравнением действительного значения параметра Qдств с его предельными допускаемыми значениями. Определение годности называется контролем параметра, и если при этом используются средства измерений, то контроль называют измерительным. Измерительный контроль обычно осуществляется в два этапа:

Определение действительного значения параметра;

Сравнение действительного значения параметра с нормированными значениями и определение годности объекта по контролируемому параметру.

Чтобы получить действительное значение контролируемого параметра заданного физической величиной, необходимо сравнить его реальное значение с единицей соответствующей физической величины – в этом и заключается суть любого измерения. Единицы физических величин стандартизованы, они воспроизводятся с помощью стандартных эталонов, а от них передаются стандартным и нестандартизованным рабочим средствам измерений.

«Нормирование точности в машиностроении»

На курсовую работу по дисциплине «Нормирование точности в машиностроении».

Исходные данные для варианта № 23.

  • 1. Рассчитать параметры и графически изобразить посадки гладких соединений.
  • 2. Подобрать посадки подшипников по наружному и внутреннему кольцам.
  • 3. Выполнить эскиз резьбового соединения и дать расшифровку условного обозначения резьбы.
  • 4. Выполнить эскизы прямобочного шлицевого соединения и пронормировать по точности для трех методов центрирования.
  • 5. На рабочем чертеже детали указать допуски линейных размеров, необходимые отклонения формы и расположения. Назначить шероховатость поверхностей. Расшифровать обозначения.

Расчет посадок гладких соединений

Качество изделий машиностроения зависит от геометрической точности деталей, входящих в них. Точность есть понятие совокупное, и может быть оценена точностью размеров элементов детали, точностью формы поверхностей и их взаимным расположением, волнистостью и шероховатостью. Нормирование точности размеров осуществляется стандартами Единой системы допусков и посадок (ЕСДП) через систему ГОСТов (Государственных стандартов). Различают размеры: номинальный - размер, относительно которого определяются предельные размеры и который служит началом отсчета отклонений, назначается из числа стандартных по ГОСТ 6636 «Нормальные линейные размеры», предельные (наибольший и наименьший) - два предельно допустимых размера, между которыми должен находиться действительный размер годной детали; действительный - размер, установленный измерением с допускаемой погрешностью.

Принятые обозначения:

· - номинальный размер отверстия (вала);

· , - размер отверстия (вала), наибольший (максимальный), наименьший (минимальный), действительный;

· - верхнее отклонение отверстия (вала); - нижнее отклонение отверстия (вала);

· - зазор, наибольший (максимальный), наименьший (минимальный), средний соответственно;

· - натяг, наибольший (максимальный), наименьший (минимальный), средний соответственно.

При обработке каждая деталь приобретает свой действительный размер и может быть оценена как годная, если он находится в интервале предельных размеров, или забракована, если действительный размер вышел за эти границы.

Условие годности деталей может быть выражено следующем неравенством:

Разность между наибольшим и наименьшим предельными размерами называется допуском размера . Допуск всегда положительная величина.

Для отверстия;

Для вала.

Допуск является мерой точности размера. Чем меньше допуск, тем меньше допустимое колебание действительных размеров, тем выше точность детали и, как следствие, увеличивается трудоемкость обработки и ее себестоимость. Положение допуска относительно номинального размера определяется отклонениями.

Отклонением размера называется алгебраическая разность между размером (действительным, предельным) и номинальным размером. Отсюда отклонения могут быть действительными или предельными, а предельные - верхним ES (es) и нижним EI (ei):

для отверстия,

для вала,

Отклонения могут быть: положительными (со знаком плюс), если

отрицательными (со знаком минус), если

и равными нулю, если

В соединении элементов двух деталей один из них является внутренним (охватывающим), другой - наружным (охватываемым). В ЕСДП всякий наружный элемент называется валом, всякий внутренний элемент - отверстием. Термины «отверстие» и «вал» применяются и к несопрягаемым элементам.

Разность размеров отверстия и вала до сборки определяет характер соединения деталей, т.е. посадку . Зазор характеризует большую или меньшую свободу относительного перемещения деталей соединения, а натяг - степень сопротивления взаимному смещению деталей в соединении:

Конструктор назначает посадки в виде определенного сочетания полей допусков отверстия и вала, причем номинальный размер отверстия и вала является общим (одинаковым) и называется номинальным размером соединения . Существуют три типа посадок: с зазором, натягом и переходные, которые могут быть назначены в системе отверстия (СH) или в системе вала (Сh). Выбор системы диктуется конструктивными, технологическими или экономическими соображениями.

В системе отверстия посадки осуществляются между основным отверстием с основным отклонением H и валами с различными основными отклонениями (a....zc).

В системе вала посадки осуществляются между основным валом с основным отклонением h и отверстиями с различными основными отклонениями (A....ZC).

Из двух систем предпочтительной является СH, так как обработать точное отверстие дороже, чем точный вал, а для производства разных по точности отверстий в системе Сh требуется множество мерных режущих инструментов (сверл, зенкеров, разверток, протяжек и т.д.) и средств контроля.

Система вала применяется реже, в экономически обоснованных случаях: на валах, изготовленных из калиброванного холоднотянутого прутка без обработки резанием посадочных поверхностей; в соединении длинного участка вала одного номинального размера с отверстиями в нескольких деталях с различными характеристиками посадки; в соединениях стандартных деталей и узлов, выполненных в системе вала (наружное кольцо подшипника, шпонка по ширине и др.). Посадки могут быть выполнены с зазором -S, натягом- N и переходными- S(N).

Различают, которые количественно оценивают посадку и подсчитываются по формулам:

Допуск посадки с зазором

Значение иногда называют гарантированным зазором. К посадкам с зазором относятся и посадки в различных квалитетах, в которых нижняя граница поля допуска отверстия совпадает с верхней границей поля допуска вала. Для них=0.

В посадке с натягом поле допуска отверстия расположено под полем допуска вала, т.е. действительный размер вала до сборки больше действительного размера отверстия. Требуется применение силового или теплового воздействия (нагрев втулки или охлаждение вала).

Допуск посадки с натягом

где - гарантированный натяг.

Переходной посадкой называется посадка, в которой при сборке возможно получение как зазора, так и натяга. Эти посадки обеспечивают точное центрирование (совпадение осей) втулки относительно оси вала. В такой посадке поля допусков отверстия и вала частично или полностью перекрывают друг друга

Переходные посадки характеризуются наибольшими значениями натяга и зазора

Допуск переходной посадки

В переходной посадке средний натяг (зазор) рассчитывается по формуле:

Результат со знаком минус будет означать, что среднее значение для посадки соответствует Допуск посадки всегда равен сумме допусков отверстия и вала.

Исходные данные :

Номинальный диаметр: D=20 мм.

Поля допусков отверстий: E8; F7; JS6; N8; P6; S7.

Поля допусков валов: d8; f7; js6; n6; p6; r6.

Согласно ГОСТ 25347-82 «Единая система допусков и посадок. Поля допусков и рекомендуемые посадки» распишем предельные верхние (es, ES) и нижние (ei, EI) отклонения для заданных полей допуска.

1) Для поля допуска E8:

Верхнее отклонение ES = + 73 мкм

Нижнее отклонение EI = + 40 мкм

Допуск Т = 33 мкм

2) Для поля допуска F7:

Верхнее отклонение ES = + 41 мкм

Нижнее отклонение EI = + 20 мкм

Допуск Т = 21 мкм

3) Для поля допуска JS6:

Верхнее отклонение ES = + 6,5 мкм

Нижнее отклонение EI = - 6,5 мкм

Допуск Т = 13 мкм

4) Для поля допуска N8:

Верхнее отклонение ES = - 3 мкм

Нижнее отклонение EI = - 36 мкм

Допуск Т = 33 мкм

5) Для поля допуска P6:

Верхнее отклонение ES = - 18 мкм

Нижнее отклонение EI = - 31 мкм

Допуск Т = 13 мкм

6) Для поля допуска S7:

Верхнее отклонение ES = - 27 мкм

Нижнее отклонение EI = - 48 мкм

Допуск Т = 21 мкм

7) Для поля допуска d8:

Верхнее отклонение es = - 65 мкм

Нижнее отклонение ei = - 98 мкм

Допуск Т=33 мкм

8) Для поля допуска f7:

Верхнее отклонение es = - 20 мкм

Нижнее отклонение ei = - 41 мкм

Допуск Т=21 мкм

9) Для поля допуска js6:

Верхнее отклонение es = + 6,5 мкм

Нижнее отклонение ei = - 6,5 мкм

Допуск Т=13 мкм

10) Для поля допуска n6:

Верхнее отклонение es = + 28 мкм

Нижнее отклонение ei = +15 мкм

Допуск Т=13 мкм

11) Для поля допуска p6:

Верхнее отклонение es = + 35 мкм

Нижнее отклонение ei = + 22 мкм

Допуск Т=13 мкм

12) Для поля допуска r6:

Верхнее отклонение es = + 41 мкм

Нижнее отклонение ei = +28 мкм

Допуск Т=13 мкм


Рисунок 1.Схема расположения полей допусков отверстий


Рисунок 2. Схема расположения полей допусков валов

Выразим абсолютные значения отклонений размеров:

а) Через предельные размеры:

Отверстие Ш20Е8:

б) Через предельные отклонения отверстия (вала):

Образование посадок в системе отверстия

С зазором

Переходная посадка

С натягом

Изобразим графически три вида посадок.