Темная материя: от начальных условий до образования структуры Вселенной. Что такое темное вещество

Статьях цикла мы рассмотрели устройство видимой Вселенной. Поговорили о ее структуре и частицах, которые формируют эту структуру. О нуклонах, играющих главную роль, поскольку именно из них состоит всё видимое вещество. О фотонах, электронах, нейтрино, а также о второстепенных актерах, занятых во вселенском спектакле, что разворачивается 14 миллиардов лет, прошедших с момента Большого взрыва. Казалось бы, рассказывать больше не о чем. Но это не так. Дело в том, что видимое нами вещество — лишь малая часть того, из чего состоит наш мир. Все остальное — нечто, о чем мы почти ничего не знаем. Это загадочное «нечто» получило название темной материи.

Если бы тени предметов зависели не от величины сих последних,
а имели бы свой произвольный рост, то, может быть,
вскоре не осталось бы на всем земном шаре ни одного светлого места.

Козьма Прутков

Что будет с нашим миром?

После открытия в 1929 году Эдвардом Хабблом красного смещения в спектрах удаленных галактик стало ясно, что Вселенная расширяется. Одним из вопросов, возникших в этой связи, был следующий: как долго будет продолжаться расширение и чем оно закончится? Силы гравитационного притяжения, действующие между отдельными частями Вселенной, стремятся затормозить разбегание этих частей. К чему торможение приведет — зависит от суммарной массы Вселенной. Если она достаточно велика, силы тяготения постепенно остановят расширение и оно сменится сжатием. В результате Вселенная в конце концов опять «схлопнется» в точку, из которой когда-то начала расширяться. Если же масса меньше некоторой критической массы, то расширение будет продолжаться вечно. Обычно принято говорить не о массе, а о плотности, которая связана с массой простым соотношением, известным из школьного курса: плотность есть масса, деленная на объем.

Расчетное значение критической средней плотности Вселенной примерно 10 -29 граммов на кубический сантиметр, что соответствует в среднем пяти нуклонам на кубический метр. Следует подчеркнуть, что речь идет именно о средней плотности. Характерная концентрация нуклонов в воде, земле и в нас с вами составляет около 10 30 на кубический метр. Однако в пустоте, разделяющей скопления галактик и занимающей львиную долю объема Вселенной, плотность на десятки порядков ниже. Значение концентрации нуклонов, усредненное по всему объему Вселенной, десятки и сотни раз измеряли, тщательно подсчитывая разными методами количества звезд и газопылевых облаков. Результаты таких измерений несколько различаются, но качественный вывод неизменен: значение плотности Вселенной едва дотягивает до нескольких процентов от критической.

Поэтому вплоть до 70-х годов XX столетия общепринятым был прогноз о вечном расширении нашего мира, которое неизбежно должно привести к так называемой тепловой смерти. Тепловая смерть — это такое состояние системы, когда вещество в ней распределено равномерно и разные ее части имеют одну и ту же температуру. Как следствие, невозможна ни передача энергии от одной части системы к другой, ни перераспределение вещества. В такой системе ничего не происходит и никогда уже не сможет произойти. Наглядной аналогией служит вода, разлитая по какой-либо поверхности. Если поверхность неровная и есть хотя бы небольшие перепады высот, вода перемещается по ней с более высоких мест на более низкие и в конце концов собирается в низинах, образуя лужи. Движение прекращается. Оставалось утешаться только тем, что тепловая смерть наступит через десятки и сотни миллиардов лет. Следовательно, еще очень-очень долго об этой мрачной перспективе можно не задумываться.

Однако постепенно стало ясно, что истинная масса Вселенной намного больше видимой массы, заключенной в звездах и газопылевых облаках и, скорее всего, близка к критической. А возможно, в точности равна ей.

Свидетельства существования темной материи

Первое указание на то, что с подсчетом массы Вселенной что-то не так, появилось в середине 30-х годов XX века. Швейцарский астроном Фриц Цвикки измерил скорости, с которыми галактики скопления Волосы Вероники (а это одно из самых больших известных нам скоплений, оно включает в себя тысячи галактик) движутся вокруг общего центра. Результат получился обескураживающим: скорости галактик оказались гораздо больше, чем можно было ожидать, исходя из наблюдаемой суммарной массы скопления. Это означало, что истинная масса скопления Волосы Вероники гораздо больше видимой. Но основное количество материи, присутствующей в этой области Вселенной, остается по каким-то причинам невидимой и недоступной для прямых наблюдений, проявляя себя только гравитационно, то есть только как масса.

О наличии скрытой массы в скоплениях галактик свидетельствуют также эксперименты по так называемому гравитационному линзированию. Объяснение этого явления следует из теории относительности. В соответствии с ней, любая масса деформирует пространство и подобно линзе искажает прямолинейный ход лучей света. Искажение, которое вызывает скопление галактик, столь велико, что его легко заметить. В частности, по искажению изображения галактики, которая лежит за скоплением, можно рассчитать распределение вещества в скоплении-линзе и измерить тем самым его полную массу. И оказывается, что она всегда во много раз больше, нежели вклад видимого вещества скопления.

Через 40 лет после работ Цвикки, в 70-е годы, американский астроном Вера Рубин изучала скорости вращения вокруг галактического центра вещества, расположенного на периферии галактик. В соответствии с законами Кеплера (а они напрямую следуют из закона всемирного тяготения), при движении от центра галактики к ее периферии скорость вращения галактических объектов должна убывать обратно пропорционально квадратному корню из расстояния до центра. Измерения же показали, что для многих галактик эта скорость остается почти постоянной на весьма значительном удалении от центра. Эти результаты можно истолковать только одним способом: плотность вещества в таких галактиках не убывает при движении от центра, а остается почти неизменной. Поскольку плотность видимого вещества (содержащегося в звездах и межзвездном газе) быстро падает к периферии галактики, недостающую плотность должно обеспечивать нечто, чего мы по каким-то причинам увидеть не можем. Для количественного объяснения наблюдаемых зависимостей скорости вращения от расстояния до центра галактик требуется, чтобы этого невидимого «чего-то» было примерно в 10 раз больше, чем обычного видимого вещества. Это «нечто» получило название «темная материя» (по-английски «dark matter ») и до сих пор остается самой интригующей загадкой в астрофизике.

Еще одно важное свидетельство присутствия темной материи в нашем мире приходит из расчетов, моделирующих процесс формирования галактик, который начался примерно через 300 тысяч лет после начала Большого взрыва. Эти расчеты показывают, что силы гравитационного притяжения, которые действовали между разлетающимися осколками возникшей при взрыве материи, не могли скомпенсировать кинетической энергии разлета. Вещество просто не должно было собраться в галактики, которые мы тем не менее наблюдаем в современную эпоху. Эта проблема получила название галактического парадокса, и долгое время ее считали серьезным аргументом против теории Большого взрыва. Однако если предположить, что частицы обычного вещества в ранней Вселенной были перемешаны с частицами невидимой темной материи, то в расчетах всё становится на свои места и концы начинают сходиться с концами — формирование галактик из звезд, а затем скоплений из галактик становится возможным. При этом, как показывают вычисления, сначала в галактики скучивалось огромное количество частиц темной материи и только потом, за счет сил тяготения, на них собирались элементы обычного вещества, общая масса которого составляла лишь несколько процентов от полной массы Вселенной. Получается, что знакомый и, казалось бы, изученный до деталей видимый мир, который мы совсем недавно считали почти понятым, — только небольшая добавка к чему-то, из чего в действительности состоит Вселенная. Планеты, звезды, галактики да и мы с вами — всего лишь ширма для громадного «нечто», о котором мы не имеем ни малейшего представления.

Фотофакт

Скопление галактик (в левой нижней части участка, обведенного кружком) создает гравитационную линзу. Она искажает форму расположенных за линзой объектов — вытягивая их изображения в одном направлении. По величине и направлению вытягивания международная группа астрономов из Южной Европейской обсерватории, возглавляемая учеными из парижского Института астрофизики, построила распределение масс, которое и показано на нижнем изображении. Как видно, в скоплении сосредоточено гораздо больше массы, нежели удается разглядеть в телескоп.

Охота на темные массивные объекты — дело небыстрое, и на фотографии результат выглядит не самым эффектным образом. В 1995 году телескоп «Хаббл» заметил, что одна из звездочек Большого Магелланова облака вспыхнула ярче. Это свечение продолжалось три с лишним месяца, но потом звезда вернулась к своему естественному состоянию. А шесть лет спустя рядом со звездой появился какой-то едва светящийся объект. Это и был холодный карлик, который, проходя на расстоянии 600 световых лет от звезды, создал гравитационную линзу, усиливающую свет. Расчеты показали, что масса этого карлика составляет всего 5-10% от массы Солнца.

Наконец, общая теория относительности однозначно связывает темп расширения Вселенной со средней плотностью вещества, заключенного в ней. В предположении о том, что средняя кривизна пространства равна нулю, то есть в нем действует геометрия Эвклида, а не Лобачевского (что надежно проверено, например, в экспериментах с реликтовым излучением), эта плотность должна быть равна 10 -29 граммам на кубический сантиметр. Плотность же видимого вещества примерно в 20 раз меньше. Недостающие 95% от массы Вселенной и есть темная материя. Обратите внимание, что измеренное из скорости расширения Вселенной значение плотности равно критическому. Два значения, независимо вычисленные совершенно разными способами, совпали! Если в действительности плотность Вселенной в точности равна критической, это не может быть случайным совпадением, а представляет собой следствие какого-то фундаментального свойства нашего мира, которое еще предстоит понять и осмыслить.

Что это?

Что же мы знаем сегодня о темной материи, составляющей 95% массы Вселенной? Почти ничего. Но что-то всё же знаем. Прежде всего, нет никаких сомнений в том, что темная материя существует — об этом неопровержимо свидетельствуют факты, приведенные выше. А еще нам доподлинно известно, что темная материя существует в нескольких формах. После того как к началу XXI века в результате многолетних наблюдений в экспериментах SuperKamiokande (Япония) и SNO (Канада) было установлено, что у нейтрино масса есть, стало ясно, что от 0,3% до 3% из 95% скрытой массы заключается в давно знакомых нам нейтрино — пусть масса их чрезвычайно мала, но количество во Вселенной примерно в миллиард раз превышает количество нуклонов: в каждом кубическом сантиметре содержится в среднем 300 нейтрино. Оставшиеся 92-95% состоят из двух частей — темной материи и темной энергии. Незначительную долю темной материи составляет обычное барионное вещество, построенное из нуклонов, за остаток отвечают, по-видимому, какие-то неизвестные массивные слабовзаимодействующие частицы (так называемая холодная темная материя). Баланс энергий в современной Вселенной представлен в таблице, а рассказ о ее трех последних графах — ниже.

Барионная темная материя

Небольшая (4-5%) часть темной материи — это обычное вещество, которое не испускает или почти не испускает собственного излучения и поэтому невидимо. Существование нескольких классов таких объектов можно считать экспериментально подтвержденным. Сложнейшие эксперименты, основанные всё на том же гравитационном линзировании, привели к открытию так называемых массивных компактных галообъектов, то есть расположенных на периферии галактических дисков. Для этого потребовалось следить за миллионами удаленных галактик в течение нескольких лет. Когда темное массивное тело проходит между наблюдателем и далекой галактикой, ее яркость на короткое время уменьшается (или увеличивается, поскольку темное тело выступает в роли гравитационной линзы). В результате кропотливых поисков такие события были выявлены. Природа массивных компактных галообъектов ясна не до конца. Скорее всего, это либо остывшие звезды (коричневые карлики), либо планетоподобные объекты, не связанные со звездами и путешествующие по галактике сами по себе. Еще один представитель барионной темной материи — недавно обнаруженный в галактических скоплениях методами рентгеновской астрономии горячий газ, который не светится в видимом диапазоне.

Небарионная темная материя

В качестве главных кандидатов на небарионную темную материю выступают так называемые WIMP (сокращение от английского Weakly Interactive Massive Particles — слабовзаимодействующие массивные частицы). Особенность WIMP состоит в том, что они почти никак не проявляют себя во взаимодействии с обычным веществом. Именно поэтому они и есть самая настоящая невидимая темная материя, и именно поэтому их чрезвычайно сложно обнаружить. Масса WIMP должна быть как минимум в десятки раз больше массы протона. Поиски WIMP ведутся во многих экспериментах в течение последних 20-30 лет, но, несмотря на все усилия, они до сих пор обнаружены не были.

Одна из идей состоит в том, что если такие частицы существуют, то Земля в своем движении вместе с Солнцем по орбите вокруг центра Галактики должна лететь сквозь дождь, состоящий из WIMP. Несмотря на то что WIMP представляет собой чрезвычайно слабо взаимодействующую частицу, какая-то очень малая вероятность провзаимодействовать с обычным атомом у нее всё же есть. При этом в специальных установках — очень сложных и дорогостоящих — может быть зарегистрирован сигнал. Количество таких сигналов должно меняться в течение года, поскольку, двигаясь по орбите вокруг Солнца, Земля меняет свою скорость и направление движения относительно ветра, состоящего из WIMP. Экспериментальная группа DAMA, работающая в итальянской подземной лаборатории Гран-Сассо, сообщает о наблюдаемых годичных вариациях скорости счета сигналов. Однако другие группы пока не подтверждают этих результатов, и вопрос, по существу, остается открытым.

Другой метод поиска WIMP основан на предположении о том, что в течение миллиардов лет своего существования различные астрономические объекты (Земля, Солнце, центр нашей Галактики) должны захватывать WIMP, которые накапливаются в центре этих объектов, и, аннигилируя друг с другом, рождать поток нейтрино. Попытки детектирования избыточного нейтринного потока из центра Земли в направлении к Солнцу и к центру Галактики были предприняты на подземных и подводных нейтринных детекторах MACRO, LVD (лаборатория Гран-Сассо), NT-200 (озеро Байкал, Россия), SuperKamiokande, AMANDA (станция Скотт-Амундсен, Южный полюс), но пока не привели к положительному результату.

Эксперименты по поиску WIMP активно проводят также на ускорителях элементарных частиц. В соответствии со знаменитым уравнением Эйнштейна Е=mс 2 , энергия эквивалентна массе. Следовательно, ускорив частицу (например, протон) до очень высокой энергии и столкнув ее с другой частицей, можно ожидать рождения пар других частиц и античастиц (в том числе WIMP), суммарная масса которых равна суммарной энергии сталкивающихся частиц. Но и ускорительные эксперименты пока не привели к положительному результату.

Темная энергия

В начале прошлого века Альберт Эйнштейн, желая обеспечить космологической модели в общей теории относительности независимость от времени, ввел в уравнения теории так называемую космологическую постоянную, которую обозначил греческой буквой «лямбда» — Λ. Эта Λ была чисто формальной константой, в которой сам Эйнштейн не видел никакого физического смысла. После того как было открыто расширение Вселенной, надобность в ней отпала. Эйнштейн очень жалел о своей поспешности и называл космологическую постоянную Λ своей самой большой научной ошибкой. Однако спустя десятилетия выяснилось, что постоянная Хаббла, которая определяет темп расширения Вселенной, меняется со временем, причем ее зависимость от времени можно объяснить, подбирая величину той самой «ошибочной» эйнштейновской постоянной Λ, которая вносит вклад в скрытую плотность Вселенной. Эту часть скрытой массы и стали называть «темная энергия».

О темной энергии можно сказать еще меньше, чем о темной материи. Во-первых, она равномерно распределена по Вселенной, в отличие от обычного вещества и других форм темной материи. В галактиках и скоплениях галактик ее столько же, сколько вне их. Во-вторых, она обладает несколькими весьма странными свойствами, понять которые можно, лишь анализируя уравнения теории относительности и интерпретируя их решения. Например, темная энергия испытывает антигравитацию: за счет ее присутствия темп расширения Вселенной растет. Темная энергия как бы расталкивает саму себя, ускоряя при этом и разбегание обычной материи, собранной в галактиках. А еще темная энергия обладает отрицательным давлением, благодаря которому в веществе возникает сила, препятствующая его растяжению.

Главный кандидат на роль темной энергии — вакуум. Плотность энергии вакуума не изменяется при расширении Вселенной, что и соответствует отрицательному давлению. Еще один кандидат — гипотетическое сверхслабое поле, получившее название квинтэссенция. Надежды на прояснение природы темной энергии связывают прежде всего с новыми астрономическими наблюдениями. Продвижение в этом направлении, несомненно, принесет человечеству радикально новые знания, поскольку в любом случае темная энергия должна представлять собой совершенно необычную субстанцию, абсолютно непохожую на то, с чем имела дело физика до сих пор.

Итак, наш мир на 95% состоит из чего-то, о чем мы почти ничего не знаем. Можно по-разному относиться к такому не подлежащему никакому сомнению факту. Он может вызывать тревогу, которая всегда сопутствует встрече с чем-то неизвестным. Или огорчение, оттого что такой долгий и сложный путь построения физической теории, описывающей свойства нашего мира, привел к констатации: большая часть Вселенной скрыта от нас и неизвестна нам.

Но большинство физиков сейчас испытывают воодушевление. Опыт показывает, что все загадки, которые ставила перед человечеством природа, рано или поздно разрешались. Несомненно, разрешится и загадка темной материи. И это наверняка принесет совершенно новые знания и понятия, о которых мы пока не имеем никакого представления. И возможно, мы встретимся с новыми загадками, которые, в свою очередь, также будут разгаданы. Но это будет совсем другая история, которую читатели «Химии и жизни» смогут прочесть не раньше, чем через несколько лет. А может быть, и через несколько десятилетий.

Теоретическая конструкция в физике, называемая Стандартной моделью, описывает взаимодействия всех известных науке элементарных частиц. Но это всего 5% существующего во Вселенной вещества, остальные же 95% имеют совершенно неизвестную природу. Что представляет из себя эта гипотетическая темная материя и как ученые пытаются ее обнаружить? Об этом в рамках спецпроекта рассказывает Айк Акопян, студент МФТИ и сотрудник кафедры физики и астрофизики.

Стандартная модель элементарных частиц, окончательно подтвержденная после обнаружения бозона Хиггса, описывает фундаментальные взаимодействия (электрослабое и сильное) известных нам обычных частиц: лептонов, кварков и переносчиков взаимодействия (бозонов и глюонов). Однако оказывается, что вся эта огромная сложная теория описывает лишь около 5–6% всей материи, тогда как остальная часть в эту модель никак не вписывается. Наблюдения самых ранних моментов жизни нашей Вселенной показывают нам, что примерно 95% материи, которая окружает нас, имеет совершенно неизвестную природу. Иными словами, мы косвенно видим присутствие этой скрытой материи из-за ее гравитационного влияния, однако напрямую поймать ее пока не удавалось. Это явление скрытой массы получило кодовое название «темная материя».

Современная наука, особенно космология, работает по дедуктивному методу Шерлока Холмса

Сейчас основным кандидатом из группы WISP является аксион, возникающий в теории сильного взаимодействия и имеющий очень малую массу. Такая частица способна в больших магнитных полях превращаться в фотон-фотонную пару, что дает намеки на то, как можно попробовать ее обнаружить. В эксперименте ADMX используют большие камеры, где создается магнитное поле в 80000 гаусс (это в 100000 раз больше магнитного поля Земли). Такое поле в теории должно стимулировать распад аксиона на фотон-фотонную пару, которую и должны поймать детекторы. Несмотря на многочисленные попытки, пока обнаружить WIMP, аксионы или стерильные нейтрино не удалось.

Таким образом, мы пропутешествовали через огромное количество различных гипотез, стремящихся объяснить странное наличие скрытой массы, и, откинув с помощью наблюдений все невозможное, пришли к нескольким возможным гипотезам, с которыми уже можно работать.

Отрицательный результат в науке - это тоже результат, так как он дает ограничение на различные параметры частиц, например отсеивает диапазон возможных масс. Из года в год все новые и новые наблюдения и эксперименты в ускорителях дают новые, более строгие ограничения на массу и другие параметры частиц темной материи. Таким образом, выкидывая все невозможные варианты и сужая круг поисков, мы день ото дня становимся все ближе к понимаю, из чего же все-таки состоит 95% материи в нашей Вселенной.

Все, что мы видим вокруг себя (звезды и галактики) это не более 4-5% от всей массы во Вселенной!

Согласно космологическим теориям современности, наша Вселенная состоит всего из 5% обычной, так называемой барионной материи, которая образует все наблюдаемые объекты; 25% темной материи, регистрируемой благодаря гравитации; и темной энергии, составляющей целых 70% от общего объема.

Термины темная энергия и темная материя не вполне удачны и представляют собой дословный, но не смысловой перевод с английского.

В физическом же смысле данные термины подразумевают, только то, что эти вещества не взаимодействуют с фотонами, и их с таким же успехом можно было бы назвать невидимой или прозрачной материей и энергией.

Многие современные ученные убеждены, что исследования направленные на изучение темной энергии и материи, вероятно, помогут получить ответ на глобальный вопрос: что же ожидает нашу Вселенную в будущем?

Сгустки размером с галактику

Темная материя представляет собой субстанцию, состоящую, скорее всего, из новых, еще неизвестных в земных условиях частиц и обладающую свойствами присущими самому обыкновенному веществу. Например, она способна также как обычные вещества собираться в сгустки и участвовать в гравитационных взаимодействиях. Вот только размеры этих так называемых сгустков могут превышать целую галактику или даже скопление галактик.

Подходы и методы исследования частиц темной материи

На данный момент ученые всего мира всячески пытаются обнаружить или получить искусственно в земных условиях частицы темной материи, посредством специально разработанного сверхтехнологичного оборудования и множества различных научно-исследовательских методов, но пока все труды не увенчиваются успехом.

Один из методов связан с проведением экспериментов на ускорителях высокой энергии, широко известных как коллайдеры. Ученые, считая, что частицы темной материи тяжелее протона в 100-1000 раз, предполагают, что они должны будут зарождаться при столкновении обычных частиц, разогнанных до высоких энергий посредством коллайдера. Суть другого метода заключается в регистрации частиц темной материи, находящихся повсюду вокруг нас. Основная сложность регистрации данных частиц состоит в том, что они проявляют очень слабое взаимодействие с обычными частицами, которые по своей сути для них являются как бы прозрачными. И все же частицы темной материи очень редко, но сталкиваются с ядрами атомов, и имеется определенная надежда рано или поздно все же зарегистрировать данное явление.

Существуют и другие подходы и методы исследования частиц темной материи, а какой из них первым приведет к успеху, покажет лишь время, но в любом случае открытие этих новых частиц станет важнейшим научным достижением.

Субстанция, обладающая антигравитацией

Темная энергия представляет собой еще более необычную субстанцию, чем та же темная материя. Она не обладает способностью собираться в сгустки, в результате чего равномерно распределена абсолютно по всей Вселенной. Но самым необычным ее свойством на данный момент является антигравитация.

Природа темной материи и черных дыр

Благодаря современным астрономическим методам имеется возможность определить темп расширения Вселенной в настоящее время и смоделировать процесс его изменения ранее во времени. В результате этого получена информация о том, что в данный момент, так же как и в недалеком прошлом, наша Вселенная расширяется, при этом темп этого процесса постоянно увеличивается. Именно поэтому и появилась гипотеза об антигравитации темной энергии, так как обычное гравитационное притяжение оказывало бы замедляющее воздействие на процесс «разбегания галактик», сдерживая скорость расширения Вселенной. Данное явление не противоречит общей теории относительности, но при этом темной энергии необходимо обладать отрицательным давлением – свойством, которым не обладает ни одно из известных на данный момент веществ.

Кандидаты на роль «Темной энергии»

Масса галактик в скоплении Абель 2744 составляет менее 5 процентов от всей его массы. Этот газ настолько горячий, что светит только в рентгеновском диапазоне (красный цвет на этом изображении). Распределение невидимой темной материи (составляющей около 75 процентов от массы этого кластера) окрашено в синий цвет.

Одним из предполагаемых кандидатов на роль темной энергии является вакуум, плотность энергии которого остается неизменной в процессе расширения Вселенной и подтверждает тем самым отрицательное давление вакуума. Другим предполагаемым кандидатом является «квинтэссенция» — неизведанное ранее сверхслабое поле, якобы проходящее через всю Вселенную. Также имеются и другие возможные кандидаты, но не один из них на данный момент так и не поспособствовал получению точного ответа на вопрос: что же такое темная энергия? Но уже сейчас понятно, что темная энергия представляет собой что-то совершенно сверхъестественное, оставаясь главной загадкой фундаментальной физики XXI века.

На сегодняшний день загадка о том, откуда появилось темное вещество так и не разгадана. Есть теории, которые предполагают, что оно состоит из межзвездного газа низкой температуры. При этом вещество не может давать какое-либо излучение. Однако существуют теории, направленные против этой идеи. Они говорят о том, что газ способен разогреваться, что приводит к тому, что они становятся обычными «барионными» веществами. В пользу этой теории свидетельствует то, что масса газа в холодном состоянии не может устранить дефицит, который возникает при этом.

В теориях о темном веществе столько вопросов, что стоит разобраться в этом чуть подробнее.

Чем является темное вещество?

Вопрос о том, что же такое темное вещество, появился примерно 80 лет назад. Еще в начале 20 века. В то время астроному из Швейцарии Ф. Цвикки пришла в голову идея о том, что масса всех галактик в реальности больше, чем масса всех тех объектов, которые можно увидеть собственными газами в телескоп. Все многочисленные подсказки намекали на то, что в космосе существует нечто неведомое, что обладает внушительной массой. Этой необъяснимой субстанции было решено дать название «темное вещество».

Это невидимое вещество занимает не менее четверти от всей Вселенной. Особенность этого вещества в том, что его частицы плохо вступают во взаимодействие между собой и с обычным другим веществом. Это взаимодействие настолько слабое, что ученые не могут даже зафиксировать это. По факту есть только признаки влияния от частиц.

Изучение этого вопроса ведется самыми большими умами по всему миру, поэтому даже самые большие скептики в мире считают, что получится уловить частицы вещества. Самая желаемая цель – сделать это в условиях лаборатории. В шахтах на большой глубине ведутся работы, такие условия для экспериментов необходимы, чтобы исключить помехи, которые оказывают частицы лучей из космоса.

Есть вероятность, что много новой информации удастся получить благодаря современным ускорителям, в частности, с помощью Большого адронного коллайдера.

Частицы темного вещества имеют одну странную особенность - взаимоуничтожение. В результате таких процессов появляется гамма-излучение, античастицы и частицы (такие как электрон и позитрон). Поэтому астрофизики делают попытки найти следы гамма-излучения или античастиц. Для этого используются различные наземные и космические установки.

Доказательства существования темного вещества

Самыми первыми сомнениями в правильности расчетов массы Вселенной, как уже говорилось, поделился астроном из Швейцарии Ф. Цвикки. Для начала он решил измерить скорость галактик из скопления Волос Вероники двигавшихся вокруг центра. И результат его работ несколько озадачил его, потому что скорость движения этих галактик оказалась выше, чем он предполагал. Кроме того, он предварительно рассчитал это значение. Но результаты не совпали.

Вывод был очевиден: реальная масса скопления была гораздо больше, чем видимая. Это могло объясниться тем, что большая часть вещества, которое есть в этой части Вселенной, не может быть видима, а также за ней невозможно понаблюдать. Это вещество проявляет свои свойство только в виде массы.

Ряд гравитационных экспериментов подтвердил присутствие невидимой массы в галактических скоплениях. В теории относительности есть некоторое толкование этого явления. Если ей следовать, то каждая масса способна к деформированию пространства, кроме того, словно линза она искривляет прямой поток световых лучей. Галактическое скопление вызывает искажение, его влияние настолько сильно, что становится заметным. Сильнее всего искажается вид галактики, которая располагается непосредственно за скоплением. По этому искажению и рассчитывается то, как распределилось вещество в этом скоплении. Так и измеряют реальную массу. Она неизменно оказывается больше в несколько раз, чем масса видимой материи.

Спустя четыре десятилетия после работ первопроходца в этой сфере Ф. Цвикки этим вопросом занялась астроном из Америки В. Рубин. Она изучала скорость, с которой вращается вокруг центра галактики вещество, которое располагается по краям галактик. Если следовать законам Кеплера, касающимся законов тяготения, то существует определенная зависимость между скоростью вращения галактик и расстоянием до центра.

Но в реальности измерения показывали, что скорость вращения не менялась с увеличением расстояния до центра. Такие данные можно было объяснить только одним путем – вещество галактики имеет одинаковую плотность как в центре, так и по краям. Но видимое вещество имело гораздо большую плотность в центре и характеризовалось разреженностью по краям, а недостаток плотности мог быть объяснен только наличием какого-то вещества, которое не видно глазу.

Чтобы дать объяснение явлению, нужно, чтобы этого самого невидимого вещества в галактиках было почти в 10 раз больше, нежели того вещества, которое мы можем увидеть. Вот это неведомое вещество и получило название «темное вещество», или «темная материя». На сегодняшний день для астрофизиков это явление так и остается самой интересной загадкой.

Есть еще один довод в пользу доказательств существования темного вещества. Он следует из расчетов, которые описывают процесс того, как формировались галактики. Считается, что началось это примерно через 300.000 лет после того, как произошел Большой взрыв . Результаты расчетов говорят, что притяжение между осколками материи, которая появилась при взрыве, не могло бы компенсировать кинетическую энергию от разлета. То есть вещество не могло сконцентрироваться в галактиках, однако мы можем видеть это сегодня.

Этот необъяснимый факт называют парадоксом галактики, его приводили как довод, разрушающий теорию Большого взрыва. Но можно посмотреть на это с другой стороны. Ведь частицы самого обычного вещества могли быть смешаны с частицами темного вещества. Тогда расчеты становятся верными, а то, как сформировались галактики, в которых скопилось много темного вещества, а к ним уже присоединились частицы обычного вещества за счет гравитации. Ведь обычное вещество составляет малую долю от всей массы Вселенной.

Видимое вещество имеет плотность относительно низкую по сравнению с темным веществом, потому что оно плотнее в 20 раз. Поэтому те 95% массы Вселенной, которых не достает по расчетам ученых – это и есть темное вещество.

Однако это приводило к выводу, что весь видимый мир, который был изучен вдоль и поперек, такой привычный и понятный, лишь небольшое приложение к тому, из чего реально складывается .

Все галактики, планеты и звезды – это просто маленький кусочек того, о чем мы не имеем понятия. Это то, что выставлено напоказ, а реальное от нас скрыто.

Введение

Имеются веские аргументы в пользу того, что значительная часть вещества во Вселенной ничего не излучает и не поглощает и поэтому невидима. О наличии такой невидимой материи можно узнать по ее гравитационному взаимодействию с излучающей материей. Исследование скоплений галактик и галактических ротационных кривых свидетельствует о существовании этой так называемой темной материи. Итак, по определению темная материя − это материя, которая не взаимодействует с электромагнитным излучением, то есть не испускает его и не поглощает.
Первое детектирование невидимой материи датируется прошлым столетием. В 1844 г. Фридрих Бессель в письме к Карлу Гауссу писал, что необъясненная неравномерность в движении Сириуса может быть результатом его гравитационного взаимодействия с некоторым соседним телом, причем последнее в этом случае должно иметь достаточно большую массу. Во времена Бесселя такой темный компаньон Сириуса был невидимым, его оптически обнаружили лишь в 1862 г. Им оказался белый карлик, получивший название Сириус-Б, в то время как сам Сириус был назван Сириус-А.
Плотность вещества во Вселенной ρ можно оценить из наблюдений движения отдельных галактик. Обычно ρ приводится в единицах так называемой критической плотности ρ с:

В этой формуле G − гравитационная постоянная, H − постоянная Хаббла, которая известна с небольшой точностью (0.4 < H < 1), к тому же, вероятно, зависит от времени:

V = HR − формула Хаббла для скорости расширения Вселенной,
H = 100 h км∙c -1 ∙Мпс -1 .

При ρ > ρ с Вселенная замкнута, т.е. гравитационное взаимодействие достаточно сильно для того, чтобы расширение Вселенной сменилось сжатием.
Таким образом, критическая плотность дается выражением:

ρ с = 2∙1 –29 h 2 г∙см -3 .

Космологическая плотность Ω = ρ/ρ с, определенная на основе динамики галактических кластеров и суперкластеров, равна 0.1 < Ω < 0.3.
Из наблюдения характера удаления крупномасштабных областей Вселенной с помощью инфракрасного астрономического спутника IRAS получено, что 0.25 < Ω < 2.
С другой стороны, оценка барионной плотности Ω b по светимости галактик дает значительно меньшую величину: Ω b < 0.02.
Это рассогласование обычно рассматривается как указание на существование невидимой материи.
С недавних пор проблеме поиска темной материи стали уделять очень большое внимание. Если принять во внимание все формы барионной материи, такие, как межпланетная пыль, коричневые и белые карлики, нейтронные звезды и черные дыры, то оказывается, что для объяснения всех наблюдаемых явлений необходима значительная доля небарионной материи. Это утверждение остается в силе даже после учета современных данных о так называемых MACHO-объектах (MA ssive C ompact H alo O bjects − массивные компактные галактические объекты), обнаруженных с помощью эффекта гравитационных линз.

. Свидетельства существования темной материи

2.1 . Галактические ротационные кривые

В случае спиральных галактик скорость вращения отдельных звезд вокруг центра галактики определяется из условия постоянства орбит. Приравнивая центробежную и гравитационную силы:

для скорости вращения имеем:

где M r − вся масса материи внутри сферы радиуса r. В случае идеальной сферической или цилиндрической симметрии влияние массы, расположенной вне этой сферы, взаимно компенсируется. В первом приближении центральную область галактики можно считать сферической, т. е.

где ρ − средняя плотность.
Во внутренней части галактики ожидается линейный рост скорости вращения с увеличением расстояния от центра. Во внешней области галактики масса M r практически постоянна и зависимость скорости от расстояния отвечает случаю с точечной массой в центре галактики:

Ротационная скорость v(r) определяется, например, путем измерения допплеровского сдвига в спектре излучения Hе-II областей вокруг O-звезд. Поведение экспериментально измеренных ротационных кривых спиральных галактик не соответствует уменьшению v(r) с ростом радиуса. Исследование 21-см линии (переход сверхтонкой структуры в атоме водорода), излучаемой межзвездным веществом, привело к аналогичному результату. Постоянство v(r) при больших значениях радиуса означает, что масса M r также увеличивается с ростом радиуса: M r ~ r. Это указывает на присутствие невидимой материи. Звезды движутся быстрее, чем можно было ожидать на основе видимого количества материи.
На основе этого наблюдения было постулировано существование сферического гало темной материи, окружающего галактику и ответственного за неубывающее поведение ротационных кривых. Кроме того, сферическое гало могло бы способствовать стабильности формы диска галактик и подтверждать гипотезу об образовании галактик из сферической протогалактики. Модельные вычисления, выполненные для Млечного Пути, с помощью которых удалось воспроизвести ротационные кривые, приняв во внимание наличие гало, указывают на то, что значительная часть массы должна находиться в этом гало. Свидетельства в пользу существования сферических гало дают также глобулярные кластеры − сферические скопления звезд, которые представляют собой наиболее древние объекты в галактике и которые распределены сферически.
Однако недавнее исследование прозрачности галактик бросило тень сомнения на эту картину. Путем рассмотрения степени затемненности спиральных галактик как функции угла наклонения можно сделать заключение о прозрачности таких объектов. Если бы галактика была совершенно прозрачна, то полная ее светимость не зависела бы от угла, под которым эта галактика наблюдается, так как все звезды были бы видимы одинаково хорошо (в пренебрежении размерами звезд). С другой стороны, постоянная поверхностная яркость означает, что галактика не прозрачна. В этом случае наблюдатель видит всегда только внешние звезды, т.е. всегда одно и то же их число на единицу поверхности независимо от угла зрения. Экспериментально было установлено, что поверхностная яркость остается в среднем постоянной, что могло бы свидетельствовать о практически полной непрозрачности спиральных галактик. В таком случае использование оптических методов для определения массовой плотности Вселенной не совсем точно. Более тщательный анализ результатов измерений привел к заключению о молекулярных облаках как абсорбирующем материале (их диаметр примерно 50 пс и температура около 20 К). Согласно закону смещения Вина, такие облака должны излучать в субмиллиметровой области. Этот результат мог бы дать объяснение поведения ротационных кривых без предположения о дополнительной экзотической темной материи.
Свидетельства в пользу существования темной материи были найдены и в эллиптических галактиках. Газообразные гало с температурами около 10 7 К были зарегистрированы по их поглощению рентгеновских лучей. Скорости этих газовых молекул больше, чем скорость расширения:

v r = (2GM/r) 1/2 ,

если предполагать, что их массы соответствуют светимости. Для эллиптических галактик отношение массы к светимости примерно на два порядка больше, чем у Солнца, которое является характерным примером средней звезды. Такое большое значение обычно связывают с существованием темной материи.

2.2. Динамика скоплений галактик

Динамика скоплений галактик свидетельствует в пользу существования темной материи. Когда движение системы, потенциальная энергия которой является однородной функцией координат, происходит в ограниченной пространственной области, то усредненные по времени значения кинетической и потенциальной энергии связаны друг с другом теоремой о вириале. Она может быть использована для оценки плотности вещества в скоплениях большого числа галактик.
Если потенциальная энергия U − однородная функция радиус-векторовr i степени k, то U и кинетическая энергия T связаны как 2T = kU . Так как T + U = Е = Е, то отсюда следует, что

U = 2Е/(k + 2), T = kE/(k + 2),

где E − полная энергия. Для гравитационного взаимодействия (U ~ 1/r) k = -1, поэтому 2T = -U . Средняя кинетическая энергия скопления N галактик дается выражением:

T = N/2.

Эти N галактик могут попарно взаимодействовать друг с другом. Поэтому имеется N(N–1)/2 независимых пар галактик, полная средняя потенциальная энергия которых имеет вид

U = GN(N − 1)m 2 /2r.

При Nm = M и (N − 1) ≈ N для динамической массы получается M ≈ 2/G.
Измерения среднего расстояния и средней скорости дают значение динамической массы, которое примерно на два порядка превышает массу, полученную на основе анализа светимости галактик. Данный факт может интерпретироваться как еще одно свидетельство в пользу существования темной материи.
Этот аргумент тоже имеет свои слабые места. Вириальное уравнение справедливо только при усреднении по длительному временному периоду, когда замкнутые системы находятся в состоянии равновесия. Однако измерения галактических скоплений представляют собой нечто наподобие мгновенных фотоснимков. Более того, скопления галактик не являются замкнутыми системами, они связаны друг с другом. И наконец, не ясно, достигли они состояния равновесия или нет.

2.3. Космологические свидетельства

Выше было дано определение критической плотности ρ с. Формально его можно получить на основе ньютоновской динамики путем вычисления критической скорости расширения сферической галактики:

Соотношение для ρ с следует из выражения для Е, если принять, что H = r"/r = v/r.
Описание динамики Вселенной основывается на полевых уравнениях Эйнштейна (Общая Теория Относительности − ОТО). Они несколько упрощаются в предположении об однородности и изотропности пространства. В метрике Робертсона-Уолкера инфинитезимальный линейный элемент дается выражением:

где r, θ, φ − сферические координаты точки. Степени свободы этой метрики включены в параметр k и масштабный множитель R. Величина k принимает только дискретные значения (если не брать в рассмотрение фрактальную геометрию) и не зависит от времени. Значение k представляет собой характеристику модели Вселенной (k = -1 − гиперболическая метрика (открытая Вселенная), k = 0 − евклидова метрика (плоская Вселенная), k = +1 − сферическая метрика (замкнутая Вселенная)).
Динамика Вселенной полностью задается масштабной функцией R(t) (расстояние между двумя соседними точками пространства с координатами r, θ, φ меняется со временем как R(t)). В случае сферической метрики R(t) представляет собой радиус Вселенной. Эта масштабная функция удовлетворяет уравнениям Эйнштейна-Фридмана-Леметра:

где p(t) − полное давление, а Λ − космологическая постоянная, которая в рамках современных квантово-полевых теорий интерпретируется как плотность энергии вакуума. Далее предположим, что Λ = 0, как это часто делается для объяснения опытных фактов без введения темной материи. Коэффициент R 0 "/R 0 определяет постоянную Хаббла H 0 , где индексом "0" отмечены современные значения соответствующих величин. Из вышеприведенных формул следует, что для параметра кривизны k = 0 современная критическая плотность Вселенной дается выражением, чья величина представляет собой границу между открытой и замкнутой Вселенной (это значение как бы отделяет сценарий, в котором Вселенная вечно расширяется, от того сценария, когда Вселенную ожидает коллапс в конце фазы временного расширения):

Часто используется параметр плотности

где q 0 − параметр торможения: q(t) = –R(t)R""(t)/(R"(t)) 2 . Тем самым возможны три случая:
Ω 0 < 1 − открытая Вселенная,
Ω 0 = 1 − плоская Вселенная,
Ω 0 > 1 − замкнутая Вселенная.
Измерения параметра плотности дали оценку: Ω 0 ≈ 0.2, на основании которой следовало ожидать открытый характер Вселенной. Однако ряд теоретических представлений трудно согласовать с открытостью Вселенной, например, так называемую проблему "плоскостности" и генезис галактик.

Проблема плоскостности

Как видно, плотность Вселенной очень близка к критической. Из уравнений Эйнштейна-Фридмана-Леметра следует (при Λ = 0), что

Поскольку плотность ρ(t) пропорциональна 1/R(t) 3 , то с помощью выражения для Ω 0 (k не равно 0) имеем:

Таким образом, значение Ω ≈ 1 очень нестабильно. Любое отклонение от совершенно плоского случая сильно увеличивается по мере расширения Вселенной. Это означает, что во время первоначального ядерного синтеза Вселенная должна была быть значительно более плоской, чем теперь.
Одно из возможных решений этой проблемы дается в инфляционных моделях. Предполагается, что расширение ранней Вселенной (в интервале между 10 -34 с и 10 -31 с после Большого Взрыва) происходило экспоненциально в фазе инфляции. В этих моделях параметр плотности обычно не зависит от времени (Ω = 1). Однако имеются теоретические указания на то, что значение параметра плотности в интервале 0.01< Ω 0 < 2 также согласуется с моделью инфляции.

Генезис галактик

Для генезиса галактик необходимы неоднородности плотности. Галактики должны были возникать в таких пространственных областях, где плотности были больше, чем вокруг, так что в результате гравитационного взаимодействия эти области успевали кластеризоваться быстрее, чем наступало их разрежение за счет всеобщего расширения.
Однако такого типа аккумулирование материи могло начаться только после формирования атомов из ядер и электронов, т.е. примерно через 150 000 лет после Большого Взрыва при температурах около 3000 К (так как на ранних этапах вещество и излучение находились в состоянии динамического равновесия: любой образующийся сгусток материи тут же разрушался под воздействием излучения и в то же время излучение не могло вырваться за пределы материи). Заметные флуктуации плотности обычной материи в то время были исключены вплоть до очень низкого уровня изотропностью фонового излучения. После стадии формирования нейтральных атомов излучение перестает находиться в состоянии термического равновесия с материей, тем самым возникающие после этого флуктуации плотности материи не находят более своего отражения в характере излучения.
Но если провести вычисления эволюции во времени процесса сжатия материи, который как раз тогда и начался, то оказывается, что прошедшего с тех пор времени недостаточно для того, чтобы могли успеть образоваться такие крупные структуры, как галактики или их скопления. По-видимому, необходимо потребовать существования массивных частиц, вышедших из состояния термического равновесия на более ранней стадии, так чтобы эти частицы имели возможность проявить себя как некоторые зародыши для конденсации вокруг них обычной материи. Такими кандидатами могут быть так называемые WIMP-частицы. При этом необходимо учитывать требование изотропности фонового космического излучения. Небольшая анизотропия (10 -4) в реликтовом излучении (температура около 2.7 К) была обнаружена лишь недавно с помощью спутника COBE.

III . Кандидаты на роль темной материи

3.1 . Барионная темная материя

Наиболее очевидным кандидатом на роль темной материи может быть обычная барионная материя, которая не излучает и имеет соответствующую распространенность. Одну из возможностей мог бы реализовать межзвездный или межгалактический газ. Однако в этом случае должны возникать характерные линии излучения или поглощения, которые не обнаружены.
Другим кандидатом могут быть коричневые карлики - космические тела с массами значительно меньше, чем масса Солнца (M < 0.08M солнца). Гравитационного давления внутри этих объектов оказывается недостаточно для создания температур, при которых начинает процесс слияния протонов в гелий. Из-за отсутствия ядерного синтеза излучение коричневых карликов очень слабо, если не считать излучения тех из них, которые находятся на ранней стадии своего развития. Планеты также могли бы входить в эту группу. Однако из-за отсутствия знания о происхождении звезд и планет, а также из-за ограниченности фотометрической детектируемости небесных тел расстоянием в несколько световых лет особенно сложно оценить число таких объектов.
Очень компактные объекты, находящиеся на конечных стадиях развития звезд (белые карлики, нейтронные звезды и черные дыры), также могли бы входить в состав темной материи. Поскольку в течение своего времени жизни практически каждая звезда достигает одной из этих трех конечных стадий, то значительная часть массы более ранних и более тяжелых звезд должна присутствовать в неизлучающей форме в виде белых карликов, нейтронных звезд или черных дыр. Часть этого вещества возвращается в межзвездное пространство путем вспышек сверхновых или другими путями и принимает участие в образовании новых звезд. При этом не следует принимать во внимание звезды с массами M < 0.9M солнца, так как их время жизни больше, чем возраст Вселенной, и они еще не достигли конечных стадий в своем развитии.
Верхние границы на возможную плотность барионной материи во Вселенной можно получить из данных о первоначальном ядерном синтезе, который начался примерно через 3 минуты после Большого Взрыва. Особенно важны измерения современной распространенности дейтерия −
(D/H) 0 ≈ 10 -5 , так как во время первоначального ядерного синтеза шло образование главным образом именно дейтерия. Хотя дейтерий также появился позднее в качестве промежуточного продукта реакций слияния ядер, тем не менее полное количество дейтерия за счет этого сильно не возросло. Анализ процессов, происходящих на стадии раннего ядерного синтеза, дает верхнюю границу − Ω o,b < 0.1–0.2 для плотности возможной барионной материи во Вселенной. При этом учтена вся материя, которая была сформирована во время ядерного синтеза в ранней Вселенной. Данное значение хорошо согласуется с оценками, полученными из рассмотрения характера вращения галактик.
С другой стороны, сейчас совершенно ясно, что барионная материя сама по себе не в состоянии удовлетворить требованию Ω = 1, которое следует из инфляционных моделей. Кроме того, остается неразрешенной проблема образования галактик. Все это приводит к необходимости существования небарионной темной материи, особенно в том случае, когда требуется удовлетворение условия Ω = 1 при нулевой космологической постоянной.

3.2. Небарионная темная материя

Теоретические модели предоставляют большой выбор возможных кандидатов на роль небарионной темной материи, в том числе: легкие и тяжелые нейтрино, суперсимметричные частицы SUSY-моделей, аксионы, космионы, магнитные монополи, частицы Хиггса − они сведены в таблице. Также в таблице присутствуют теории, объясняющие опытные данные без введения темной материи (зависящая от времени гравитационная постоянная в неньютоновой гравитации и космологическая постоянная). Обозначения: DM − темная материя, GUT − теория Великого Объединения, SUSY − суперсимметричные теории, SUGRA − супергравитация, QCD − квантовая хромодинамика, QED − квантовая электродинамика, ОТО − общая теория относительности. Понятие WIMP (слабовзаимодействующие массивные частицы) используется для обозначения частиц с массой больше нескольких ГэВ/c 2 , которые принимают участие только в слабом взаимодействии. С учетом новых измерений реликтового излучения со спутника COBE и красного смещения с помощью спутника IRAS недавно было заново проведено исследование распределения галактик на больших расстояниях и образования структур большого масштаба в нашей галактике. На основе анализа различных моделей формирования структур было сделано заключение, что возможна только одна удовлетворительная модель Вселенной с Ω = 1, в которой темная материя имеет смешанный характер: 70% существует в форме холодной темной материи и 30% в форме горячей темной материи, причем последняя состоит из двух безмассовых нейтрино и одного нейтрино с массой 7.2 ± 2 эВ. Это означает возрождение ранее отброшенной модели смешанной темной материи.

Легкие нейтрино

В отличие от всех остальных кандидатов на роль темной материи, нейтрино обладают явным преимуществом: известно, что они существуют. Примерно известна их распространенность во Вселенной. Для того, чтобы нейтрино могли быть кандидатами на роль темной материи, они, несомненно, должны обладать массой. Для достижения критической плотности Вселенной массы нейтрино должны лежать в области нескольких ГэВ/c 2 или в области от 10 до 100 эВ/c 2 .
В качестве таких кандидатов возможны и тяжелые нейтрино, так как космологически значимое произведение m ν exp(-m ν /kT f) становится малым и для больших масс. Здесь T f − температура, при которой тяжелые нейтрино перестают находиться в состоянии термического равновесия. Этот больцмановский множитель дает распространенность нейтрино с массой m ν по отношению к распространенности безмассовых нейтрино.
Для каждого типа нейтрино во Вселенной нейтринная плотность связана с фотонной плотностью соотношением n ν = (3/11)n γ . Строго говоря, это выражение справедливо только для легких майорановских нейтрино (для дираковских нейтрино при определенных обстоятельствах необходимо ввести еще один статистический множитель, равный двум). Плотность фотонов может быть определена на основе фонового реликтового 3 К излучения и достигает n γ ≈ 400 см -3 .
Частица Масса Теория Проявление
G(R) - Неньютонова гравитация Прозрачная DM на больших масштабах
Λ (косм. постоянная) - ОТО Ω=1 без DM
Аксион, майорон, голдстоун. бозон 10 -5 эВ QCD; нарушение сим. Печеи-Куина Холодная DM
Обычное нейтрино 10-100 эВ GUT Горячая DM
Легкое хиггсино, фотино, гравитино, аксино, снейтрино 10-100 эВ SUSY/DM
Парафотон 20-400 эВ Модифиц. QED Горячая, теплая DM
Правые нейтрино 500 эВ Суперслабое взаимодействие Теплая DM
Гравитино и т.д. 500 эВ SUSY/SUGRA Теплая DM
Фотино, гравитино, аксион, зеркал. частицы, нейтрино Симпсона кэВ SUSY/SUGRA Теплая/холодная DM
Фотино, снейтрино, хиггсино, глюино, тяжелое нейтрино МэВ SUSY/SUGRA Холодная DM
Теневая материя МэВ SUSY/SUGRA Горячая/холодная
(как барионы) DM
Преон 20-200 ТэВ Составные модели Холодная DM
Монополи 10 16 ГэВ GUT Холодная DM
Пиргон, максимон, полюс Перри, newtorite, Шварцшильд 10 19 ГэВ Теории высших размерностей Холодная DM
Суперструны 10 19 ГэВ SUSY/SUGRA Холодная DM
Кварковые "самородки" 10 15 г QCD, GUT Холодная DM
Косм. струны, доменные стенки (10 8 -10 10)M солнца GUT Формирование галактик, могут не давать большого вклада в
Космион 4-11 ГэВ Проблема нейтрино Формирование потока нейтрино на Солнце
Черные дыры 10 15 -10 30 г ОТО Холодная DM

Primak J.R., Seckel D., Sadoulet B., 1988, Ann. Rev. Nucl. Part.Sci., 38, 751 Оказывается, что массовая плотность нейтрино получается близкой к критической, если выполняется условие

где g ν − статистический фактор, учитывающий число различных состояний спиральности для каждого типа нейтрино. Для майорановских нейтрино этот множитель равен 2. Для дираковских нейтрино он должен быть равен 4. Однако обычно считается, что правые компоненты покинули состояние термического равновесия значительно раньше, поэтому можно также считать, что g ν = 2 и для дираковского случая.
Поскольку нейтринная плотность имеет тот же порядок величины, что и плотность фотонов, то существует примерно в 10 9 раз больше нейтрино, чем барионов, таким образом, даже малая масса нейтрино могла бы определять динамику Вселенной. Для достижения Ω = ρ ν /ρ с = 1 необходимы нейтринные массы m ν c 2 ≈ 15–65 эВ/N ν , где N ν − число типов легких нейтрино. Экспериментальные верхние границы для масс трех известных типов нейтрино таковы: m(ν е) < 7.2 эВ/c 2 , m(ν μ) < 250 кэВ/c 2 , m(ν τ) < 31 МэВ/c 2 . Таким образом, электронное нейтрино практически исключается в качестве кандидата на доминирующую фракцию темной материи. Экспериментальные данные для остальных двух типов нейтрино не столь критичны, так что мюонные и тау-нейтрино остаются среди возможных кандидатов. Нейтрино вышли из состояния термического равновесия примерно через 1 с после Большого Взрыва при температуре 10 10 К (что отвечает энергии 1 МэВ). В это время они обладают релятивистскими энергиями и тем самым считаются частицами горячей темной материи. Нейтрино также могут давать вклад в процесс формирования галактик. В расширяющейся Вселенной, в которой доминируют частицы массой m i , согласно критерию Джинса, та масса, которая может коллапсировать за счет гравитационных сил, равна

Во Вселенной, где доминируют нейтрино, необходимая степень сжатия могла установиться на относительно поздней стадии, первые структуры соответствовали бы суперскоплениям галактик. Таким образом, скопления галактик и галактики могли бы развиваться путем фрагментации этих первичных структур (top-down модель). Однако при таком подходе возникают проблемы при рассмотрении образования очень малых структур, таких как карликовые галактики. Для объяснения образования довольно массивных сжатий также требуется принять во внимание принцип Паули для фермионов.

Тяжелые нейтрино

Согласно данным LEP и SLAC, относящимся к прецизионному измерению ширины распада Z 0 - бозона, существует только три типа легких нейтрино и исключается существование тяжелых нейтрино вплоть до значений масс 45 ГэВ/c 2 .
Когда нейтрино с такими большими массами покинули состояние термического равновесия, они уже имели нерелятивистские скорости, поэтому их называют частицами холодной темной материи. Присутствие тяжелых нейтрино могло привести к раннему гравитационному сжатию материи. В этом случае сначала образовались бы более мелкие структуры. Скопления и суперскопления галактик сформировались бы позднее путем аккумулирования отдельных групп галактик (bottom-up модель).

Аксионы

Аксионы − это гипотетические частицы, которые возникают в связи с проблемой CP-нарушения в сильном взаимодействии (θ-проблема). Существование такой псевдоскалярной частицы обусловлено нарушением киральной симметрии Печеи-Куина. Масса аксиона дается выражением

Взаимодействие с фермионами и калибровочными бозонами описывается соответственно следующими константами связи:

Постоянная распада аксиона f a определяется вакуумным средним поля Хиггса. Так как f a − свободная константа, которая может принимать любые значения между электрослабым и планковским масштабами, то возможные значения масс аксиона варьируются на 18 порядков. Различаются DFSZ‑аксионы, непосредственно взаимодействующие с электронами, и так называемые адронные аксионы, которые взаимодействуют с электронами только в первом порядке теории возмущений. Обычно считается, что аксионы составляют холодную темную материю. Для того, чтобы их плотность не превышала критическую, необходимо иметь f a < 10 12 ГэВ. Стандартный аксион Печеи-Куина с f a ≈ 250 ГэВ уже исключен экспериментально, другие варианты с меньшими массами и, соответственно, большими параметрами связи также значительно ограничены разнообразными данными, в первую очередь астрофизическими.

Суперсимметричные частицы

Большинство суперсимметричных теорий содержит одну стабильную частицу, которая является новым кандидатом на роль темной материи. Существование стабильной суперсимметричной частицы следует из сохранения мультипликативного квантового числа − так называемой R-четности, которое принимает значение +1 для обычных частиц, и –1 для их суперпартнеров. Это есть закон сохранения R-четности . Согласно этому закону сохранения SUSY‑частицы могут образовываться только парами. SUSY-частицы могут распадаться только на нечетное число SUSY-частиц. Следовательно, легчайшая суперсимметричная частица должна быть стабильной.
Имеется возможность нарушить закон сохранения R-четности. Квантовое число R связано с барионным числом B и лептонным числом L соотношением R = (–1) 3B+L+2S , где S-спин частицы. Другими словами, нарушение B и/или L может приводить к несохранению R-четности. Однако существуют очень жесткие границы для возможности нарушения R-четности.
Предполагается, что легчайшая суперсимметричная частица (LSP) не принимает участия ни в электромагнитном, но в сильном взаимодействии. В противном случае она соединялась бы с обычной материей и проявлялась бы в настоящее время в качестве необычной тяжелой частицы. Тогда распространенность такой LSP, нормированная на распространенность протона, получилась бы равной 10 -10 для сильного взаимодействия, и 10 -6 для электромагнитного. Эти значения противоречат экспериментальным верхним границам: n(LSP)/n(p) < 10 -15 - 10 -30 . Приведенные оценки зависят от масс и в данном случае отвечают области масс 1 ГэВ < m LSP c 2 < 10 7 ГэВ. Поэтому был сделан вывод о том, что легчайшая SUSY-частица, помимо гравитационного взаимодействия, принимает участие только в слабом.
Среди возможных кандидатов на роль нейтральной легчайшей суперсимметричной частицы имеются фотино (S = 1/2) и зино (S = 1/2), которые обычно называют гейджино, а также хиггсино (S = 1/2), снейтрино (S = 0) и гравитино (S = 3/2). В большинстве теорий LSP-частица представляет собой линейную комбинацию упомянутых выше SUSY-частиц со спином 1/2. Масса этого так называемого нейтралино, скорее всего, должна быть больше 10 ГэВ/c 2 . Рассмотрение SUSY-частиц в качестве темной материи представляет особый интерес, так как они появились совершенно в другом контексте и не были специально введены для разрешения проблемы (небарионной) темной материи. Космионы Космионы первоначально были введены для решения проблемы солнечных нейтрино. Благодаря своей большой скорости эти частицы проходят через поверхность звезды практически беспрепятственно. В центральной области звезды они сталкиваются с ядрами. Если потеря энергии достаточно велика, то они не могут опять покинуть эту звезду и накапливаются в ней с течением времени. Внутри Солнца захваченные космионы влияют на характер передачи энергии и тем самым дают вклад в охлаждение центральной области Солнца. Это привело бы к меньшей вероятности образования нейтрино от 8 В и объяснило бы, почему поток нейтрино, измеряемый на Земле, оказывается меньше, чем ожидаемый. Для разрешения этой нейтринной проблемы масса космиона должна лежать в интервале от 4 до 11 ГэВ/c 2 и сечение реакции взаимодействия космионов с материей должно иметь значение 10 -36 см 2 . Однако экспериментальные данные, по-видимому, исключают такое решение проблемы солнечных нейтрино.

Топологические дефекты пространства-времени

Кроме вышеуказанных частиц, топологические дефекты также могут вносить свой вклад в темную материю. Предполагается, что в ранней Вселенной при t ≈ 10 –36 c, E ≈ 10 15 ГэВ, Т ≈10 28 К произошло нарушение GUT‑симметрии, которое привело к разъединению взаимодействий, описываемых группами SU(3) и SU(2)×U(1). Хиггсовское поле размерностью 24 приобрело определенную выстроенность, причем ориентация фазовых углов спонтанного нарушения симметрии осталась произвольной. Как следствие этого фазового перехода должны были образоваться пространственные области с различной ориентацией. Эти области со временем увеличивались и в конце концов вошли в соприкосновение друг с другом.
Согласно современным представлениям топологически стабильные точки дефектов образовались на граничных поверхностях, где произошла встреча областей с различной ориентацией. Они могли иметь размерность от нуля до трех и состоять из вакуума ненарушенной симметрии. После нарушения симметрии этот первоначальный вакуум имеет очень большую энергию и плотность вещества.
Наиболее важными являются точечноподобные дефекты. Они должны нести изолированный магнитный заряд, т.е. быть магнитными монополями. Их масса связана с температурой фазового перехода и составляет около 10 16 ГэВ/c 2 . До сих пор, несмотря на интенсивные поиски, существование таких объектов не зарегистрировано.
Аналогично магнитным монополям могут образовываться и линейные дефекты − космические струны. Эти нитеобразные объекты обладают характерной линейной массовой плотностью порядка 10 22 г∙см –1 и могут быть как замкнутыми, так и незамкнутыми. За счет гравитационного притяжения они могли служить зародышами для конденсации вещества, в результате которой образовались галактики.
Большие значения масс позволили бы детектировать такие струны посредством эффекта гравитационных линз. Струны искривляли бы окружающее пространство таким образом, что создавалось бы двойное изображение находящихся за ними объектов. Свет от очень далеких галактик мог бы отклоняться этой струной согласно законам общей теории гравитации. Наблюдатель на Земле увидел бы два смежных зеркальных изображения галактик с идентичным спектральным составом. Этот эффект гравитационных линз уже был обнаружен для удаленных квазаров, когда галактика, находящаяся между квазаром и Землей, служила в качестве гравитационной линзы.
Обсуждается также возможность наличия сверхпроводящего состояния в космических струнах. Электрически заряженные частицы, такие, как электроны, в симметричном вакууме струны были бы безмассовыми, потому что они приобретают свои массы только в результате нарушения симметрии благодаря механизму Хиггса. Таким образом, пары частица-античастица, двигающиеся со скоростью света, могут создаваться здесь при очень малых затратах энергии. В результате возникает сверхпроводящий ток. Сверхпроводящие струны могли бы переходить в возбужденное состояние посредством взаимодействия с заряженными частицами, снятие этого возбуждения осуществлялось бы путем испускания радиоволн.
Рассматриваются также дефекты более высокой размерности, включая двухмерные "доменные стенки" и, в частности, трехмерные дефекты или "текстуры". Другие экзотические кандидаты
  1. Теневая материя. В предположении, что струны - это одномерные протяженные объекты, в суперструнных теориях предпринимаются попытки повторить успех суперсимметричных моделей в устранении расходимостей также в гравитации и проникнуть в энергетические области за массой Планка. С математической точки зрения свободные от аномалий суперструнные теории могут быть получены только для калибровочных групп SO(32) и E 8 *E 8" . Последняя расщепляется на два сектора, один из которых описывает обычную материю, тогда как другой соответствует теневой материи (E 8"). Эти два сектора могут взаимодействовать друг с другом только гравитационно.
  2. "Кварковые самородки" были предложены в 1984 г. Это стабильные макроскопические объекты из кварковой материи, состоящие из u-, d- и s‑кварков. Плотности этих объектов лежат в области ядерной плотности 10 15 г/см 3 , а массы могут составлять от нескольких ГэВ/c 2 до значений масс нейтронных звезд. Они образуются при гипотетическом фазовом QCD-переходе, однако обычно считаются очень маловероятными.

3.3 . Модифицированные теории (космологическая постоянная, MOND‑теория, зависящая от времени гравитационная постоянная)

Первоначально космологическая постоянная Λ была введена Эйнштейном в полевые уравнения ОТО для обеспечения, согласно воззрениям того времени, стационарности Вселенной. Однако после открытия Хабблом в конце 20-х годов нашего столетия расширения Вселенной она оказалась излишней. Посему стали считать, что Λ = 0. Однако в рамках современных теорий поля эта космологическая постоянная интерпретируется как плотность энергии вакуума ρ v . Имеет место следующее уравнение:

Случай Λ = 0 отвечает предположению, что вакуум не дает вклада в плотность энергии. Эта картина отвечает идеям классической физики. В квантовой же теории поля вакуум содержит различные квантовые поля, находящиеся в состоянии с наименьшей энергией, которая вовсе не обязательно равна нулю.
Принимая во внимание ненулевую космологическую постоянную, с помощью соотношений

получаем меньшую критическую плотность и большее значение параметра плотности, чем ожидалось согласно формулам, приведенным выше. Астрономические наблюдения, основанные на подсчетах числа галактик, для современной космологической постоянной дают верхнюю границу
Λ < 3·10 -56 см –2 . Поскольку критическая плотность ρ с0 не может быть отрицательной, легко оценить верхнюю границу

где для H 0,max использовано значение 100 км∙с –1 ∙Мпс –1 . В то время как ненулевая космологическая постоянная оказалась необходимой для интерпретации ранней фазы эволюции, некоторые ученые пришли к выводу, что Λ, не равная 0, могла бы играть роль и на последующих стадиях развития Вселенной.
Космологическая постоянная величины

могла бы приводить к значению Ω(Λ = 0), хотя на самом деле Ω(Λ ≠ 0). Параметр Ω(Λ = 0), определенный из ρ 0 , обеспечивал бы Ω = 1, как это требуется в инфляционных моделях, при условии, что космологическая постоянная равна

Использование численных значений H 0 = 75 ± 25 км∙с −1 ∙Мпс −1 и Ω 0,obs = 0.2 ± 0.1 приводит к
Λ= (1.6 ± 1.1)∙10 −56 см −2 . Плотность энергии вакуума, соответствующая этому значению, могла бы разрешить противоречие между наблюдаемым значением параметра плотности и требуемым современными теориями значением Ω = 1.
Помимо введения ненулевой космологической постоянной, имеются другие модели, которые снимают, по крайней мере, часть проблем без привлечения гипотезы темной материи.

Теория MOND (МОдифицированная Ньютоновская Динамика)

В этой теории предполагается, что закон гравитации отличается от обычной ньютоновской формы и выглядит следующим образом:

В этом случае сила притяжения будет больше и должна быть компенсирована более быстрым периодическим движением, которое в состоянии объяснить плоское поведение ротационных кривых.

Гравитационная постоянная, зависящая от времени

Зависимость от времени гравитационной постоянной G(t) могла иметь большое значение для процесса формирования галактик. Однако до сих пор прецизионные измерения не дали никаких указаний на временную вариацию G.

Литература

  1. Г.В. Клапдор-Клайнгротхаус, А. Штаудт."Неускорительная физика элементарных частиц".
  2. C. Нараньян. "Общая астрофизика и космология".
  3. Bottino A. et al., 1994, Astropart. Phys., 2, 67, 77.