Equation of degree x with different bases. Solving exponential power equations, algorithms and examples

1º. Exponential equations are called equations containing a variable in an exponent.

Solution exponential equations based on the property of a degree: two powers with the same base are equal if and only if their exponents are equal.

2º. Basic methods for solving exponential equations:

1) the simplest equation has a solution;

2) an equation of the form logarithmic to the base a reduce to form;

3) an equation of the form is equivalent to the equation ;

4) equation of the form is equivalent to the equation.

5) an equation of the form is reduced through substitution to an equation, and then a set of simple exponential equations is solved;

6) equation with reciprocal reciprocals by substitution they reduce to an equation, and then solve a set of equations;

7) equations homogeneous with respect to a g(x) And b g(x) given that type through replacement they are reduced to an equation, and then a set of equations is solved.

Classification of exponential equations.

1. Equations solved by going to one base.

Example 18. Solve the equation .

Solution: Let's take advantage of the fact that all bases of powers are powers of the number 5: .

2. Equations solved by passing to one exponent.

These equations are solved by transforming the original equation to the form , which is reduced to its simplest using the property of proportion.

Example 19. Solve the equation:

3. Equations solved by taking the common factor out of brackets.

If each exponent in an equation differs from the other by a certain number, then the equations are solved by putting the exponent with the smallest exponent out of brackets.

Example 20. Solve the equation.

Solution: Let’s take the degree with the smallest exponent out of brackets on the left side of the equation:



Example 21. Solve the equation

Solution: Let's group separately on the left side of the equation the terms containing powers with base 4, on the right side - with base 3, then put the powers with the smallest exponent out of brackets:

4. Equations that reduce to quadratic (or cubic) equations.

The following equations are reduced to a quadratic equation for a new variable y:

a) type of substitution, in this case;

b) the type of substitution , and .

Example 22. Solve the equation .

Solution: Let's make a change of variable and solve the quadratic equation:

.

Answer: 0; 1.

5. Equations that are homogeneous with respect to exponential functions.

An equation of the form is homogeneous equation second degree relative to unknowns a x And b x. Such equations are reduced by first dividing both sides by and then substituting them into quadratic equations.

Example 23. Solve the equation.

Solution: Divide both sides of the equation by:

Putting , we get a quadratic equation with roots .

Now the problem comes down to solving a set of equations . From the first equation we find that . The second equation has no roots, since for any value x.

Answer: -1/2.

6. Rational equations with respect to exponential functions.

Example 24. Solve the equation.

Solution: Divide the numerator and denominator of the fraction by 3 x and instead of two we get one exponential function:

7. Equations of the form .

Such equations with a set acceptable values(ODZ), determined by the condition, by taking the logarithm of both sides of the equation are reduced to an equivalent equation, which in turn are equivalent to a set of two equations or.

Example 25. Solve the equation: .

.

Didactic material.

Solve the equations:

1. ; 2. ; 3. ;

4. ; 5. ; 6. ;

9. ; 10. ; 11. ;

14. ; 15. ;

16. ; 17. ;

18. ; 19. ;

20. ; 21. ;

22. ; 23. ;

24. ; 25. .

26. Find the product of the roots of the equation .

27. Find the sum of the roots of the equation .

Find the meaning of the expression:

28. , where x 0- root of the equation ;

29. , where x 0whole root equations .

Solve the equation:

31. ; 32. .

Answers: 10; 2. -2/9; 3. 1/36; 4. 0, 0.5; 50; 6.0; 7. -2; 8.2; 9. 1, 3; 10. 8; 11.5; 12.1; 13. ¼; 14.2; 15. -2, -1; 16. -2, 1; 17.0; 18.1; 19.0; 20. -1, 0; 21. -2, 2; 22. -2, 2; 23.4; 24. -1, 2; 25. -2, -1, 3; 26. -0.3; 27.3; 28.11; 29.54; 30. -1, 0, 2, 3; 31. ; 32. .

Topic No. 8.

Exponential inequalities.

1º. An inequality containing a variable in the exponent is called exponential inequality.

2º. Solution exponential inequalities type is based on the following statements:

if , then the inequality is equivalent to ;

if , then the inequality is equivalent to .

When solving exponential inequalities, use the same techniques as when solving exponential equations.

Example 26. Solve inequality (method of moving to one base).

Solution: Since , then the given inequality can be written as: . Since , then this inequality is equivalent to the inequality .

Solving the last inequality, we get .

Example 27. Solve the inequality: ( by taking the common factor out of brackets).

Solution: Let's take out of brackets on the left side of the inequality , on the right side of the inequality and divide both sides of the inequality by (-2), changing the sign of the inequality to the opposite:

Since , then when moving to inequality of indicators, the sign of inequality again changes to the opposite. We receive. Thus, the set of all solutions to this inequality is the interval.

Example 28. Solve inequality ( by introducing a new variable).

Solution: Let . Then this inequality will take the form: or , whose solution is the interval .

From here. Since the function increases, then .

Didactic material.

Specify the set of solutions to the inequality:

1. ; 2. ; 3. ;

6. At what values x Do the points on the function graph lie below the straight line?

7. At what values x Do the points on the graph of the function lie at least as low as the straight line?

Solve the inequality:

8. ; 9. ; 10. ;

13. Specify the largest integer solution to the inequality .

14. Find the product of the largest integer and the smallest integer solutions to the inequality .

Solve the inequality:

15. ; 16. ; 17. ;

18. ; 19. ; 20. ;

21. ; 22. ; 23. ;

24. ; 25. ; 26. .

Find the domain of the function:

27. ; 28. .

29. Find the set of argument values ​​for which the values ​​of each of the functions are greater than 3:

And .

Answers: 11.3; 12.3; 13. -3; 14.1; 15. (0; 0.5); 16. ; 17. (-1; 0)U(3; 4); 18. [-2; 2]; 19. (0; +∞); 20. (0; 1); 21. (3; +∞); 22. (-∞; 0)U(0.5; +∞); 23. (0; 1); 24. (-1; 1); 25. (0; 2]; 26. (3; 3.5)U (4; +∞); 27. (-∞; 3)U(5); 28. )