Реакциями соединения являются следующие реакции. Классификация химических реакций

Часть I

1. Реакции соединения – это «химический антоним» реакции разложения.

2. Запишите признаки реакции соединения:
- в реакции участвуют 2 простых или сложных вещества;
- образуется одно сложное;
- выделяется тепло.

3. На основании выделенных признаков дайте определение реакций соединения.
Реакции соединения – это реакции, в результате которых образуется из одного или нескольких простых или сложных веществ одно сложное.

По направлению протекания реакции делят на:


Часть II

1. Запишите уравнения химических реакций:


2. Напишите уравнения химических реакций между хлором:
1) и натрием 2Na+Cl2=2NaCl
2) и кальцием Ca+Cl2=CaCl2
3) и железом с образованием хлорида железа (III) 2Fe+3Cl2=2FeCl3

3. Дайте характеристику реакции


4. Дайте характеристику реакции


5. Запишите уравнения реакций соединения, протекающих согласно схемам:


6. Расставьте коэффициенты в уравнениях реакций, схемы которых:


7. Верны ли следующие суждения?
А. Большинство реакций соединения являются экзотермическими.
Б. При повышении температуры скорость химической реакции увеличивается.
1) оба суждения верны

8. Рассчитайте объём водорода и массу серы, которые необходимы для образования 85 г сероводорода.

7.1. Основные типы химических реакций

Превращения веществ, сопровождающиеся изменением их состава и свойств, называются химическими реакциями или химическими взаимодействиями. При химических реакциях не происходит изменения состава ядер атомов.

Явления, при которых изменяется форма или физическое состояние веществ или изменяется состав ядер атомов, называются физическими. Примером физических явлений является термическая обработка металлов, при которой происходит изменение их формы (ковка), плавление металла, возгонка иода, превращение воды в лед или пар и т.д., а также ядерные реакции, в результате которых из атомов одних элементов образуются атомы других элементов.

Химические явления могут сопровождаются физическими превращениями. Например, в результате протекания химических реакций в гальваническом элементе возникает электрический ток.

Химические реакции классифицируют по различным признакам.

1. По знаку теплового эффекта все реакции делятся на эндотермические (протекающие с поглощением теплоты) и экзотермические (протекающие с выделением теплоты) (см. § 6.1).

2. По агрегатному состоянию исходных веществ и продуктов реакции различают:

    гомогенные реакции , в которых все вещества находятся в одной фазе:

    2 KOH (p-p) + H 2 SO 4(p-p) = K 2 SO (p-p) + 2 H 2 O (ж) ,

    CO (г) + Cl 2(г) = COCl 2(г) ,

    SiO 2(к) + 2 Mg (к) = Si (к) + 2 MgO (к) .

    гетерогенные реакции , вещества в которых находятся в различных фазах:

СаО (к) + СО 2(г) = СаCO 3(к) ,

CuSO 4(р-р) + 2 NaOH (р-р) = Cu(OH) 2(к) + Na 2 SO 4(р-р) ,

Na 2 SO 3(р-р) + 2HCl (р-р) = 2 NaCl (р-р) + SO 2(г) + H 2 O (ж) .

3. По способности протекать только в прямом направлении, а также в прямом и обратном направлении различают необратимые и обратимые химические реакции (см. § 6.5).

4. По наличию или отсутствую катализаторов различают каталитические и некаталитические реакции (см. § 6.5).

5. По механизму протекания химические реакции делятся на ионные , радикальные и др. (механизм химических реакций, протекающих с участием органических соединений, рассматривается в курсе органической химии).

6. По состоянию степеней окисления атомов, входящих в состав реагирующих веществ различают реакции, протекающие без изменения степени окисления атомов, и с изменением степени окисления атомов (окислительно–восстановительные реакции ) (см. § 7.2) .

7. По изменению состава исходных веществ и продуктов реакции различают реакции соединения, разложения, замещения и обмена . Эти реакции могут протекать как с изменением, так и без изменения степеней окисления элементов, табл . 7.1.

Таблица 7.1

Типы химических реакций

Общая схема

Примеры реакций, протекающих без изменения степени окисления элементов

Примеры окислительно-восстановительных реакций

Соединения

(из двух или нескольких веществ образуется одно новое вещество)

HCl + NH 3 = NH 4 Cl;

SO 3 + H 2 O = H 2 SO 4

H 2 + Cl 2 = 2HCl;

2Fe + 3Cl 2 = 2FeCl 3

Разложения

(из одного вещества образуется несколько новых веществ)

А = В + С + D

MgCO 3 MgO + CO 2 ;

H 2 SiO 3 SiO 2 + H 2 O

2AgNO 3 2Ag + 2NO 2 + O 2

Замещения

(при взаимодействии веществ атомы одного вещества замещают в молекуле атомы другого вещества)

А + ВС = АВ + С

CaCO 3 + SiO 2 CaSiO 3 + CO 2

Pb(NO 3) 2 + Zn =
Zn(NO 3) 2 + Pb;

Mg + 2HCl = MgCl 2 + H 2

(два вещества обмениваются своими составными частями, образуя два новых вещества)

АВ + СD = AD + CВ

AlCl 3 + 3NaOH =
Al(OH) 3 + 3NaCl;

Ca(OH) 2 + 2HCl = CaCl 2 + 2H 2 O

7.2. Окислительно–восстановительные реакции

Как указывалось выше, все химические реакции подразделяются на две группы:

Химические реакции, протекающие с изменением степени окисления атомов, входящих в состав реагирующих веществ, называются окислительно–восстановительными.

Окисление – это процесс отдачи электронов атомом, молекулой или ионом:

Na o – 1e = Na + ;

Fe 2+ – e = Fe 3+ ;

H 2 o – 2e = 2H + ;

2 Br – – 2e = Br 2 o .

Восстановление – это процесс присоединения электронов атомом, молекулой или ионом:

S o + 2e = S 2– ;

Cr 3+ + e = Cr 2+ ;

Cl 2 o + 2e = 2Cl – ;

Mn 7+ + 5e =Mn 2+ .

Атомы, молекулы или ионы, принимающие электроны, называются окислителями . Восстановителями являются атомы, молекулы или ионы, отдающие электроны.

Принимая электроны окислитель в процессе протекания реакции восстанавливается, а восстановитель – окисляется. Окисление всегда сопровождается восстановлением и наоборот. Таким образом, число электронов, отдаваемых восстановителем, всегда равно числу электронов, принимаемых окислителем .

7.2.1. Степень окисления

Степень окисления – это условный (формальный) заряд атома в соединении, рассчитанный в предположении, что оно состоит только из ионов. Степень окисления принято обозначать арабской цифрой сверху символа элемента со знаком “+” или “–” . Например, Al 3+ , S 2– .

Для нахождения степеней окисления руководствуются следующими правилами:

    степень окисления атомов в простых веществах равна нулю;

    алгебраическая сумма степеней окисления атомов в молекуле равна нулю, в сложном ионе – заряду иона;

    степень окисления атомов щелочных металлов всегда равна +1;

    атом водорода в соединениях с неметаллами (CH 4 , NH 3 и т.д) проявляет степень окисления +1, а с активными металлами его степень окисления равна –1 (NaH, CaH 2 и др.);

    атом фтора в соединениях всегда проявляет степень окисления –1;

    степень окисления атома кислорода в соединениях обычно равна –2, кроме пероксидов (H 2 O 2 , Na 2 O 2), в которых степень окисления кислорода –1, и некоторых других веществ (надпероксидов, озонидов, фторидов кислорода).

Максимальная положительная степень окисления элементов в группе обычно равна номеру группы. Исключением являются фтор, кислород, поскольку их высшая степень окисления ниже номера группы, в которой они находятся. Элементы подгруппы меди образуют соединения, в которых их степень окисления превышает номер группы (CuO, AgF 5 , AuCl 3).

Максимальная отрицательная степень окисления элементов, находящихся в главных подгруппах периодической системы может быть определена вычитанием из восьми номера группы. Для углерода это 8 – 4 = 4, для фосфора – 8 – 5 = 3.

В главных подгруппах при переходе от элементов сверху вниз устойчивость высшей положительной степени окисления уменьшается, в побочных подгруппах, наоборот, сверху вниз увеличивается устойчивость более высоких степеней окисления.

Условность понятия степени окисления можно продемонстрировать на примере некоторых неорганических и органических соединений. В частности, в фосфиновой (фосфорноватистой) Н 3 РО 2 , фосфоновой (фосфористой) Н 3 РО 3 и фосфорной Н 3 РО 4 кислотах степени окисления фосфора соответственно равны +1, +3 и +5, в то время как во всех этих соединениях фосфор пятивалентен. Для углерода в метане СН 4 , метаноле СН 3 ОН, формальдегиде СН 2 O , муравьиной кислоте НСООН и оксиде углерода (IV) СO 2 степени окисления углерода составляют соответственно –4, –2, 0, +2 и +4, в то время как валентность атома углерода во всех этих соединениях равна четырем.

Несмотря на то, что степень окисления является условным понятием, она широко используется при составлении окислительно–восстановительных реакций.

7.2.2. Важнейшие окислители и восстановители

Типичными окислителями являются:

1. Простые вещества, атомы которых обладают большой электроотрицательностью. Это, в первую очередь, элементы главных подгрупп VI и VII групп периодической системы: кислород, галогены. Из простых веществ самый сильный окислитель – фтор.

2. Соединения, содержащие некоторые катионы металлов в высоких степенях окисления: Pb 4+ , Fe 3+ , Au 3+ и др.

3. Соединения, содержащие некоторые сложные анионы, элементы в которых находятся в высоких положительных степенях окисления: 2– , – – и др.

К восстановителям относят:

1. Простые вещества, атомы которых обладают низкой электроотрицательностью – активные металлы. Восстановительные свойства могут проявлять и неметаллы, например, водород и углерод.

2. Некоторые соединения металлов, содержащие катионы (Sn 2+ , Fe 2+ , Cr 2+), которые, отдавая электроны, могут повышать свою степень окисления.

3. Некоторые соединения, содержащие такие простые ионы как, например I – , S 2– .

4. Соединения, содержащие сложные ионы (S 4+ O 3) 2– , (НР 3+ O 3) 2– , в которых элементы могут, отдавая электроны, повышать свою положительную степень окисления.

В лабораторной практике наиболее часто используются следующие окислители:

    перманганат калия (KMnO 4);

    дихромат калия (K 2 Cr 2 O 7);

    азотная кислота (HNO 3);

    концентрированная серная кислота (H 2 SO 4);

    пероксид водорода (H 2 O 2);

    оксиды марганца (IV) и свинца (IV) (MnO 2 , PbO 2);

    расплавленный нитрат калия (KNO 3) и расплавы некоторых других нитратов.

К восстановителям, которые применяются в лабораторной практике относятся:

  • магний (Mg), алюминий (Al) и другие активные металлы;
  • водород (Н 2) и углерод (С);
  • иодид калия (KI);
  • сульфид натрия (Na 2 S) и сероводород (H 2 S);
  • сульфит натрия (Na 2 SO 3);
  • хлорид олова (SnCl 2).

7.2.3. Классификация окислительно–восстановительных реакций

Окислительно-восстановительные реакции обычно разделяют на три типа: межмолекулярные, внутримолекулярные и реакции диспропорционирования (самоокисления-самовосстановления).

Межмолекулярные реакции протекают с изменением степени окисления атомов, которые находятся в различных молекулах. Например:

2 Al + Fe 2 O 3 Al 2 O 3 + 2 Fe,

C + 4 HNO 3(конц) = CO 2 + 4 NO 2 + 2 H 2 O.

К внутримолекулярным реакциям относятся такие реакции, в которых окислитель и восстановитель входят в состав одной и той же молекулы, например:

(NH 4) 2 Cr 2 O 7 N 2 + Cr 2 O 3 + 4 H 2 O,

2 KNO 3 2 KNO 2 + O 2 .

В реакциях диспропорционирования (самоокисления-самовосстановления) атом (ион) одного и того же элемента является и окислителем, и восстановителем:

Cl 2 + 2 KOH KCl + KClO + H 2 O,

2 NO 2 + 2 NaOH = NaNO 2 + NaNO 3 + H 2 O.

7.2.4. Основные правила составления окислительно-восстановительных реакций

Составление окислительно-восстановительных реакций осуществляют согласно этапам, представленным в табл. 7.2.

Таблица 7.2

Этапы составления уравнений окислительно-восстановительных реакций

Действие

Определить окислитель и восстановитель.

Установить продукты окислительно-восстановительной реакции.

Составить баланс электронов и с его помощью расставить коэффициенты у веществ, изменяющих свои степени окисления.

Расставить коэффициенты у других веществ, принимающих участие и образующихся в окислительно-восстановительной реакции.

Проверить правильность расстановки коэффициентов путем подсчета количества вещества атомов (как правило, водорода и кислорода), находящихся в левой и правой частях уравнения реакции.

Правила составления окислительно-восстановительных реакций рассмотрим на примере взаимодействия сульфита калия с перманганатом калия в кислой среде:

1. Определение окислителя и восстановителя

Находящийся в высшей степени окисления марганец не может отдавать электроны. Mn 7+ будет принимать электроны, т.е. является окислителем.

Ион S 4+ может отдать два электрона и перейти в S 6+ , т.е. является восстановителем. Таким образом, в рассматриваемой реакции K 2 SO 3 – восстановитель, а KMnO 4 – окислитель.

2. Установление продуктов реакции

K 2 SO 3 + KMnO 4 + H 2 SO 4 ?

Отдавая два электрона электрон, S 4+ переходит в S 6+ . Сульфит калия (K 2 SO 3), таким образом, переходит в сульфат (K 2 SO 4). В кислой среде Mn 7+ принимает 5 электронов и в растворе серной кислоты (среда) образует сульфат марганца (MnSO 4). В результате данной реакции образуются также дополнительные молекулы сульфата калия (за счет ионов калия, входящих в состав перманганата), а также молекулы воды. Таким образом рассматриваемая реакция запишется в виде:

K 2 SO 3 + KMnO 4 + H 2 SO 4 = K 2 SO 4 + MnSO 4 + H 2 O.

3. Составление баланса электронов

Для составления баланса электронов необходимо указать те степени окисления, которые изменяются в рассматриваемой реакции:

K 2 S 4+ O 3 + KMn 7+ O 4 + H 2 SO 4 = K 2 S 6+ O 4 + Mn 2+ SO 4 + H 2 O.

Mn 7+ + 5 е = Mn 2+ ;

S 4+ – 2 е = S 6+ .

Число электронов, отдаваемых восстановителем должно равняться числу электронов, принимаемых окислителем. Поэтому в реакции должно участвовать два Mn 7+ и пять S 4+ :

Mn 7+ + 5 е = Mn 2+ 2,

S 4+ – 2 е = S 6+ 5.

Таким образом, число электронов, отдаваемых восстановителем (10) будет равно числу электронов, принимаемых окислителем (10).

4. Расстановка коэффициентов в уравнении реакции

В соответствии с балансом электронов перед K 2 SO 3 необходимо поставить коэффициент 5, а перед KMnO 4 – 2. В правой части перед сульфатом калия ставим коэффициент 6, поскольку к пяти молекулам K 2 SO 4 , образующимся при окислении сульфита калия, добавляется одна молекула K 2 SO 4 в результате связывания ионов калия, входящих в состав перманганата. Поскольку в качестве окислителя в реакции участвуют две молекулы перманганата, в правой части образуются также две молекулы сульфата марганца. Для связывания продуктов реакции (ионов калия и марганца, входящих в состав перманганата) необходимо три молекулы серной кислоты, поэтому в результате реакции образуется три молекулы воды. Окончательно получаем:

5 K 2 SO 3 + 2 KMnO 4 + 3 H 2 SO 4 = 6 K 2 SO 4 + 2 MnSO 4 + 3 H 2 O.

5. Проверка правильности расстановки коэффициентов в уравнении реакции

Число атомов кислорода в левой части уравнения реакции равно:

5 · 3 + 2 · 4 + 3 · 4 = 35.

В правой части это число составит:

6 · 4 + 2 · 4 + 3 · 1 = 35.

Число атомов водорода в левой части уравнения реакции равно шести и соответствует числу этих атомов в правой части уравнения реакции.

7.2.5. Примеры окислительно–восстановительных реакций с участием типичных окислителей и восстановителей

7.2.5.1. Межмолекулярные реакции окисления-восстановления

Ниже в качестве примеров рассматриваются окислительно-восстановительные реакции, протекающие с участием перманганата калия, дихромата калия, пероксида водорода, нитрита калия, иодида калия и сульфида калия. Окислительно-восстановительные реакции с участием других типичных окислителей и восстановителей рассматриваются во второй части пособия (“Неорганическая химия”).

Окислительно-восстановительные реакции с участием перманганата калия

В зависимости от среды (кислая, нейтральная, щелочная) перманганат калия, выступая в качестве окислителя, дает различные продукты восстановления, рис. 7.1.

Рис. 7.1. Образование продуктов восстановления перманганата калия в различных средах

Ниже приведены реакции KMnO 4 с сульфидом калия в качестве восстановителя в различных средах, иллюстрирующие схему, рис. 7.1. В этих реакциях продуктом окисления сульфид-иона является свободная сера. В щелочной среде молекулы КОН не принимают участие в реакции, а лишь определяют продукт восстановления перманганата калия.

5 K 2 S + 2 KMnO 4 + 8 H 2 SO 4 = 5 S + 2 MnSO 4 + 6 K 2 SO 4 + 8 H 2 O,

3 K 2 S + 2 KMnO 4 + 4 H 2 O 2 MnO 2 + 3 S + 8 KOH,

K 2 S + 2 KMnO 4 (KOH) 2 K 2 MnO 4 + S.

Окислительно-восстановительные реакции с участием дихромата калия

В кислой среде дихромат калия является сильным окислителем. Смесь K 2 Cr 2 O 7 и концентрированной H 2 SO 4 (хромпик) широко используется в лабораторной практике в качестве окислителя. Взаимодействуя с восстановителем одна молекула дихромата калия принимает шесть электронов, образуя соединения трехвалентного хрома:

6 FeSO 4 +K 2 Cr 2 O 7 +7 H 2 SO 4 = 3 Fe 2 (SO 4) 3 +Cr 2 (SO 4) 3 +K 2 SO 4 +7 H 2 O;

6 KI + K 2 Cr 2 O 7 + 7 H 2 SO 4 = 3 I 2 + Cr 2 (SO 4) 3 + 4 K 2 SO 4 + 7 H 2 O.

Окислительно-восстановительные реакции с участием пероксида водорода и нитрита калия

Пероксид водорода и нитрит калия проявляют преимущественно окислительные свойства:

H 2 S + H 2 O 2 = S + 2 H 2 O,

2 KI + 2 KNO 2 + 2 H 2 SO 4 = I 2 + 2 K 2 SO 4 + H 2 O,

Однако, при взаимодействии с сильными окислителями (такими как, например, KMnO 4), пероксид водорода и нитрит калия выступают в качестве восстановитеей:

5 H 2 O 2 + 2 KMnO 4 + 3 H 2 SO 4 = 5 O 2 + 2 MnSO 4 + K 2 SO 4 + 8 H 2 O,

5 KNO 2 + 2 KMnO 4 + 3 H 2 SO 4 = 5 KNO 3 + 2 MnSO 4 + K 2 SO 4 + 3 H 2 O.

Необходимо отметить, что пероксид водорода в зависимости от среды восстанавливается согласно схеме, рис. 7.2.

Рис. 7.2. Возможные продукты восстановления пероксида водорода

При этом в результате реакций образуется вода или гидроксид-ионы:

2 FeSO 4 + H 2 O 2 + H 2 SO 4 = Fe 2 (SO 4) 3 + 2 H 2 O,

2 KI + H 2 O 2 = I 2 + 2 KOH.

7.2.5.2 . Внутримолекулярные реакции окисления-восстановления

Внутримолекулярные окислительно-восстановительные реакции протекают, как правило, при нагревании веществ, в молекулах которых присутствуют восстановитель и окислитель. Примерами внутримолекулярных реакций восстановления-окисления являются процессы термического разложения нитратов и перманганата калия:

2 NaNO 3 2 NaNO 2 + O 2 ,

2 Cu(NO 3) 2 2 CuO + 4 NO 2 + O 2 ,

Hg(NO 3) 2 Hg + NO 2 + O 2 ,

2 KMnO 4 K 2 MnO 4 + MnO 2 + O 2 .

7.2.5.3 . Реакции диспропорционирования

Как выше отмечалось, в реакциях диспропорционирования один и тот же атом (ион) является одновременно окислителем и восстановителем. Рассмотрим процесс составления этого типа реакций на примере взаимодействия серы со щелочью.

Характерные степени окисления серы: 2, 0, +4 и +6. Выступая в качестве восстановителя элементарная сера отдает 4 электрона:

S o 4е = S 4+ .

Сера окислитель принимает два электрона:

S o + 2е = S 2– .

Таким образом, в результате реакции диспропорционирования серы образуются соединения, степени окисления элемента в которых 2 и справа +4:

3 S + 6 KOH = 2 K 2 S + K 2 SO 3 + 3 H 2 O.

При диспропорционировании оксида азота (IV) в щелочи получаются нитрит и нитрат – соединения, в которых степени окисления азота соответственно равны +3 и +5:

2 N 4+ O 2 + 2 КOH = КN 3+ O 2 + КN 5+ O 3 + H 2 O,

Диспропорционирование хлора в холодном растворе щелочи приводит к образованию гипохлорита, а в горячем – хлората:

Cl 0 2 + 2 KOH = KCl – + KCl + O + H 2 O,

Cl 0 2 + 6 KOH 5 KCl – + KCl 5+ O 3 + 3H 2 O.

7.3. Электролиз

Окислительно–восстановительный процесс, протекающий в растворах или расплавах при пропускании через них постоянного электрического тока, называют электролизом. При этом на положительном электроде (аноде) происходит окисление анионов. На отрицательном электроде (катоде) восстанавливаются катионы.

2 Na 2 CO 3 4 Na + О 2 + 2CO 2 .

При электролизе водных растворов электролитов наряду с превращениями растворенного вещества могут протекать электрохимические процессы с участием ионов водорода и гидроксид-ионов воды:

катод (–): 2 Н + + 2е = Н 2 ,

анод (+): 4 ОН – – 4е = О 2 + 2 Н 2 О.

В этом случае восстановительный процесс на катоде происходит следующим образом:

1. Катионы активных металлов (до Al 3+ включительно) не восстанавливаются на катоде, вместо них восстанавливается водород.

2. Катионы металлов, расположенные в ряду стандартных электродных потенциалов (в ряду напряжений) правее водорода, при электролизе восстанавливаются на катоде до свободных металлов.

3. Катионы металлов, расположенные между Al 3+ и Н + , на катоде восстанавливаются одновременно с катионом водорода.

Процессы, протекающие в водных растворах на аноде, зависят от вещества, из которого сделан анод. Различают аноды нерастворимые (инертные ) и растворимые (активные ). В качестве материала инертных анодов используют графит или платину. Растворимые аноды изготавливают из меди, цинка и других металлов.

При электролизе растворов с инертным анодом могут образовываться следующие продукты:

1. При окислении галогенид-ионов выделяются свободные галогены.

2. При электролизе растворов, содержащих анионы SO 2 2– , NO 3 – , PO 4 3– выделяется кислород, т.е. на аноде окисляются не эти ионы, а молекулы воды.

Учитывая вышеизложенные правила, рассмотрим в качестве примера электролиз водных растворов NaCl, CuSO 4 и KOH с инертными электродами.

1). В растворе хлорид натрия диссоциирует на ионы.

Реакции соединения (образование одного сложного вещества из нескольких простых или сложных веществ) А + В = АВ


Реакции разложения (разложение одного сложного вещества на несколько простых или сложных веществ) АВ = А + В



Реакции замещения (между простыми и сложными веществами, в которых атомы простого вещества замещают атомы одного из элементов в сложном веществе) : АВ + С = АС + В


Реакции обмена (между двумя сложными веществами, в которых вещества обмениваются своими составными частями) АВ + СД = АД + СВ


1. Укажите правильное определение реакции соединения:

  • А. Реакция образования нескольких веществ из одного простого вещества;

  • Б. Реакция, в которой из нескольких простых или сложных веществ, образуется одно сложное вещество.

  • В. Реакция, в которой вещества обмениваются своими составными частями.


2. Укажите правильное определение реакции замещения:

  • А. Реакция между основанием и кислотой;

  • Б. Реакция взаимодействия двух простых веществ;

  • В. Реакция между веществами, в которой атомы простого вещества замещают атомы одного из элементов в сложном веществе.


3. Укажите правильное определение реакции разложения:

  • А. Реакция, при которой из одного сложного вещества образуется несколько простых или сложных веществ;

  • Б. Реакция, в которой вещества обмениваются своими составными частями;

  • В. Реакция с образованием молекул кислорода и водорода.


4. Укажите признаки протекания реакции обмена:

  • А. Образование воды;

  • Б. Только образование газа;

  • В. Только выпадение осадка;

  • Г. Выпадение осадка, образование газа или образование слабого электролита.


5. К какому типу реакций относится взаимодействие кислотных оксидов с основными оксидами:

  • А. Реакция обмена;

  • Б. Реакция соединения;

  • В. Реакция разложения;

  • Г. Реакция замещения.


6. К какому типу реакций относится взаимодействие солей с кислотами или с основаниями:

  • А. Реакции замещения;

  • Б. Реакции разложения;

  • В. Реакции обмена;

  • Г. Реакции соединения.


  • 7. Вещества, формулы которых KNO3 FeCl2, Na2SO4, называют:

  • А) солями; Б) основаниями; В) кислотами; Г) оксидами.

  • 8 . Вещества, формулы которых HNO3, HCl, H2SO4, называют:

  • 9 . Вещества, формулы которых KOH, Fe(OH)2, NaOH, называют:

  • А) солями; Б) кислотами; В) основаниями; Г) оксидами. 10 . Вещества, формулы которых NO2, Fe2O3, Na2O, называют:

  • А) солями; Б) кислотами; В) основаниями; Г) оксидами.

  • 11 . Укажите металлы, образующие щелочи:

  • Cu, Fe, Na, K, Zn, Li.


Ответы:

  • Na, K, Li.


При реакциях соединения из нескольких реагирующих веществ относительно простого состава получается одно вещество более сложного состава:

Как правило, эти реакции сопровождаются выделением тепла, т.е. приводят к образованию более устойчивых и менее богатых энергией соединений.

Реакции соединения простых веществ всегда носят окислительно-восстановительный характер. Реакции соединения, протекающие между сложными веществами, могут происходить как без изменения валентности:

СаСО 3 + СО 2 + Н 2 О = Са(НСО 3) 2 ,

так и относиться к числу окислительно-восстановительных:

2FеСl 2 + Сl 2 = 2FеСl 3 .

2. Реакции разложения

Реакции разложения приводят к образованию нескольких соединений из одного сложного вещества:

А = В + С + D.

Продуктами разложения сложного вещества могут быть как простые, так и сложные вещества.

Из реакций разложения, протекающих без изменения валентных состояний, следует отметить разложение кристаллогидратов, оснований, кислот и солей кислородсодержащих кислот:

CuSO 4 + 5H 2 O

2H 2 O + 4NO 2 O + O 2 O.

2AgNO 3 = 2Ag + 2NO 2 + O 2 , (NH 4)2Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 O.

Особенно характерны окислительно-восстановительные реакции разложения для солей азотной кислоты.

Реакции разложения в органической химии носят название крекинга:

С 18 H 38 = С 9 H 18 + С 9 H 20 ,

или дегидрирования

C 4 H 10 = C 4 H 6 + 2H 2 .

3. Реакции замещения

При реакциях замещения обычно простое вещество взаимодействует со сложным, образуя другое простое вещество и другое сложное:

А + ВС = АВ + С.

Эти реакции в подавляющем большинстве принадлежат к окислительно-восстановительным:

2Аl + Fe 2 O 3 = 2Fе + Аl 2 О 3 ,

Zn + 2НСl = ZnСl 2 + Н 2 ,

2КВr + Сl 2 = 2КСl + Вr 2 ,

2КСlO 3 + l 2 = 2KlO 3 + Сl 2 .

Примеры реакций замещения, не сопровождающихся изменением валентных состояний атомов, крайне немногочисленны. Следует отметить реакцию двуокиси кремния с солями кислородсодержащих кислот, которым отвечают газообразные или летучие ангидриды:

СаСО 3 + SiO 2 = СаSiO 3 + СО 2 ,

Са 3 (РО 4) 2 + ЗSiO 2 = ЗСаSiO 3 + Р 2 О 5 ,

Иногда эти реакции рассматривают как реакции обмена:

СН 4 + Сl 2 = СН 3 Сl + НСl.

4. Реакции обмена

Реакциями обмена называют реакции между двумя соединениями, которые обмениваются между собой своими составными частями:

АВ + СD = АD + СВ.

Если при реакциях замещения протекают окислительно-восстановительные процессы, то реакции обмена всегда происходят без изменения валентного состояния атомов. Это наиболее распространенная группа реакций между сложными веществами - оксидами, основаниями, кислотами и солями:

ZnO + Н 2 SО 4 = ZnSО 4 + Н 2 О,

AgNО 3 + КВr = АgВr + КNО 3 ,

СrСl 3 + ЗNаОН = Сr(ОН) 3 + ЗNаСl.

Частный случай этих реакций обмена - реакции нейтрализации:

НСl + КОН = КСl + Н 2 О.

Обычно эти реакции подчиняются законам химического равновесия и протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного, летучего вещества, осадка или малодиссоциирующего (для растворов) соединения:

NаНСО 3 + НСl = NаСl + Н 2 О + СО 2 ,

Са(НСО 3) 2 + Са(ОН) 2 = 2СаСО 3 ↓ + 2Н 2 О,

СН 3 СООNа + Н 3 РО 4 = СН 3 СООН + NаН 2 РО 4 .