Свойства степеней с разными основаниями и показателями. Степень и ее свойства

Одной из главных характеристик в алгебре, да и во всей математике является степень. Конечно, в 21 веке все расчеты можно проводить на онлайн-калькуляторе, но лучше для развития мозгов научиться делать это самому.

В данной статье рассмотрим самые важные вопросы, касающиеся этого определения. А именно, поймем что это вообще такое и каковы основные его функции, какие имеются свойства в математике.

Рассмотрим на примерах то, как выглядит расчет, каковы основные формулы. Разберем основные виды величины и то, чем они отличаются от других функций.

Поймем, как решать с помощью этой величины различные задачи. Покажем на примерах, как возводить в нулевую степень, иррациональную, отрицательную и др.

Онлайн-калькулятор возведения в степень

Что такое степень числа

Что же подразумевают под выражением «возвести число в степень»?

Степенью n числа а является произведение множителей величиной а n-раз подряд.

Математически это выглядит следующим образом:

a n = a * a * a * …a n .

Например:

  • 2 3 = 2 в третьей степ. = 2 * 2 * 2 = 8;
  • 4 2 = 4 в степ. два = 4 * 4 = 16;
  • 5 4 = 5 в степ. четыре = 5 * 5 * 5 * 5 = 625;
  • 10 5 = 10 в 5 степ. = 10 * 10 * 10 * 10 * 10 = 100000;
  • 10 4 = 10 в 4 степ. = 10 * 10 * 10 * 10 = 10000.

Ниже будет представлена таблица квадратов и кубов от 1 до 10.

Таблица степеней от 1 до 10

Ниже будут приведены результаты возведения натуральных чисел в положительные степени – «от 1 до 100».

Ч-ло 2-ая ст-нь 3-я ст-нь
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 279
10 100 1000

Свойства степеней

Что же характерно для такой математической функции? Рассмотрим базовые свойства.

Учеными установлено следующие признаки, характерные для всех степеней:

  • a n * a m = (a) (n+m) ;
  • a n: a m = (a) (n-m) ;
  • (a b) m =(a) (b*m) .

Проверим на примерах:

2 3 * 2 2 = 8 * 4 = 32. С другой стороны 2 5 = 2 * 2 * 2 * 2 * 2 =32.

Аналогично: 2 3: 2 2 = 8 / 4 =2. Иначе 2 3-2 = 2 1 =2.

(2 3) 2 = 8 2 = 64. А если по-другому? 2 6 = 2 * 2 * 2 * 2 * 2 * 2 = 32 * 2 = 64.

Как видим, правила работают.

А как же быть со сложением и вычитанием ? Всё просто. Выполняется сначала возведение в степень, а уж потом сложение и вычитание.

Посмотрим на примерах:

  • 3 3 + 2 4 = 27 + 16 = 43;
  • 5 2 – 3 2 = 25 – 9 = 16. Обратите внимание: правило не будет выполняться, если сначала произвести вычитание: (5 — 3) 2 = 2 2 = 4.

А вот в этом случае надо вычислять сначала сложение, поскольку присутствуют действия в скобках: (5 + 3) 3 = 8 3 = 512.

Как производить вычисления в более сложных случаях ? Порядок тот же:

  • при наличии скобок – начинать нужно с них;
  • затем возведение в степень;
  • потом выполнять действия умножения, деления;
  • после сложение, вычитание.

Есть специфические свойства, характерные не для всех степеней:

  1. Корень n-ой степени из числа a в степени m запишется в виде: a m / n .
  2. При возведении дроби в степень: этой процедуре подвержены как числитель, так и ее знаменатель.
  3. При возведении произведения разных чисел в степень, выражение будет соответствовать произведению этих чисел в заданной степени. То есть: (a * b) n = a n * b n .
  4. При возведении числа в отрицательную степ., нужно разделить 1 на число в той же ст-ни, но со знаком «+».
  5. Если знаменатель дроби находится в отрицательной степени, то это выражение будет равно произведению числителя на знаменатель в положительной степени.
  6. Любое число в степени 0 = 1, а в степ. 1 = самому себе.

Эти правила важны в отдельных случаях, их рассмотрим подробней ниже.

Степень с отрицательным показателем

Что делать при минусовой степени, т. е. когда показатель отрицательный?

Исходя из свойств 4 и 5 (смотри пункт выше), получается :

A (- n) = 1 / A n , 5 (-2) = 1 / 5 2 = 1 / 25.

И наоборот:

1 / A (- n) = A n , 1 / 2 (-3) = 2 3 = 8.

А если дробь?

(A / B) (- n) = (B / A) n , (3 / 5) (-2) = (5 / 3) 2 = 25 / 9.

Степень с натуральным показателем

Под ней понимают степень с показателями, равными целым числам.

Что нужно запомнить:

A 0 = 1, 1 0 = 1; 2 0 = 1; 3.15 0 = 1; (-4) 0 = 1…и т. д.

A 1 = A, 1 1 = 1; 2 1 = 2; 3 1 = 3…и т. д.

Кроме того, если (-a) 2 n +2 , n=0, 1, 2…то результат будет со знаком «+». Если отрицательное число возводится в нечетную степень, то наоборот.

Общие свойства, да и все специфические признаки, описанные выше, также характерны для них.

Дробная степень

Этот вид можно записать схемой: A m / n . Читается как: корень n-ой степени из числа A в степени m.

С дробным показателем можно делать, что угодно: сокращать, раскладывать на части, возводить в другую степень и т. д.

Степень с иррациональным показателем

Пусть α – иррациональное число, а А ˃ 0.

Чтобы понять суть степени с таким показателем, рассмотрим разные возможные случаи:

  • А = 1. Результат будет равен 1. Поскольку существует аксиома – 1 во всех степенях равна единице;

А r 1 ˂ А α ˂ А r 2 , r 1 ˂ r 2 – рациональные числа;

  • 0˂А˂1.

В этом случае наоборот: А r 2 ˂ А α ˂ А r 1 при тех же условиях, что и во втором пункте.

Например, показатель степени число π. Оно рациональное.

r 1 – в этом случае равно 3;

r 2 – будет равно 4.

Тогда, при А = 1, 1 π = 1.

А = 2, то 2 3 ˂ 2 π ˂ 2 4 , 8 ˂ 2 π ˂ 16.

А = 1/2, то (½) 4 ˂ (½) π ˂ (½) 3 , 1/16 ˂ (½) π ˂ 1/8.

Для таких степеней характерны все математические операции и специфические свойства, описанные выше.

Заключение

Подведём итоги — для чего же нужны эти величины, в чем преимущество таких функций? Конечно, в первую очередь они упрощают жизнь математиков и программистов при решении примеров, поскольку позволяют минимизировать расчеты, сократить алгоритмы, систематизировать данные и многое другое.

Где еще могут пригодиться эти знания? В любой рабочей специальности: медицине, фармакологии, стоматологии, строительстве, технике, инженерии, конструировании и т. д.

Как умножать степени? Какие степени можно перемножить, а какие - нет? Как число умножить на степень?

В алгебре найти произведение степеней можно в двух случаях:

1) если степени имеют одинаковые основания;

2) если степени имеют одинаковые показатели.

При умножении степеней с одинаковыми основаниями надо основание оставить прежним, а показатели - сложить:

При умножении степеней с одинаковыми показателями общий показатель можно вынести за скобки:

Рассмотрим, как умножать степени, на конкретных примерах.

Единицу в показателе степени не пишут, но при умножении степеней - учитывают:

При умножении количество степеней может быть любое. Следует помнить, что перед буквой знак умножения можно не писать:

В выражениях возведение в степень выполняется в первую очередь.

Если нужно число умножить на степень, сначала следует выполнить возведение в степень, а уже потом - умножение:

www.algebraclass.ru

Сложение, вычитание, умножение, и деление степеней

Сложение и вычитание степеней

Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками .

Так, сумма a 3 и b 2 есть a 3 + b 2 .
Сумма a 3 — b n и h 5 -d 4 есть a 3 — b n + h 5 — d 4 .

Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.

Так, сумма 2a 2 и 3a 2 равна 5a 2 .

Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.

Но степени различных переменных и различные степени одинаковых переменных , должны слагаться их сложением с их знаками.

Так, сумма a 2 и a 3 есть сумма a 2 + a 3 .

Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.

Сумма a 3 b n и 3a 5 b 6 есть a 3 b n + 3a 5 b 6 .

Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.

Или:
2a 4 — (-6a 4) = 8a 4
3h 2 b 6 — 4h 2 b 6 = -h 2 b 6
5(a — h) 6 — 2(a — h) 6 = 3(a — h) 6

Умножение степеней

Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.

Так, результат умножения a 3 на b 2 равен a 3 b 2 или aaabb.

Или:
x -3 ⋅ a m = a m x -3
3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y

Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
Выражение примет вид: a 5 b 5 y 3 .

Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат — это число (переменная) со степенью, равной сумме степеней слагаемых.

Так, a 2 .a 3 = aa.aaa = aaaaa = a 5 .

Здесь 5 — это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.

Так, a n .a m = a m+n .

Для a n , a берётся как множитель столько раз, сколько равна степень n;

И a m , берётся как множитель столько раз, сколько равна степень m;

Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.

Так, a 2 .a 6 = a 2+6 = a 8 . И x 3 .x 2 .x = x 3+2+1 = x 6 .

Или:
4a n ⋅ 2a n = 8a 2n
b 2 y 3 ⋅ b 4 y = b 6 y 4
(b + h — y) n ⋅ (b + h — y) = (b + h — y) n+1

Умножьте (x 3 + x 2 y + xy 2 + y 3) ⋅ (x — y).
Ответ: x 4 — y 4 .
Умножьте (x 3 + x — 5) ⋅ (2x 3 + x + 1).

Это правило справедливо и для чисел, показатели степени которых — отрицательные .

1. Так, a -2 .a -3 = a -5 . Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.

2. y -n .y -m = y -n-m .

3. a -n .a m = a m-n .

Если a + b умножаются на a — b, результат будет равен a 2 — b 2: то есть

Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.

Если умножается сумма и разница двух чисел, возведённых в квадрат , результат будет равен сумме или разнице этих чисел в четвёртой степени.

Так, (a — y).(a + y) = a 2 — y 2 .
(a 2 — y 2)⋅(a 2 + y 2) = a 4 — y 4 .
(a 4 — y 4)⋅(a 4 + y 4) = a 8 — y 8 .

Деление степеней

Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.

Таким образом a 3 b 2 делённое на b 2 , равно a 3 .

Запись a 5 , делённого на a 3 , выглядит как $\frac $. Но это равно a 2 . В ряде чисел
a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 .
любое число может быть поделено на другое, а показатель степени будет равен разнице показателей делимых чисел.

При делении степеней с одинаковым основанием их показатели вычитаются. .

Так, y 3:y 2 = y 3-2 = y 1 . То есть, $\frac = y$.

И a n+1:a = a n+1-1 = a n . То есть $\frac = a^n$.

Или:
y 2m: y m = y m
8a n+m: 4a m = 2a n
12(b + y) n: 3(b + y) 3 = 4(b +y) n-3

Правило также справедливо и для чисел с отрицательными значениями степеней.
Результат деления a -5 на a -3 , равен a -2 .
Также, $\frac: \frac = \frac .\frac = \frac = \frac $.

h 2:h -1 = h 2+1 = h 3 или $h^2:\frac = h^2.\frac = h^3$

Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.

Примеры решения примеров с дробями, содержащими числа со степенями

1. Уменьшите показатели степеней в $\frac $ Ответ: $\frac $.

2. Уменьшите показатели степеней в $\frac $. Ответ: $\frac $ или 2x.

3. Уменьшите показатели степеней a 2 /a 3 и a -3 /a -4 и приведите к общему знаменателю.
a 2 .a -4 есть a -2 первый числитель.
a 3 .a -3 есть a 0 = 1, второй числитель.
a 3 .a -4 есть a -1 , общий числитель.
После упрощения: a -2 /a -1 и 1/a -1 .

4. Уменьшите показатели степеней 2a 4 /5a 3 и 2 /a 4 и приведите к общему знаменателю.
Ответ: 2a 3 /5a 7 и 5a 5 /5a 7 или 2a 3 /5a 2 и 5/5a 2 .

5. Умножьте (a 3 + b)/b 4 на (a — b)/3.

6. Умножьте (a 5 + 1)/x 2 на (b 2 — 1)/(x + a).

7. Умножьте b 4 /a -2 на h -3 /x и a n /y -3 .

8. Разделите a 4 /y 3 на a 3 /y 2 . Ответ: a/y.

Свойства степени

Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.

Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.

Свойство № 1
Произведение степеней

При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.

a m · a n = a m + n , где « a » - любое число, а « m », « n » - любые натуральные числа.

Данное свойство степеней также действует на произведение трёх и более степеней.

  • Упростить выражение.
    b · b 2 · b 3 · b 4 · b 5 = b 1 + 2 + 3 + 4 + 5 = b 15
  • Представить в виде степени.
    6 15 · 36 = 6 15 · 6 2 = 6 15 · 6 2 = 6 17
  • Представить в виде степени.
    (0,8) 3 · (0,8) 12 = (0,8) 3 + 12 = (0,8) 15
  • Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями . Оно не относится к их сложению.

    Нельзя заменять сумму (3 3 + 3 2) на 3 5 . Это понятно, если
    посчитать (3 3 + 3 2) = (27 + 9) = 36 , а 3 5 = 243

    Свойство № 2
    Частное степеней

    При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.

  • Записать частное в виде степени
    (2b) 5: (2b) 3 = (2b) 5 − 3 = (2b) 2
  • Вычислить.

    11 3 − 2 · 4 2 − 1 = 11 · 4 = 44
    Пример. Решить уравнение. Используем свойство частного степеней.
    3 8: t = 3 4

    Ответ: t = 3 4 = 81

    Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.

      Пример. Упростить выражение.
      4 5m + 6 · 4 m + 2: 4 4m + 3 = 4 5m + 6 + m + 2: 4 4m + 3 = 4 6m + 8 − 4m − 3 = 4 2m + 5

    Пример. Найти значение выражения, используя свойства степени.

    2 11 − 5 = 2 6 = 64

    Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.

    Нельзя заменять разность (4 3 −4 2) на 4 1 . Это понятно, если посчитать (4 3 −4 2) = (64 − 16) = 48 , а 4 1 = 4

    Свойство № 3
    Возведение степени в степень

    При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.

    (a n) m = a n · m , где « a » - любое число, а « m », « n » - любые натуральные числа.


    Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке.

    (a n · b n)= (a · b) n

    То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным.

  • Пример. Вычислить.
    2 4 · 5 4 = (2 · 5) 4 = 10 4 = 10 000
  • Пример. Вычислить.
    0,5 16 · 2 16 = (0,5 · 2) 16 = 1
  • В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. В этом случае советуем поступать следующим образом.

    Например, 4 5 · 3 2 = 4 3 · 4 2 · 3 2 = 4 3 · (4 · 3) 2 = 64 · 12 2 = 64 · 144 = 9216

    Пример возведения в степень десятичной дроби.

    4 21 · (−0,25) 20 = 4 · 4 20 · (−0,25) 20 = 4 · (4 · (−0,25)) 20 = 4 · (−1) 20 = 4 · 1 = 4

    Свойства 5
    Степень частного (дроби)

    Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.

    (a: b) n = a n: b n , где « a », « b » - любые рациональные числа, b ≠ 0, n - любое натуральное число.

  • Пример. Представить выражение в виде частного степеней.
    (5: 3) 12 = 5 12: 3 12
  • Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.

    Степени и корни

    Операции со степенями и корнями. Степень с отрицательным ,

    нулевым и дробным показателем. О выражениях, не имеющих смысла.

    Операции со степенями.

    1. При умножении степеней с одинаковым основанием их показатели складываются:

    a m · a n = a m + n .

    2. При делении степеней с одинаковым основанием их показатели вычитаются .

    3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.

    4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):

    (a / b ) n = a n / b n .

    5. При возведении степени в степень их показатели перемножаются:

    Все вышеприведенные формулы читаются и выполняются в обоих направлениях слева направо и наоборот.

    П р и м е р. (2 · 3 · 5 / 15) ² = 2 ² · 3 ² · 5 ² / 15 ² = 900 / 225 = 4 .

    Операции с корнями. Во всех нижеприведенных формулах символ означает арифметический корень (подкоренное выражение положительно).

    1. Корень из произведения нескольких сомножителей равен произведению корней из этих сомножителей:

    2. Корень из отношения равен отношению корней делимого и делителя:

    3. При возведении корня в степень достаточно возвести в эту степень подкоренное число:

    4. Если увеличить степень корня в m раз и одновременно возвести в m -ую степень подкоренное число, то значение корня не изменится:

    5. Если уменьшить степень корня в m раз и одновременно извлечь корень m -ой степени из подкоренного числа, то значение корня не изменится:


    Расширение понятия степени. До сих пор мы рассматривали степени только с натуральным показателем; но действия со степенями и корнями могут приводить также к отрицательным , нулевым и дробным показателям. Все эти показатели степеней требуют дополнительного определения.

    Степень с отрицательным показателем. Степень некоторого числа с отрицательным (целым) показателем определяется как единица, делённая на степень того же числа с показателем, равным абсолютной велечине отрицательного показателя:

    Т еперь формула a m : a n = a m — n может быть использована не только при m , большем, чем n , но и при m , меньшем, чем n .

    П р и м е р. a 4: a 7 = a 4 — 7 = a — 3 .

    Если мы хотим, чтобы формула a m : a n = a m n была справедлива при m = n , нам необходимо определение нулевой степени.

    Степень с нулевым показателем. Степень любого ненулевого числа с нулевым показателем равна 1.

    П р и м е р ы. 2 0 = 1, ( 5) 0 = 1, ( 3 / 5) 0 = 1.

    Степень с дробным показателем. Для того, чтобы возвести действительное число а в степень m / n , нужно извлечь корень n –ой степени из m -ой степени этого числа а:

    О выражениях, не имеющих смысла. Есть несколько таких выражений.

    где a ≠ 0 , не существует.

    В самом деле, если предположить, что x – некоторое число, то в соответствии с определением операции деления имеем: a = 0· x , т.e. a = 0, что противоречит условию: a ≠ 0

    любое число.

    В самом деле, если предположить, что это выражение равно некоторому числу x , то согласно определению операции деления имеем: 0 = 0 · x . Но это равенство имеет место при любом числе x , что и требовалось доказать.

    0 0 — любое число.

    Р е ш е н и е. Рассмотрим три основных случая:

    1) x = 0 это значение не удовлетворяет данному уравнению

    2) при x > 0 получаем: x / x = 1, т.e. 1 = 1, откуда следует,

    что x – любое число; но принимая во внимание, что в

    нашем случае x > 0 , ответом является x > 0 ;

    Правила умножения степеней с разным основанием

    СТЕПЕНЬ С РАЦИОНАЛЬНЫМ ПОКАЗАТЕЛЕМ,

    СТЕПЕННАЯ ФУНКЦИЯ IV

    § 69. Умножение и деление степеней с одинаковыми основаниями

    Теорема 1. Чтобы перемножить степени с одинаковыми основаниями, достаточно показатели степеней сложить, а основание оставить прежним , то есть

    Доказательство. По определению степени

    2 2 2 3 = 2 5 = 32; (-3) (-3) 3 = (-3) 4 = 81.

    Мы рассмотрели произведение двух степеней. На самом же деле доказанное свойство верно для любого числа степеней с одинаковыми основаниями.

    Теорема 2. Чтобы разделить степени с одинаковыми основаниями, когда показатель делимого больше показателя делителя, достаточно из показателя делимого вычесть показатель делителя, а основание оставить прежним, то есть при т > п

    (a =/= 0)

    Доказательство. Напомним, что частным от деления одного числа на другое называется число, которое при умножении на делитель дает делимое. Поэтому доказать формулу , где a =/= 0, это все равно, что доказать формулу

    Если т > п , то число т - п будет натуральным; следовательно, по теореме 1

    Теорема 2 доказана.

    Следует обратить внимание на то, что формула

    доказана нами лишь в предположении, что т > п . Поэтому из доказанного пока нельзя делать, например, таких выводов:

    К тому же степени с отрицательными показателями нами еще не рассматривались и мы пока что не знаем, какой смысл можно придать выражению 3 - 2 .

    Теорема 3. Чтобы возвести степень в степень, достаточно перемножить показатели, оставив основание степени прежним , то есть

    Доказательство. Используя определение степени и теорему 1 этого параграфа, получаем:

    что и требовалось доказать.

    Например, (2 3) 2 = 2 6 = 64;

    518 (Устно.) Определить х из уравнений:

    1) 2 2 2 2 3 2 4 2 5 2 6 = 2 x ; 3) 4 2 4 4 4 6 4 8 4 10 = 2 x ;

    2) 3 3 3 3 5 3 7 3 9 = 3 x ; 4) 1 / 5 1 / 25 1 / 125 1 / 625 = 1 / 5 x .

    519. (У с т н о.) Упростить:

    520. (У с т н о.) Упростить:

    521. Данные выражения представить в виде степеней с одинаковыми основаниями:

    1) 32 и 64; 3) 8 5 и 16 3 ; 5) 4 100 и 32 50 ;

    2) -1000 и 100; 4) -27 и -243; 6) 81 75 8 200 и 3 600 4 150 .

    В прошлом видеоуроке мы узнали, что степенью некоего основания называется такое выражение, которое представляет собой произведение основания на самого себя, взятого в количестве, равном показателю степени. Изучим теперь некоторые важнейшие свойства и операции степеней.

    Например, умножим две разные степени с одинаковым основанием:

    Представим это произведение в полном виде:

    (2) 3 * (2) 2 = (2)*(2)*(2)*(2)*(2) = 32

    Вычислив значение этого выражения, мы получим число 32. С другой стороны, как видно из этого же примера, 32 можно представить в виде произведения одного и того же основания (двойки), взятого в количестве 5 раз. И действительно, если пересчитать, то:

    Таким образом, можно с уверенностью прийти к выводу, что:

    (2) 3 * (2) 2 = (2) 5

    Подобное правило успешно работает для любых показателей и любых оснований. Это свойство умножения степени вытекает из правила сохранности значения выражений при преобразованиях в произведении. При любом основании а произведение двух выражений (а)х и (а)у равно а(х + у). Иначе говоря, при произведении любых выражений с одинаковым основанием, итоговый одночлен имеет суммарную степень, образующуюся сложением степени первого и второго выражений.

    Представляемое правило прекрасно работает и при умножении нескольких выражений. Главное условие - что бы основания у всех были одинаковыми. Например:

    (2) 1 * (2) 3 * (2) 4 = (2) 8

    Нельзя складывать степени, да и вообще проводить какие-либо степенные совместные действия с двумя элементами выражения, если основания у них являются разными.
    Как показывает наше видео, в силу схожести процессов умножения и деления правила сложения степеней при произведении прекрасно передаются и на процедуру деления. Рассмотрим такой пример:

    Произведем почленное преобразование выражения в полный вид и сократим одинаковые элементы в делимом и делителе:

    (2)*(2)*(2)*(2)*(2)*(2) / (2)*(2)*(2)*(2) = (2)(2) = (2) 2 = 4

    Конечный результат этого примера не так интересен, ведь уже в ходе его решения ясно, что значение выражения равно квадрату двойки. И именно двойка получается при вычитании степени второго выражения из степени первого.

    Чтобы определить степень частного необходимо из степени делимого вычесть степень делителя. Правило работает при одинаковом основании для всех его значений и для всех натуральных степеней. В виде абстракции имеем:

    (а) х / (а) у = (а) х - у

    Из правила деления одинаковых оснований со степенями вытекает определение для нулевой степени. Очевидно, что следующее выражение имеет вид:

    (а) х / (а) х = (а) (х - х) = (а) 0

    С другой стороны, если мы произведем деление более наглядным способом, то получим:

    (а) 2 / (а) 2 = (а) (а) / (а) (а) = 1

    При сокращении всех видимых элементов дроби всегда получается выражение 1/1, то есть, единица. Поэтому принято считать, что любое основание, возведенное в нулевую степень, равно единице:

    Вне зависимости от значения а.

    Однако будет абсурдно, если 0 (при любых перемножениях дающий все равно 0) будет каким-то образом равен единице, поэтому выражение вида (0) 0 (ноль в нулевой степени) просто не имеет смысла, а к формуле (а) 0 = 1 добавляют условие: «если а не равно 0».

    Решим упражнение. Найдем значение выражения:

    (34) 7 * (34) 4 / (34) 11

    Так как основание везде одинаково и равно 34, то итоговое значение будет иметь такое же основание со степенью (согласно вышеуказанных правил):

    Иначе говоря:

    (34) 7 * (34) 4 / (34) 11 = (34) 0 = 1

    Ответ: выражение равно единице.

    Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.

    Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.

    Свойство № 1
    Произведение степеней

    Запомните!

    При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.

    a m · a n = a m + n , где «a » — любое число, а «m », «n » — любые натуральные числа.

    Данное свойство степеней также действует на произведение трёх и более степеней.

    • Упростить выражение.
      b · b 2 · b 3 · b 4 · b 5 = b 1 + 2 + 3 + 4 + 5 = b 15
    • Представить в виде степени.
      6 15 · 36 = 6 15 · 6 2 = 6 15 · 6 2 = 6 17
    • Представить в виде степени.
      (0,8) 3 · (0,8) 12 = (0,8) 3 + 12 = (0,8) 15

    Важно!

    Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями . Оно не относится к их сложению.

    Нельзя заменять сумму (3 3 + 3 2) на 3 5 . Это понятно, если
    посчитать (3 3 + 3 2) = (27 + 9) = 36 , а 3 5 = 243

    Свойство № 2
    Частное степеней

    Запомните!

    При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.

    = 11 3 − 2 · 4 2 − 1 = 11 · 4 = 44
  • Пример. Решить уравнение. Используем свойство частного степеней.
    3 8: t = 3 4

    T = 3 8 − 4

    Ответ: t = 3 4 = 81
  • Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.

    • Пример. Упростить выражение.
      4 5m + 6 · 4 m + 2: 4 4m + 3 = 4 5m + 6 + m + 2: 4 4m + 3 = 4 6m + 8 − 4m − 3 = 4 2m + 5
    • Пример. Найти значение выражения, используя свойства степени.
      = = = 2 9 + 2
      2 5
      = 2 11
      2 5
      = 2 11 − 5 = 2 6 = 64

      Важно!

      Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.

      Нельзя заменять разность (4 3 −4 2) на 4 1 . Это понятно, если посчитать (4 3 −4 2) = (64 − 16) = 48 , а 4 1 = 4

      Будьте внимательны!

      Свойство № 3
      Возведение степени в степень

      Запомните!

      При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.

      (a n) m = a n · m , где «a » — любое число, а «m », «n » — любые натуральные числа.


      Свойства 4
      Степень произведения

      Запомните!

      При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.

      (a · b) n = a n · b n , где «a », «b » — любые рациональные числа; «n » — любое натуральное число.

      • Пример 1.
        (6 · a 2 · b 3 · c) 2 = 6 2 · a 2 · 2 · b 3 · 2 · с 1 · 2 = 36 a 4 · b 6 · с 2
      • Пример 2.
        (−x 2 · y) 6 = ((−1) 6 · x 2 · 6 · y 1 · 6) = x 12 · y 6

      Важно!

      Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке.

      (a n · b n)= (a · b) n

      То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным.

      • Пример. Вычислить.
        2 4 · 5 4 = (2 · 5) 4 = 10 4 = 10 000
      • Пример. Вычислить.
        0,5 16 · 2 16 = (0,5 · 2) 16 = 1

      В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. В этом случае советуем поступать следующим образом.

      Например, 4 5 · 3 2 = 4 3 · 4 2 · 3 2 = 4 3 · (4 · 3) 2 = 64 · 12 2 = 64 · 144 = 9216

      Пример возведения в степень десятичной дроби.

      4 21 · (−0,25) 20 = 4 · 4 20 · (−0,25) 20 = 4 · (4 · (−0,25)) 20 = 4 · (−1) 20 = 4 · 1 = 4

      Свойства 5
      Степень частного (дроби)

      Запомните!

      Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.

      (a: b) n = a n: b n , где «a », «b » — любые рациональные числа, b ≠ 0, n — любое натуральное число.

      • Пример. Представить выражение в виде частного степеней.
        (5: 3) 12 = 5 12: 3 12

      Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.

    Если не обращать внимание на восьмую степень, что мы здесь видим? Вспоминаем программу 7 класса. Итак, вспомнили? Это формула сокращенного умножения, а именно - разность квадратов! Получаем:

    Внимательно смотрим на знаменатель. Он очень похож на один из множителей числителя, но что не так? Не тот порядок слагаемых. Если бы их поменять местами, можно было бы применить правило.

    Но как это сделать? Оказывается, очень легко: здесь нам помогает четная степень знаменателя.

    Магическим образом слагаемые поменялись местами. Это «явление» применимо для любого выражения в четной степени: мы можем беспрепятственно менять знаки в скобках.

    Но важно запомнить: меняются все знаки одновременно !

    Вернемся к примеру:

    И снова формула:

    Целыми мы называем натуральные числа, противоположные им (то есть взятые со знаком « ») и число.

    целое положительное число , а оно ничем не отличается от натурального, то все выглядит в точности как в предыдущем разделе.

    А теперь давайте рассмотрим новые случаи. Начнем с показателя, равного.

    Любое число в нулевой степени равно единице :

    Как всегда, зададимся вопросом: почему это так?

    Рассмотрим какую-нибудь степень с основанием. Возьмем, например, и домножим на:

    Итак, мы умножили число на, и получили то же, что и было - . А на какое число надо умножить, чтобы ничего не изменилось? Правильно, на. Значит.

    Можем проделать то же самое уже с произвольным числом:

    Повторим правило:

    Любое число в нулевой степени равно единице.

    Но из многих правил есть исключения. И здесь оно тоже есть - это число (в качестве основания).

    С одной стороны, в любой степени должен равняться - сколько ноль сам на себя ни умножай, все-равно получишь ноль, это ясно. Но с другой стороны, как и любое число в нулевой степени, должен равняться. Так что из этого правда? Математики решили не связываться и отказались возводить ноль в нулевую степень. То есть теперь нам нельзя не только делить на ноль, но и возводить его в нулевую степень.

    Поехали дальше. Кроме натуральных чисел и числа к целым относятся отрицательные числа. Чтобы понять, что такое отрицательная степень, поступим как в прошлый раз: домножим какое-нибудь нормальное число на такое же в отрицательной степени:

    Отсюда уже несложно выразить искомое:

    Теперь распространим полученное правило на произвольную степень:

    Итак, сформулируем правило:

    Число в отрицательной степени обратно такому же числу в положительной степени. Но при этом основание не может быть нулевым: (т.к. на делить нельзя).

    Подведем итоги:

    I. Выражение не определено в случае. Если, то.

    II. Любое число в нулевой степени равно единице: .

    III. Число, не равное нулю, в отрицательной степени обратно такому же числу в положительной степени: .

    Задачи для самостоятельного решения:

    Ну и, как обычно, примеры для самостоятельного решения:

    Разбор задач для самостоятельного решения:

    Знаю-знаю, числа страшные, но на ЕГЭ надо быть готовым ко всему! Реши эти примеры или разбери их решение, если не смог решить и ты научишься легко справляться с ними на экзамене!

    Продолжим расширять круг чисел, «пригодных» в качестве показателя степени.

    Теперь рассмотрим рациональные числа. Какие числа называются рациональными?

    Ответ: все, которые можно представить в виде дроби, где и - целые числа, причем.

    Чтобы понять, что такое «дробная степень» , рассмотрим дробь:

    Возведем обе части уравнения в степень:

    Теперь вспомним правило про «степень в степени» :

    Какое число надо возвести в степень, чтобы получить?

    Эта формулировка - определение корня -ой степени.

    Напомню: корнем -ой степени числа () называется число, которое при возведении в степень равно.

    То есть, корень -ой степени - это операция, обратная возведению в степень: .

    Получается, что. Очевидно, этот частный случай можно расширить: .

    Теперь добавляем числитель: что такое? Ответ легко получить с помощью правила «степень в степени»:

    Но может ли основание быть любым числом? Ведь корень можно извлекать не из всех чисел.

    Никакое!

    Вспоминаем правило: любое число, возведенное в четную степень - число положительное. То есть, извлекать корни четной степени из отрицательных чисел нельзя!

    А это значит, что нельзя такие числа возводить в дробную степень с четным знаменателем, то есть выражение не имеет смысла.

    А что насчет выражения?

    Но тут возникает проблема.

    Число можно представить в виде дргих, сократимых дробей, например, или.

    И получается, что существует, но не существует, а ведь это просто две разные записи одного и того же числа.

    Или другой пример: раз, то можно записать. Но стоит нам по-другому записать показатель, и снова получим неприятность: (то есть, получили совсем другой результат!).

    Чтобы избежать подобных парадоксов, рассматриваем только положительное основание степени с дробным показателем .

    Итак, если:

    • — натуральное число;
    • — целое число;

    Примеры:

    Степени с рациональным показателем очень полезны для преобразования выражений с корнями, например:

    5 примеров для тренировки

    Разбор 5 примеров для тренировки

    1. Не забываем об обычных свойствах степеней:

    2. . Здесь вспоминаем, что забыли выучить таблицу степеней:

    ведь - это или. Решение находится автоматически: .

    Ну а теперь - самое сложное. Сейчас мы разберем степень с иррациональным показателем .

    Все правила и свойства степеней здесь точно такие же, как и для степени с рациональным показателем, за исключением

    Ведь по определению иррациональные числа - это числа, которые невозможно представить в виде дроби, где и - целые числа (то есть, иррациональные числа - это все действительные числа кроме рациональных).

    При изучении степеней с натуральным, целым и рациональным показателем, мы каждый раз составляли некий «образ», «аналогию», или описание в более привычных терминах.

    Например, степень с натуральным показателем - это число, несколько раз умноженное само на себя;

    ...число в нулевой степени - это как-бы число, умноженное само на себя раз, то есть его еще не начали умножать, значит, само число еще даже не появилось - поэтому результатом является только некая «заготовка числа», а именно число;

    ...степень с целым отрицательным показателем - это как будто произошел некий «обратный процесс», то есть число не умножали само на себя, а делили.

    Между прочим, в науке часто используется степень с комплексным показателем, то есть показатель - это даже не действительное число.

    Но в школе мы о таких сложностях не думаем, постичь эти новые понятия тебе представится возможность в институте.

    КУДА МЫ УВЕРЕНЫ ТЫ ПОСТУПИШЬ! (если научишься решать такие примеры:))

    Например:

    Реши самостоятельно:

    Разбор решений:

    1. Начнем с уже обычного для нас правила возведения степени в степень:

    Теперь посмотри на показатель. Ничего он тебе не напоминает? Вспоминаем формулу сокращенного умножения разность квадратов:

    В данном случае,

    Получается, что:

    Ответ: .

    2. Приводим дроби в показателях степеней к одинаковому виду: либо обе десятичные, либо обе обычные. Получим, например:

    Ответ: 16

    3. Ничего особенного, применяем обычные свойства степеней:

    ПРОДВИНУТЫЙ УРОВЕНЬ

    Определение степени

    Степенью называется выражение вида: , где:

    • основание степени;
    • — показатель степени.

    Степень с натуральным показателем {n = 1, 2, 3,...}

    Возвести число в натуральную степень n — значит умножить число само на себя раз:

    Степень с целым показателем {0, ±1, ±2,...}

    Если показателем степени является целое положительное число:

    Возведение в нулевую степень :

    Выражение неопределенное, т.к., с одной стороны, в любой степени - это, а с другой - любое число в -ой степени - это.

    Если показателем степени является целое отрицательное число:

    (т.к. на делить нельзя).

    Еще раз о нулях: выражение не определено в случае. Если, то.

    Примеры:

    Степень с рациональным показателем

    • — натуральное число;
    • — целое число;

    Примеры:

    Свойства степеней

    Чтобы проще было решать задачи, попробуем понять: откуда эти свойства взялись? Докажем их.

    Посмотрим: что такое и?

    По определению:

    Итак, в правой части этого выражения получается такое произведение:

    Но по определению это степень числа с показателем, то есть:

    Что и требовалось доказать.

    Пример : Упростите выражение.

    Решение : .

    Пример : Упростите выражение.

    Решение : Важно заметить, что в нашем правиле обязательно должны быть одинаковые основания. Поэтому степени с основанием мы объединяем, а остается отдельным множителем:

    Еще одно важное замечание: это правило - только для произведения степеней !

    Ни в коем случае нелья написать, что.

    Так же, как и с предыдущим свойством, обратимся к определению степени:

    Перегруппируем это произведение так:

    Получается, что выражение умножается само на себя раз, то есть, согласно определению, это и есть -я степень числа:

    По сути это можно назвать «вынесением показателя за скобки». Но никогда нельзя этого делать в сумме: !

    Вспомним формулы сокращенного умножения: сколько раз нам хотелось написать? Но это неверно, ведь.

    Степень с отрицательным основанием.

    До этого момента мы обсуждали только то, каким должен быть показатель степени. Но каким должно быть основание? В степенях с натуральным показателем основание может быть любым числом .

    И правда, мы ведь можем умножать друг на друга любые числа, будь они положительные, отрицательные, или даже. Давайте подумаем, какие знаки (« » или « ») будут иметь степени положительных и отрицательных чисел?

    Например, положительным или отрицательным будет число? А? ?

    С первым все понятно: сколько бы положительных чисел мы друг на друга не умножали, результат будет положительным.

    Но с отрицательными немного интереснее. Мы ведь помним простое правило из 6 класса: «минус на минус дает плюс». То есть, или. Но если мы умножим на (), получится - .

    И так до бесконечности: при каждом следующем умножении знак будет меняться. Можно сформулировать такие простые правила:

    1. четную степень, - число положительное .
    2. Отрицательное число, возведенное в нечетную степень, - число отрицательное .
    3. Положительное число в любой степени - число положительное.
    4. Ноль в любой степени равен нулю.

    Определи самостоятельно, какой знак будут иметь следующие выражения:

    1. 2. 3.
    4. 5. 6.

    Справился? Вот ответы:

    1) ; 2) ; 3) ; 4) ; 5) ; 6) .

    В первых четырех примерах, надеюсь, все понятно? Просто смотрим на основание и показатель степени, и применяем соответствующее правило.

    В примере 5) все тоже не так страшно, как кажется: ведь неважно, чему равно основание - степень четная, а значит, результат всегда будет положительным. Ну, за исключением случая, когда основание равно нулю. Основание ведь не равно? Очевидно нет, так как (потому что).

    Пример 6) уже не так прост. Тут нужно узнать, что меньше: или? Если вспомнить, что, становится ясно, что, а значит, основание меньше нуля. То есть, применяем правило 2: результат будет отрицательным.

    И снова используем определение степени:

    Все как обычно - записываем определение степеней и, делим их друг на друга, разбиваем на пары и получаем:

    Прежде чем разобрать последнее правило, решим несколько примеров.

    Вычисли значения выражений:

    Решения :

    Если не обращать внимание на восьмую степень, что мы здесь видим? Вспоминаем программу 7 класса. Итак, вспомнили? Это формула сокращенного умножения, а именно - разность квадратов!

    Получаем:

    Внимательно смотрим на знаменатель. Он очень похож на один из множителей числителя, но что не так? Не тот порядок слагаемых. Если бы их поменять местами, можно было бы применить правило 3. Но как это сделать? Оказывается, очень легко: здесь нам помогает четная степень знаменателя.

    Если домножить его на, ничего не поменяется, верно? Но теперь получается следующее:

    Магическим образом слагаемые поменялись местами. Это «явление» применимо для любого выражения в четной степени: мы можем беспрепятственно менять знаки в скобках. Но важно запомнить: меняются все знаки одновременно! Нельзя заменить на, изменив только один неугодный нам минус!

    Вернемся к примеру:

    И снова формула:

    Итак, теперь последнее правило:

    Как будем доказывать? Конечно, как обычно: раскроем понятие степени и упростим:

    Ну а теперь раскроем скобки. Сколько всего получится букв? раз по множителей - что это напоминает? Это не что иное, как определение операции умножения : всего там оказалось множителей. То есть, это, по определению, степень числа с показателем:

    Пример:

    Степень с иррациональным показателем

    В дополнение к информации о степенях для среднего уровня, разберем степень с иррациональным показателем. Все правила и свойства степеней здесь точно такие же, как и для степени с рациональным показателем, за исключением - ведь по определению иррациональные числа - это числа, которые невозможно представить в виде дроби, где и - целые числа (то есть, иррациональные числа - это все действительные числа, кроме рациональных).

    При изучении степеней с натуральным, целым и рациональным показателем, мы каждый раз составляли некий «образ», «аналогию», или описание в более привычных терминах. Например, степень с натуральным показателем - это число, несколько раз умноженное само на себя; число в нулевой степени - это как-бы число, умноженное само на себя раз, то есть его еще не начали умножать, значит, само число еще даже не появилось - поэтому результатом является только некая «заготовка числа», а именно число; степень с целым отрицательным показателем - это как будто произошел некий «обратный процесс», то есть число не умножали само на себя, а делили.

    Вообразить степень с иррациональным показателем крайне сложно (так же, как сложно представить 4-мерное пространство). Это, скорее, чисто математический объект, который математики создали, чтобы расширить понятие степени на все пространство чисел.

    Между прочим, в науке часто используется степень с комплексным показателем, то есть показатель - это даже не действительное число. Но в школе мы о таких сложностях не думаем, постичь эти новые понятия тебе представится возможность в институте.

    Итак, что мы делаем, если видим иррациональный показатель степени? Всеми силами пытаемся от него избавиться!:)

    Например:

    Реши самостоятельно:

    1) 2) 3)

    Ответы:

    1. Вспоминаем формулу разность квадратов. Ответ: .
    2. Приводим дроби к одинаковому виду: либо обе десятичные, либо обе обычные. Получим, например: .
    3. Ничего особенного, применяем обычные свойства степеней:

    КРАТКОЕ ИЗЛОЖЕНИЕ РАЗДЕЛА И ОСНОВНЫЕ ФОРМУЛЫ

    Степенью называется выражение вида: , где:

    Степень с целым показателем

    степень, показатель которой — натуральное число (т.е. целое и положительное).

    Степень с рациональным показателем

    степень, показатель которой — отрицательные и дробные числа.

    Степень с иррациональным показателем

    степень, показатель которой — бесконечная десятичная дробь или корень.

    Свойства степеней

    Особенности степеней.

    • Отрицательное число, возведенное в четную степень, - число положительное .
    • Отрицательное число, возведенное в нечетную степень, - число отрицательное .
    • Положительное число в любой степени - число положительное.
    • Ноль в любой степени равен.
    • Любое число в нулевой степени равно.

    ТЕПЕРЬ ТЕБЕ СЛОВО...

    Как тебе статья? Напиши внизу в комментариях понравилась или нет.

    Расскажи о своем опыте использования свойств степеней.

    Возможно у тебя есть вопросы. Или предложения.

    Напиши в комментариях.

    И удачи на экзаменах!