Космические лучи и радиация. Реферат: «Космическое излучение

Русский философ Н.Ф. Фёдоров (1828 - 1903) впервые заявил о том, что перед людьми лежит путь к освоению всего космического пространства как стратегического пути развития человечества. Он обратил внимание на то, что только такая безбрежная область способна привлечь к себе всю духовную энергию, все силы человечества, которые растрачиваются на взаимные трения или расходуются по пустякам. ... Его идея о переориентации промышленного и научного потенциала военно-промышленного комплекса на исследование и освоение космоса, в том числе и дальнего, способно кардинальным образом снизить военную опасность в мире. Для того, чтобы это произошло на практике, сначала это должно произойти в головах людей, в первую очередь принимающих глобальные решения. ...

На пути освоения космического пространства возникают различные сложности. Главным препятствием на первый план якобы выходит проблема радиации, вот перечень публикаций об этом:

29.01.2004 , газета «Труд», «Облучение на орбите»;
("И вот печальная статистика. Из 98 наших летавших космонавтов в живых нет уже восемнадцати, то есть каждого пятого. Из них четверо погибли при возвращении на Землю, Гагарин - в авиакатастрофе. Четверо умерли от рака (Анатолию Левченко было 47 лет, Владимиру Васютину - 50...). ")

2. За 254 дня полёта на Марс марсохода «Кьюриосити» доза облучения составила более 1 Зв , т.е. в среднем более 4 мЗв/день.

3. При полётах космонавтов вокруг Земли доза облучения составляет от 0,3 до 0,8 мЗв/день ()

4. С момента открытия радиации, её научного изучения и практического массового освоения промышленностью накоплен огромный , в том числе и по воздействию радиации на организм человека .
Чтобы связать заболевание космонавта с воздействием космической радиации нужно сравнивать между собой заболеваемость космонавтов, летавших в космос, с заболеваемостью космонавтов контрольной группы, которые в космосе не были.

5. В космической интернет энциклопедии www.astronaut.ru собрана вся информация по космонавтам, астронавтам и тайконавтам, летавшим в космос, а также кандидатах, отобранных для полётов, но не летавших в космос.
Пользуясь этими данными я составил сводную таблицу по СССР/России с персональными налётами, датами рождения и смерти, причинами смерти и др.
Обобщенные данные представлены в таблице:

В базе
космической
энциклопедии,
человек
Живут,
человек
Умерли
от всех причин,
человек
Умерли
от рака,
человек
Летали в космос 116 ,
из них
28 - с налетом до 15 дней,
45 - с налетом от 16 до 200 дней,
43 - с налетом от 201 до 802 дней
87
(ср.возраст - 61 год)

из них
61
на пенсии

29 (25%)
ср.возраст - 61 год
7 (6%),
из них

3 - с налетом 1-2 дня,
3 - с налетом 16-81 дней
1 - с налётом 269 дней
Не летали в космос 158 101
(ср.возраст - 63 года)

из них
88
на пенсии

57 (36%)
ср.возраст - 59 лет
11 (7%)

Существенных и явных отличий между группой лиц, летавших в космос и контрольной группой не обнаруживается.
Из 116 человек СССР/России летавших в космос хотя бы единожды 67 человек имеет индивидуальный космический налет более 100 суток (максимально 803 суток), 3 человека из них умерли в 64, 68 и 69 лет. У одного из умерших был рак. Остальные на ноябрь 2013 года живы, включая 20 космонавтов с максимальными налётами (от 382 до 802 суток) с дозами (210 - 440 мЗв) при среднесуточной 0,55 мЗв. Что подтверждает радиационную безопасность длительных космических полетов.

6. Также много и других данных по здоровью людей, получивших повышенные дозы радиационного облучения в годы создания атомной отрасли в СССР. Так, «на ПО «Маяк»: «В 1950-1952 гг. мощности дозы внешнего гамма(излучения вблизи технологических аппаратов достигали 15-180 мР/ч. Годовые дозы внешнего облучения у 600 наблюдаемых работников завода составляли 1,4-1,9 Зв/год. В отдельных случаях максимальные годовые дозы внешнего облучения достигали 7-8 Зв/год. …
Из 2300 работников, перенесших хроническую лучевую болезнь, после 40-50 лет наблюдений в живых остается 1200 человек со средней суммарной дозой 2,6 Гр при среднем возрасте 75 лет. А из 1100 умерших (средняя доза 3,1 Гр) в структуре причин смерти заметно увеличение доли злокачественных опухолей, но и их средний возраст составил 65 лет.»
«Проблемы ядерного наследия и пути их решения.» — Под общей редакцией Е.В. Евстратова, А.М. Агапова, Н.П. Лаверова, Л.А. Большова, И.И. Линге. — 2012 г. — 356 с. — Т1. (скачать)

7. «… обширные исследования, охватившие около 100 000 человек, переживших атомные бомбардировки Хиросимы и Нагасаки в 1945 году, показали, что пока рак является единственной причиной повышения смертности в этой группе населения.
«Однако в то же самое время развитие рака под действием радиации не является специфическим, оно может вызываться также другими природными или техногенными факторами (курением, загрязнением воздуха, воды, продуктов химическими веществами и др.). Радиация лишь повышает риск, существующий без нее. Например, российские медики считают, что вклад нерационального питания в развитие раковых заболеваний составляет 35%, а курения — 31%. А вклад радиации, даже при серьезном облучении, не больше 10%».()


(ист. «Ликвидаторы. Радиологические последствия Чернобыля», В. Иванов, Москва, 2010 год (скачать)

8. «В современной медицине радиотерапия является, одним из трех ключевых методов лечения онкологических заболеваний (двумя другими являются химиотерапия и традиционная хирургия). При этом, если отталкиваться от тяжести побочных эффектов, лучевая терапия переносится гораздо легче. В особо тяжелых случаях пациенты могут получать очень высокую суммарную дозу - до 6 грей (при том, что доза порядка 7-8 грей является смертельной!). Но даже при такой огромной дозе, когда больной выздоравливает, он зачастую возвращается к полноценной жизни здорового человека - даже дети, рожденные бывшими пациентами клиник лучевой терапии, не обнаруживают никаких признаков врожденных генетических отклонений, связанных с облучением.
Если тщательно обдумать и взвесить факты, то такое явление, как радиофобия - иррациональный страх перед радиацией и всем, что с ней связано - становится совершенно нелогичным. Действительно: люди считают, что случилось нечто страшное, когда дисплей дозиметра показывает хотя бы двукратное превышение естественного фона - и в то же время с удовольствием ездят поправлять здоровье на радоновые источники, где фон может быть превышен в десять и более раз. Большие дозы ионизирующего излучения излечивают больных смертельными заболеваниями - и в то же время человек, случайно попавший в поле излучения, однозначно приписывает ухудшение своего здоровья (если такое ухудшение вообще произошло) действию радиации.» ("Радиация в медицине" , Ю.С.Коряковский, А.А. Акатов, Москва, 2009г.)
Статистика смертности говорит о том, что каждый третий житель Европы умирает от различного рода раковых заболеваний.
Одним из основных методов лечения злокачественных опухолей является лучевая терапия, которая необходима примерно для 70% онкологических больных, тогда как в России ее получают только около 25% нуждающихся. ()

На основе всех накопленных данных, можно смело утверждать: проблема радиации при освоении космоса сильно преувеличена и дорога к освоению космического пространства для человечества открыта.

P.S. Статья была опубликована в профессиональном журнале "Атомная стратегия" , а перед этим на сайте журнала была оценена рядом специалистов. Вот наиболее информативный комментарий полученный там: "Что такое космическое излучение. Это излучение Солнечное + Галактическое. Солнечное во много раз интенсивней Галактического, особенно в период солнечной активности. Именно оно определяет основную дозу. Его компонентный и энергетический состав – протоны (90%) и остальное менее существенное(электр., гамма,…). Энергия основной доли протонов- от кэВ до 80-90 МэВ. (Есть и высокоэнергетический хвост, но это уже доли проц.) Пробег 80 МэВ-ного протона ~7 (г/см^2) или около 2,5 см алюминия. Т.е. в стенке космического корабля толщиной 2,5-3 см они полностью поглощаются. Хотя протоны генерируют в ядерных реакциях на алюминии нейтроны, но эффективность генерации небольшая. Таким образом, мощность дозы за обшивкой корабля достаточно высокая (т.к. коэффициент конверсии поток-доза для протонов указанных энергий очень большой). А внутри уровень вполне приемлемый, хотя и повыше, чем на Земле. Вдумчивый и дотошный читатель сразу ехидно спросит – А как же в самолете. Ведь там мощность дозы намного выше, чем на Земле. Ответ – правильно. Объяснение простое. Высокоэнергетические солнечные и галактические протоны и ядра взаимодействую с ядрами атмосферы (реакции множественного рождения адронов), вызывают адронный каскад (ливень). Поэтому высотное распределение плотности потока ионизирующих частиц в атмосфере имеет максимум. То же самое и с электрон-фотонным ливнем. Адронный и e-g ливни развиваются и гасятся в атмосфере. Толщина атмосферы ~80-100 г/см^2 (эквивалентно 200 см бетона или 50 см железа.) А в обшивке вещества недостаточно для образования хорошего ливня. Отсюда кажущийся парадокс – чем больше толщина защиты корабля, тем выше мощность дозы внутри. Поэтому лучше тонкая защита, чем толстая. Но! 2-3 см защита обязательна (ослабляет дозу от протонов на порядок). Теперь по цифрам. На Марсе дозиметр Кьюриосити набрал около 1 Зв за почти год. Причина достаточно высокой дозы – дозиметр не имел тонкого защитного экрана, о котором говорилось выше. Но все таки, много или мало 1 Зв? Смертельно ли? Пара моих друзей ликвидаторов набрали каждый около 100 Р (разумеется по гамма, а в пересчете на адроны – где-то около 1 Зв). Чувствуют себя лучше, чем мы с вами. Не инвалиды. Официальный подход по нормативным документам. - С разрешения территориальных органов госсаннадзора можно за год получить планируемую дозу 0,2 Зв. (Т.е. сопоставимо с 1 Зв). А прогнозируемый уровень облучения, при которых необходимо срочное вмешательство – 1Гр на все тело(это поглощенная доза, приблизительно равная 1 Зв по эквивалентной дозе.) А на легкие - 6 Гр. Т.е. для получивших на все тело дозу менее 1 Зв и не требуется вмешательства. Так, что не так и страшно. Но лучше, конечно, такие дозы не получать. "

где μ – массовый коэффициент ослабления рентгеновского излучения см 2 /г, х/ ρ – массовая толщина зашиты г/см 2 . Если рассматривают несколько слоев, тогда под экспонентой находятся несколько слагаемых со знаком минус.

Мощность поглощенной доза радиации от рентгеновского излучения за единицу времени N определяется интенсивностью излучения I и массовым коэффициентом поглощения μ EN

N = μ EN I

Для расчетов массовые коэффициенты ослабления и поглощения для разных значений энергии рентгеновского излучения взяты согласно NIST X-Ray Mass Attenuation Coefficients.

В таблице 1 приведены используемые параметры и результаты расчетов для поглощенной и эквивалентной дозы радиации от защиты.

Таблица 1. Характеристика рентгеновского излучения, коэффициенты ослабления в Al и поглощения в организме, толщина защиты, результат расчета поглощенной и эквивалентной дозы радиации за сутки*

Рентгеновское излучение от Солнца

Коэф. ослаб. и поглощ.

Поглощенная и эквивалентная доза радиации от внешней защиты, рад/сут (мЗв/сут)

длина
волны,
А
E, кэВ сред. поток, Ватт/м 2 Al, см 2 /г орг.
кость,
см 2 /г
1,5 г/ см 2 (LM-5) 0,35 г/ см 2 (скаф. Кречет) 0,25 г/ см 2 (скаф. XA-25) 0,15 г/ см 2 (скаф. XA-15) 0,25 г/ см 2 (скаф. XO-25) 0,21 г/ см 2 (скаф. ОрланМ) 0,17 г/ см 2 (скаф. A7L)
1,2560 10,0 1,0·10 -6 26,2 28,5 0,0000 0,0006 0,0083 0,1114 1,0892 1,2862 1,5190
0,6280 20,0 3,0·10 -9 3,44 4,00 0,0001 0,0038 0,0054 0,0075 0,0061 0,0063 0,0065
0,4189 30,0 1,0·10 -9 1,13 1,33 0,0003 0,0010 0,0010 0,0012 0,0009 0,0009 0,0009

Итого рад/сут:

Итого мЗв/сут:

0,000 0,004 0,005 0,054 0,015 0,147 0,120 1,202 1,0961 10,961 1,2934 12,934 1,5263 15,263

*Примечание – толщина защиты LM-5 и скафандров “Кречет”, “ХА-25” и “ХА-15” в алюминиевом эквиваленте, что соответствует 5,6, 1,3, 0,9 и 0,6 мм листового алюминия; толщина защиты “ХО-25”, “Орлан-М” и A7L тканеэквивалентного вещества, что соответствует 2,3, 1,9 и 1,5 мм тканеэквивалента.

Данную таблицу используют для оценки дозы радиации за сутки для других значений интенсивности рентгеновского излучения, умножая на коэффициент отношения между табличным значением потока и искомым усредненным за сутки. Результаты расчетов приведена на рис. 3 и 4 в виде шкалы поглощенной дозы радиации.

Расчет показывает, что лунный модуль с защитой 1,5 г/см 2 (или 5,6 мм Al) полностью поглощает мягкое и жесткое рентгеновское излучение Солнца. Для самой мощной вспышке от 4 ноября 2003 года (по состоянию на 2013 год и регистрируемых с 1976 года) интенсивность ее рентгеновского излучения в пике составляла 28·10−4 Вт/м 2 для мягкого излучения и 4·10−4 Вт/м 2 для жесткого излучения. За сутки усредненная интенсивность составит, соответственно, 10 Вт/м 2 сут и 1,3 Вт/м 2 . Доза радиации для экипажа за сутки равна 8 рад или 0,08 Гр, что безопасно для человека.

Вероятность подобных событий, как 4 ноября 2003 года, определяется как 30 минут за 37 лет. Или равна ~1/650000 час−1. Это очень низкая вероятность. Для сравнения – среднестатистический человек проводит вне дома за всю свою жизнь ~300000 часов, что соответствует возможности быть очевидцем ренгеновского события от 4 ноября 2003 года с вероятностью 1/2.

Для определения радиационных требований к скафандру мы рассматриваем рентгеновские вспышки на Солнце, когда их интенсивность увеличивается в 50 раз для мягкого излучения и 1000 раз для жесткого излучения по отношению к среднему суточному фону максимальной активности Солнца. Согласно рис. 4, вероятность таких событий – 3 вспышки за 30 лет. Интенсивность для мягкого рентгеновского излучения будет равна 4,3 Ватт/м 2 сутки и для жесткого – 0,26 Вт/м 2 .

Радиационные требования и параметры лунного скафандра

В скафандре на поверхности Луны эквивалентные дозы радиации от рентгеновского излучения увеличиваются.

При использовании скафандра “Кречет” для табличных значений интенсивности излучения доза радиации составит 5 мрад/сут. Защиту от рентгеновского излучения обеспечивает 1,2-1,3 мм листового алюминия, уменьшая интенсивность излучения в ~e9=7600 раз. При использовании меньшей толщины листового алюминия дозы радиации увеличиваются: для 0,9 мм Al – 15 мрад/сути, для 0,6 мм Al – 120 мрад/сути.

Согласно МАГАТЭ, такой радиационный фон признан нормальным условием для человека.

При увеличении мощности излучения от Солнца до значения 0,86 Ватт/м 2 сутки доза радиации для защиты 0,6 мм Al равна 1,2 рад/сути, что находится на границе нормальных и опасных условий для здоровья человека.

Лунный скафандр “Кречет”. Вид на открытый ранцевый люк, через который космонавт входит в скафандр. В рамках советской лунной программы понадобилось создать скафандр, позволяющий достаточно длительное время работать непосредственно на Луне. Он имел название «Кречет» и стал прообразом скафандров «Орлан», которые используются сегодня на для работы в открытом космосе. Вес 106 кг.

Доза радиации увеличивается на порядок при использовании защиты тканеэквивалентного вещества (полимеры, как майлар, капрон, фетр, стекловолокно). Так для скафандра “Орлан-М” при защите 0,21 г/см 2 тканеэквивалентного вещества интенсивность излучения уменьшается в ~e3=19 раз и доза радиации от рентгеновского излучения для костной ткани организма составит 1,29 рад/сути. Для защиты 0,25 г/см 2 и 0,17 г/см 2 , соответственно, 1,01 и 1,53 рад/сути.

Экипаж Аполлон-16 Джон Янг (командир), Томас Маттингли (пилот командного модуля) и Чарльз Дьюк (пилот лунного модуля) в скафандре A7LB. Самостоятельно одеть такой скафандр сложно.

Юджин Сернан в скафандре A7LB, миссия Аполлона-17.

A7L - основной тип скафандра использовавшийся астронавтами НАСА в программе Аполлон до 1975 года.Вид с разрезом верхней одежды. Верхняя одежда включала: 1) огнеупорная ткань из стекловолокна весом 2 кг, 2) экранно-вакуумная тепловая изоляция (ЭВТИ) для защиты человека от перегрева при нахождении на Солнце и от чрезмерной потери тепла на неосвещенной поверхности Луны, представляет собой пакет из 7 слоев тонкой пленки майлара и капрона с блестящей алюминированной поверхностью, между слоями проложена тончайшая вуаль волокон дакрона, вес составлял 0,5 кг; 3) противометеорный слой из нейлона с неопреновым покрытием (толщиной 3–5 мм) и весом 2–3 кг. Внутренняя оболочка скафандра изготавливалась из прочной ткани, пластика, прорезиненной ткани и резины. Масса внутренней оболочки ~20 кг. В комплект входили шлем, рукавицы, боты и СОЖ. Масса комплекта скафандра A7L для внекорабельной деятельности 34,5 кг

При увеличении интенсивности излучения от Солнца до значения 0,86 Ватт/м 2 сутки доза радиации для защиты 0,25 г/см 2 , 0,21 г/см 2 и 0,17 г/см 2 тканеэквивалентного вещества, соответственно, равна 10,9, 12,9 и 15,3 рад/сути. Такая доза равноценна 500-700 процедурам рентгенографии грудной клетки человека.Однократная доза 10-15 рад влияет на нервную систему и психику, на 5% повышается риск заболевания лейкозом крови, наблюдают умственную отсталость у потомков родителей. По МАГАТЭ такой радиационный фон представляет очень серьезную опасность для человека.

При интенсивности рентгеновского излучения 4,3 Ватт/м 2 сутки дозы радиации за сутки имеет значение 50-75 рад и вызывает радиационные заболевания.

Космонавт Михаил Тюрин в скафандре Орлан-М. Скафандр использовался на станции МИР и МКС с 1997 по 2009. Вес 112 кг. В настоящее время на МКС используется Орлан-МК (модернизированный, компьютеризированный). Вес 120 кг.

Самый простой выход – это снижение времени пребывания космонавта под прямыми лучами Солнца до 1 часа. Поглощенная доза радиации в скафандре Орлан-М уменьшится до 0,5 рад. Другой подход – работа в тени космической станции, в этом случае длительность внекорабельной деятельности можно значительно увеличить, несмотря на высокое внешнее рентгеновское излучение. В случае пребывания на поверхности Луны далеко за пределами лунной базы быстрое возвращение и укрытие не всегда возможно. Можно воспользоваться тенью лунного ландшафта или зонтиком от ренгеновских лучей…

Простым эффективным способом защиты от рентгеновского излучения Солнца является использование листового алюминия в скафандре. При 0,9 мм Al (толщина 0,25 г/см 2 в алюминиевом эквиваленте) скафандр имеет 67-кратный запас от среднего рентгеновского фона. При 10 кратном увеличении фона до 0,86 Ватт/м 2 сутки доза радиации равна 0,15 рад/сути. Даже при внезапном 50-кратном увеличении рентгеновского потока от среднего фона до значения 4,3 Ватт/м 2 сутки поглощенная доза радиации за сутки не превысит 0,75 рад.

При 0,7 мм Al (толщина 0,20 г/см 2 в алюминиевом эквиваленте) защита сохраняет 35-кратный радиационный запас. При 0,86 Ватт/м 2 сутки доза радиации составит не более 0,38 рад/сути. При 4,3 Ватт/м 2 сутки поглощенная доза радиации не превысит 1,89 рад.

Как показывают расчеты, для обеспечения радиационной защиты, как 0,25 г/см 2 в алюминиевом эквиваленте, требуется тканеэквивалент в 1,4 г/см 2 . При таком значении массовой защиты скафандра возрастет его толщина в несколько раз и понижает его юзабилити.

ИТОГИ И ВЫВОДЫ

В случае протонного излучения тканеэквивалентная защита имеет преимущество перед алюминием на 20-30%.

При рентгеновском излучении предпочтение имеет защита скафандра в алюминиевом эквиваленте, чем из полимеров. Данный вывод совпадает с результатами исследований Дэвида Смита (David Smith) и Джона Скало.

Лунные скафандры должны иметь два параметра защиты:

1) параметр защиты скафандра тканеэквивалентного вещества от протонного излучения, не ниже 0,21 г/см 2 ;
2) параметр защиты скафандра в алюминиевом эквиваленте от рентгеновского излучения, не ниже 0,20 г/см 2 .

При использовании во внешней оболочке скафандра с площадью 2,5-3 м 2 защиты Al масса скафандра на базе Орлан-МК увеличится на 5-6 кг.

Для лунного скафандра суммарная поглощенная доза радиации от солнечного ветра и рентгеновских лучей Солнца в год максимума солнечной активности составит 0,19 рад/сут (эквивалентная доза радиации – 8,22 мЗв/сут). Такой скафандр имеет 4-кратный запас радиационной прочности для солнечного ветра и 35-кратный запас радиационной прочности для рентгеновского излучения. Никакие дополнительные меры защиты, как радиационные алюминиевые зонтики, не нужны.

Для скафандра Орлан-М, соответственно, 1,45 рад/сут (эквивалентная доза радиации – 20,77 мЗв/сут). Скафандр имеет 4-кратный запас радиационной прочности для солнечного ветра.

Для скафандра A7L (A7LB) миссии Аполлон, соответственно, 1,70 рад/сут (эквивалентная доза радиации – 23,82 мЗв/сут). Скафандр имеет 3-кратный запас радиационной прочности для солнечного ветра.

При непрерывном пребывание в течении 4 суток на поверхности Луны в современных скафандрах Орлан или типа A7L человек набирает дозу радиации 0,06-0,07 Гр, что представляет опасность для его здоровья. Это соответствует выводам Дэвида Смита и Джона Скало, что в окололунном космическом пространстве в современном скафандре за 100 часов с вероятностью 10% человек получит опасную для здоровья и жизни дозу радиации выше 0,1 Грэй. Для скафандров Орлан или типа A7L необходимы дополнительные меры защиты от рентгеновского излучения, как радиационные алюминиевые зонтики.

Предлагаемый лунный скафандр на базе Орлан за 4 суток набирает дозу радиации 0,76 рад или 0,0076 Гр. (Один час пребывания на поверхности луны в скафандре под солнечным ветром соответствует двум процедурам рентгенографии грудной клетки). Согласно МАГАТЭ радиационный риск признан нормальным условием для человека.

NASA проводит испытания нового скафандра для готовящегося в 2020 году полета человека на Луну.

Кроме радиационного риска от солнечного ветра и рентгеновского излучения Солнца идет поток . Об этом далее.

Орбиту Международной космической станции несколько раз поднимали, и сейчас ее высота составляет более 400 км. Это делалось для того, чтобы увести летающую лабораторию от плотных слоев атмосферы, где молекулы газов еще довольно заметно тормозят полет и станция теряет высоту. Чтобы не корректировать орбиту слишком часто, хорошо бы поднять станцию еще выше, но делать этого нельзя. Примерно в 500 км от Земли начинается нижний (протонный) радиационный пояс. Длительный полет внутри любого из радиационных поясов (а их два) будет гибельным для экипажей.

Космонавт-ликвидатор

Тем не менее нельзя сказать, что на высоте, на которой сейчас летает МКС, проблемы радиационной безопасности нет. Во‑первых, в районе Южной Атлантики существует так называемая Бразильская, или Южно-Атлантическая, магнитная аномалия. Здесь магнитное поле Земли как бы провисает, а с ним ближе к поверхности оказывается нижний радиационный пояс. И МКС его все-таки касается, пролетая в этом районе.

Во-вторых, человеку в космосе угрожает галактическое излучение — несущийся со всех направлений и с огромной скоростью поток заряженных частиц, порожденных взрывами сверхновых или деятельностью пульсаров, квазаров и других аномальных звездных тел. Часть этих частиц задерживается магнитным полем Земли (что является одним из факторов формирования радиационных поясов), другая часть теряет энергию в столкновении с молекулами газов в атмосфере. Что-то долетает и до поверхности Земли, так что небольшой радиоактивный фон присутствует на нашей планете абсолютно везде. В среднем проживающий на Земле человек, не имеющий дела с источниками радиации, ежегодно получает дозу в 1 миллизиверт (мЗв). Космонавт на МКС зарабатывает 0,5−0,7 мЗв. Ежедневно!

Радиационные пояса Земли представляют собой области магнитосферы, в которых накапливаются высокоэнергетичные заряженные частицы. Внутренний пояс состоит преимущественно из протонов, внешний — из электронов. В 2012 году спутником NASA был открыт еще один пояс, который находится между двумя известными.

«Можно привести интересное сопоставление, — говорит заведующий отделом радиационной безопасности космонавтов Института медико-биологических проблем РАН, кандидат физико-математических наук Вячеслав Шуршаков. — Допустимой ежегодной дозой для сотрудника АЭС считаются 20 мЗв — в 20 раз больше, чем получает обычный человек. Для специалистов по ликвидации аварий, этих особым образом подготовленных людей, максимальная годовая доза составляет 200 мЗв. Это уже в 200 раз больше по сравнению с обычной дозой и… практически столько же, сколько получает космонавт, проработавший год на МКС».

В настоящее время медициной установлена максимальная предельная доза, которую в течение жизни человеку превышать нельзя во избежание серьезных проблем со здоровьем. Это 1000 мЗв, или 1 Зв. Таким образом, даже работник АЭС с его нормативами может спокойно трудиться лет пятьдесят, ни о чем не беспокоясь. Космонавт же исчерпает свой лимит всего за пять лет. Но, даже налетав четыре года и набрав свои законные 800 мЗв, он уже вряд ли будет допущен в новый полет годичной продолжительности, потому что появится угроза превышения лимита.


«Еще одним фактором радиационной опасности в космосе, — объясняет Вячеслав Шуршаков, — является активность Солнца, особенно так называемые протонные выбросы. В момент выброса за короткое время космонавт на МКС может получить дополнительно до 30 мЗв. Хорошо, что солнечные протонные события происходят редко — 1−2 раза за 11-летний цикл солнечной активности. Плохо, что эти процессы возникают стохастически, в случайном порядке, и плохо поддаются прогнозированию. Я не помню такого, чтобы мы были бы заранее предупреждены нашей наукой о грядущем выбросе. Обычно дело обстоит по‑другому. Дозиметры на МКС вдруг показывают повышение фона, мы звоним специалистам по Солнцу и получаем подтверждение: да, наблюдается аномальная активность нашего светила. Именно из-за таких внезапно возникающих солнечных протонных событий мы никогда точно не знаем, какую именно дозу привезет с собой космонавт из полета».

Частицы, сводящие с ума

Радиационные проблемы у экипажей, отправляющихся на Марс, начнутся еще у Земли. Корабль массой 100 или более тонн придется долго разгонять по околоземной орбите, и часть этой траектории пройдет внутри радиационных поясов. Это уже не часы, а дни и недели. Дальше — выход за пределы магнитосферы и галактическое излучение в его первозданной форме, много тяжелых заряженных частиц, воздействие которых под «зонтиком» магнитного поля Земли ощущается мало.


«Проблема в том, — говорит Вячеслав Шуршаков, — что влияние частиц на критические органы человеческого организма (например, нервную систему) сегодня мало изучено. Возможно, радиация станет причиной потери памяти у космонавта, вызовет ненормальные поведенческие реакции, агрессию. И очень вероятно, что эти эффекты не будут привязаны к конкретной дозе. Пока не накоплено достаточно данных по существованию живых организмов за пределами магнитного поля Земли, отправляться в длительные космические экспедиции очень рискованно».

Когда специалисты по радиационной безопасности предлагают конструкторам космических аппаратов усилить биозащиту, те отвечают, казалось бы, вполне рациональным вопросом: «А в чем проблема? Разве кто-то из космонавтов умер от лучевой болезни?» К сожалению, полученные на борту даже не звездолетов будущего, а привычной нам МКС дозы радиации хоть и вписываются в нормативы, но вовсе не безобидны. Советские космонавты почему-то никогда не жаловались на зрение — видимо, побаиваясь за свою карьеру, но американские данные четко показывают, что космическая радиация повышает риск катаракты, помутнения хрусталика. Исследования крови космонавтов демонстрируют увеличение хромосомных аберраций в лимфоцитах после каждого космического полета, что в медицине считается онкомаркером. В целом сделан вывод о том, что получение в течение жизни допустимой дозы в 1 Зв в среднем укорачивает жизнь на три года.

Лунные риски

Одним из «сильных» доводов сторонников «лунного заговора» считается утверждение о том, что пересечение радиационных поясов и нахождение на Луне, где нет магнитного поля, вызвало бы неминуемую гибель астронавтов от лучевой болезни. Американским астронавтам действительно приходилось пересекать радиационные пояса Земли — протонный и электронный. Но это происходило в течение всего лишь нескольких часов, и дозы, полученные экипажами «Аполлона» в ходе миссий, оказались существенными, но сопоставимыми с теми, что получают старожилы МКС. «Конечно, американцам повезло, — говорит Вячеслав Шуршаков, — ведь за время их полетов не произошло ни одного солнечного протонного события. Случись такое, астронавты получили бы сублетальные дозы — уже не 30 мЗв, а 3 Зв.

Намочите полотенца!

«Мы, специалисты в области радиационной безопасности, — говорит Вячеслав Шуршаков, — настаиваем на том, чтобы защита экипажей была усилена. Например, на МКС наиболее уязвимыми являются каюты космонавтов, где они отдыхают. Там нет никакой дополнительной массы, и от открытого космоса человека отделяет лишь металлическая стенка толщиной в несколько миллиметров. Если приводить этот барьер к принятому в радиологии водному эквиваленту, это всего лишь 1 см воды. Для сравнения: земная атмосфера, под которой мы укрываемся от излучения, эквивалентна 10 м воды. Недавно мы предложили защитить каюты космонавтов дополнительным слоем из пропитанных водой полотенец и салфеток, что намного бы снизило действие радиации. Разрабатываются медикаментозные средства для защиты от излучения — правда, на МКС они пока не используются. Возможно, в будущем методами медицины и генной инженерии мы сможем усовершенствовать тело человека таким образом, чтобы его критические органы были более устойчивыми к факторам радиации. Но в любом случае без пристального внимания науки к этой проблеме о дальних космических полетах можно забыть».

Космическая радиация представляет большую проблему для конструкторов космических аппаратов. Они стремятся защитить от нее космонавтов, которым предстоит находиться на поверхности Луны или отправиться в длительные путешествия в глубины Вселенной. Если необходимая защита не будет обеспечена, то эти частицы, летящие с огромной скоростью, проникнут в тело космонавта, повредят его ДНК, что может повысить риск раковых заболеваний. К сожалению, до сих пор все известные способы защиты либо неэффективны, либо неосуществимы.
Материалы, традиционно применяемые для строительства космических аппаратов, например алюминий, задерживают некоторые космические частицы, но для многолетних полетов в космосе нужна более крепкая защита.
Аэрокосмическое агентство США (NASA) охотно берётся за самые сумасбродные, на первый взгляд, идеи. Ведь никто наверняка не может предсказать - какая из них однажды обернётся серьёзным прорывом в космических исследованиях. В агентстве работает специальный институт перспективных концепций (NASA Institute for Advanced Concepts - NIAC), призванный аккумулировать именно такие разработки - на очень дальнюю перспективу. Через этот институт NASA распределяет гранты в различные университеты и институты - на разработку "гениальных безумств".
Сейчас изучаются следующие варианты:

Защита определенными материалами. Некоторые материалы, например вода или полипропилен, обладают хорошими защитными свойствами. Но для того, чтобы защитить ими космический корабль, их понадобится очень много, вес корабля станет недопустимо велик.
В настоящее время, сотрудники NASA разработали новый сверхпрочный материал, родственный полиэтилену, который собираются использовать при сборке космических кораблей будущего. "Космическая пластмасса" сможет защитить астронавтов от космической радиации лучше, чем металлические экраны, но намного легче известных металлов. Специалисты убеждены, что когда материалу придадут достаточную термостойкость, из него можно будет делать даже обшивку космических аппаратов.
Раньше считалось, что только цельнометаллическая оболочка позволит пилотируемому кораблю пройти сквозь радиационные пояса Земли - потоки заряженных частиц, удерживаемые магнитным полем вблизи планеты. Во время полетов к МКС с этим не сталкивались, поскольку орбита станции проходит заметно ниже опасного участка. Кроме того, астронавтам угрожают вспышки на Солнце - источник гамма- и рентгеновских лучей, а детали самого корабля способны ко вторичному излучению - из-за распада радиоизотопов, образовавшихся при "первой встрече" с радиацией.
Теперь ученые полагают, что новый пластик RXF1 лучше справляется с перечисленными проблемами, причем небольшая плотность - не последний аргумент в его пользу: грузоподъемность ракет все еще недостаточно велика. Известны результаты лабораторных тестов, в которых его сравнивали с алюминием: RXF1 выдерживает втрое большие нагрузки при втрое меньшей плотности и улавливает больше высокоэнергетических частиц. Полимер пока не запатентован, поэтому о способе его изготовления не сообщается. Об этом сообщает Lenta.ru со ссылкой на science.nasa.gov.

Надувные конструкции. Надувной модуль, изготовленный из особо прочного пластика RXF1, окажется не только компактнее при запуске, но и легче цельной стальной конструкции. Конечно, его разработчикам потребуется предусмотреть и достаточно надежную защиту от микрометеоритов вкупе с «космическим мусором», но ничего принципиально невозможного в этом нет.
Кое-что уже есть - это частный надувной беспилотный корабль Genesis II уже находится на орбите. Запущен в 2007 году российской ракетой "Днепр". Причем масса у него довольно внушительная для устройства, созданного частной компанией, – свыше 1300 кг.


CSS (Commercial Space Station) Skywalker - коммерческий проект надувной орбитальной станции. На поддержку проекта NASA выделяет деньги около 4 млрд. долларов на 20110-2013 гг.. Речь идёт о разработке новых технологий надувных модулей для освоения космоса и небесных тел Солнечной системы.

Сколько будет стоить надувная конструкция, не сообщается. Зато уже озвучены суммарные затраты на разработку новых технологий. В 2011 году на эти цели выделят $652 млн, в 2012-м (если бюджет снова не пересмотрят) – $1262 млн, в 2013-м – $1808 млн. Затраты на исследования планируется неуклонно повышать, но, с учетом печального опыта выбившегося из сроков и смет «Созвездия» , без фокусировки на одной масштабной программе.
Надувные модули, автоматические устройства для стыковки аппаратов, системы хранения топлива на орбите, автономные модули жизнеобеспечения и комплексы, обеспечивающие посадку на другие небесные тела. Это лишь малая часть тех задач, которые ставятся теперь перед NASA для решения задачи высадки человека на Луну.

Магнитная и электростатическая защита. Для отражения летящих частиц можно применять мощные магниты, но магниты очень тяжелы, и пока неизвестно, насколько опасным для космонавтов окажется магнитное поле, достаточно мощное, чтобы отражать космическую радиацию.


Космический корабль или станция на поверхности Луны с магнитной защитой. Тороидальный сверхпроводящий магнит с напряжённостью поля не позволит большей части космических лучей проникнуть в кабину пилотов, расположенную внутри магнита, и, тем самым, снизит суммарные дозы радиации от космического излучения в десятки и более раз.


Перспективные проекты NASA - электростатический радиационный щит для лунной базы и лунный телескоп с жидким зеркалом (иллюстрации с сайта spaceflightnow.com).


Биомедицинские решения. Тело человека способно исправлять нарушения в ДНК, вызванные незначительными дозами радиации. Если усилить эту способность, космонавты смогут переносить длительное облучение космической радиацией. Подробнее

Защита из жидкого водорода. НАСА рассматривает возможность использовать в качестве защиты от космической радиации топливные баки космических аппаратов, содержащие жидкий водород, которые можно расположить вокруг отсека с экипажем. В основе этой идеи лежит тот факт, что космическое излучение теряет энергию, сталкиваясь с протонами других атомов. Поскольку атом водорода имеет только один протон в ядре, протон каждого его ядра "тормозит" радиацию. В элементах с более тяжелыми ядрами одни протоны загораживают другие, поэтому космические лучи их не достигают. Защиту водородом обеспечить можно, но недостаточную для того, чтобы предотвратить риски онкологических заболеваний.


Биоскафандр. Данный проект биоскафандра (Bio-Suit), разрабатываемый группой профессоров и студентов Массачусетского технологического института (MIT). "Био" - в данном случае означает не биотехнологии, а лёгкость, необыкновенное для скафандров удобство и где-то даже неощутимость оболочки, являющейся как бы продолжением тела.
Вместо того, чтобы сшивать и склеивать скафандр из отдельных кусочков различных тканей, его будут напылять прямо на кожу человека в виде быстро затвердевающего спрея. Правда, шлем, перчатки и ботинки останутся всё же традиционными.
Технология такого напыления (в качестве материала используется специальный полимер) уже обкатывается американскими военными. Этот процесс называется Electrospinlacing, его прорабатывают специалисты исследовательского центра армии США - Soldier systems center, Natick.
Упрощённо можно сказать, что мельчайшие капельки или короткие волоконца полимера приобретают электрический заряд и под действием электростатического поля устремляются к своей цели - объекту, который нужно закрыть плёнкой - где они образуют слитную поверхность. Учёные из MIT намерены создать нечто подобное, но способное создавать влаго- и воздухонепроницаемую плёнку на теле живого человека. После затвердевания плёнка приобретает высокую прочность, сохраняя упругость, достаточную для движения рук и ног.
Нужно добавить, что проект предусматривает вариант, когда подобным образом на тело будут напылены несколько различных слоёв, чередующихся с разнообразной встроенной электроникой.


Линия развития скафандров в представлении учёных MIT (иллюстрация с сайта mvl.mit.edu).


А ещё изобретатели биоскафандра говорят о перспективном самозатягивании полимерных плёнок при небольших повреждениях.
Когда такое станет возможным, не берётся предсказать даже сама госпожа профессор Дава Ньюман. Может, через десять лет, может - через пятьдесят.

Но ведь если не начать идти к этому результату сейчас - "фантастическое будущее" не наступит.

Тамбовское областное государственное общеобразовательное учреждение

Общеобразовательная школа – интернат с первоначальной летной подготовкой

имени М. М. Расковой

Реферат

«Космическое излучение»

Выполнил: воспитанник 103 взвода

Краснослободцев Алексей

Руководитель: Пеливан В.С.

Тамбов 2008 г

1. Вступление.

2. Что такое космическое излучение.

3. Как возникает космическое излучение.

4. Воздействие космического излучения на человека и окружающую среду.

5. Средства защиты от космического излучения.

6. Образование Вселенной.

7. Заключение.

8. Библиография.

1. ВСТУПЛЕНИЕ

Человек не останется вечно на земле,

но в погоне за светом и пространством,

сначала робко проникнет за пределы

атмосферы, а затем завоюет себе всё

околосветное пространство.

К. Циолковский

XXI век – век нанотехнологий и гигантских скоростей. Наша жизнь течет беспрестанно и неминуемо, и каждый из нас стремится идти в ногу со временем. Проблемы, проблемы, поиски решений, огромный поток информации со всех сторон… Как со всем этим справиться, как найти свое место в жизни?

Попробуем остановиться и задуматься…

Психологи утверждают, что человек может бесконечно долго смотреть на три вещи: огонь, воду и звездное небо. Действительно, небо всегда привлекало человека. Оно удивительно красиво на восходе и закате солнца, оно кажется безгранично голубым и глубоким днем. И, глядя на пролетающие невесомые облака, наблюдая за полетами птиц, хочется оторваться от повседневной суеты, подняться в небо и почувствовать свободу полета. А звездное небо темной ночью… как оно загадочно и необъяснимо прекрасно! И как хочется приоткрыть завесу таинственности. В такие минуты ты ощущаешь себя маленькой частицей огромного, пугающего и все же непреодолимо манящего тебя пространства, которое носит название Вселенной.

Что такое Вселенная? Как она возникла? Что таит она в себе, что приготовила для нас: «всемирный разум» и ответы на многочисленные вопросы или гибель человечества?

Вопросы возникают нескончаемым потоком.

Космос… Для обычного человека он кажется недосягаемым. Но, тем не менее, воздействие его на человека постоянно. По большому счету именно космическое пространство обеспечило те условия на Земле, которые привели к зарождению привычной для нас с вами жизни, а значит и появлению самого человека. Влияние космоса в значительной степени ощутимо и сейчас. «Частицы вселенной» доходят до нас сквозь защитный слой атмосферы и оказывают воздействие на самочувствие человека, его здоровье, на те процессы, которые протекают в его организме. Это для нас, живущих на земле, а что говорить о тех, кто осваивает космическое пространство.

Меня заинтересовал такой вопрос: что такое космическое излучение и каково его влияние на человека?

Я учусь в школе-интернате с первоначальной летной подготовкой. К нам приходят мальчишки, которые мечтают покорить небо. И первый шаг к осуществлению своей мечты они уже сделали, оставив стены родного дома и решившись прийти в эту школу, где изучаются основы полетов, конструкции летательных аппаратов, где у них есть возможность каждый день общаться с людьми, неоднократно поднимавшимися в небо. И пусть это пока только самолеты, которые не могут в полной мере преодолеть земное притяжение. Но ведь это только первый шаг. Судьба и жизненный путь любого человека начинается с маленького, робкого, неуверенного шажка ребенка. Кто знает, может быть, кто-то из них сделает второй шаг, третий… и будет осваивать космические летательные аппараты и поднимется к звездам в безграничные просторы Вселенной.

Поэтому для нас этот вопрос достаточно актуален и интересен.

2. ЧТО ТАКОЕ КОСМИЧЕСКОЕ ИЗЛУЧЕНИЕ?

Существование космических лучей было обнаружено в начале ХХ века. В 1912 г. австралийский физик В. Гесс, поднимаясь на воздушном шаре, заметил, что разрядка электроскопа на больших высотах происходит значительно быстрее, чем на уровне моря. Стало ясным, что ионизация воздуха, которая снимала разряд с электроскопа, имеет внеземное происхождение. Первым высказал это предположение Милликен, и именно он дал этому явлению современное название – космическое излучение.

В настоящее время установлено, что первичное космическое излучение состоит из стабильных частиц высоких энергий, летящих в самых различных направлениях. Интенсивность космического излучения в районе Солнечной системы составляет в среднем 2-4 частицы на 1см 2 за 1с. Оно состоит из:

  • протонов – 91%
  • α-частиц – 6,6%
  • ядер других более тяжелых элементов – менее 1%
  • электронов – 1,5%
  • рентгеновских и гамма–лучей космического происхождения
  • солнечного излучения.

Первичные комические частицы, летящие из мирового пространства, взаимодействуют с ядрами атомов верхних слоев атмосферы и образуют так называемые вторичные космические лучи. Интенсивность космических лучей вблизи магнитных полюсов Земли приблизительно в 1,5 раза больше, чем на экваторе.

Среднее значение энергии космических частиц около 10 4 МэВ, а энергия отдельных частиц – 10 12 МэВ и более.

3. КАК ВОЗНИКАЕТ КОСМИЧЕСКОЕ ИЗЛУЧЕНИЕ?

По современным представлениям главным источником космического излучения высоких энергий являются взрывы сверхновых звезд. По данным, полученным с помощью принадлежащего NASA орбитального рентгеновского телескопа, были получены новые доказательства того, что значительный объем космического излучения, постоянно бомбардирующего Землю, произведен ударной волной, распространяющейся после взрыва сверхновой звезды, который был зарегистрирован еще в 1572 году. Судя по наблюдениям рентгеновской обсерватории «Чандра», останки сверхновой звезды продолжают разбегаться со скоростью более 10 миллионов км/ч, производя две ударные волны, сопровождаемые массированным выделением рентгеновского излучения. Причем, одна волна

движется наружу, в межзвездный газ, а вторая –

внутрь, к центру бывшей звезды. Можно также

утверждать, что значительная доля энергии

«внутренней» ударной волны уходит на ускорение атомных ядер до скоростей, близких к световым.

Частицы высоких энергий приходят к нам из других Галактик. Таких энергий они могут достигнуть, ускоряясь в неоднородных магнитных полях Вселенной.

Естественно, что источником космического излучения является и ближайшая к нам звезда – Солнце. Солнце периодически (во время вспышек) испускает солнечные космические лучи, которые состоят в основном из протонов и α-частиц, имеющих небольшую энергию.

4. ВОЗДЕЙСТВИЕ КОСМИЧЕСКОГО ИЗЛУЧЕНИЯ НА ЧЕЛОВЕКА

И ОКРУЖАЮЩУЮ СРЕДУ

Результаты исследования, проведенного сотрудниками университета Софии Антиполис в Ницце, показывают, что космическое излучение сыграло важнейшую роль в зарождении биологической жизни на Земле. Давно известно, что аминокислоты способны существовать в двух формах – левосторонней и правосторонней. Однако на Земле в основе всех биологических организмов, развившихся естественным образом, находятся только левосторонние аминокислоты. По мнению сотрудников университета, причину следует искать в космосе. Так называемое циркулярно-поляризованное космическое излучение разрушило правосторонние аминокислоты. Циркулярно-поляризованный свет – это форма излучения, поляризуемая космическими электромагнитными полями. Такое излучение образуется, когда частицы межзвездной пыли выстраиваются вдоль линий магнитных полей, пронизывающих всё окружающее пространство. На циркулярно-поляризованный свет приходится 17% всего космического излучения в любой точке космоса. В зависимости от стороны поляризации такой свет избирательно расщепляет один из типов аминокислот, что подтверждается экспериментом и результатами исследования двух метеоритов.

Космическое излучение является одним из источников ионизирующего излучения на Земле.

Природный радиационный фон за счет космического излучения на уровне моря составляет 0,32 мЗв в год (3,4 мкР в час). Космическое излучение составляет лишь 1/6 часть годовой эффективной эквивалентной дозы, получаемой населением. Уровни радиационного излучения неодинаковы для различных областей. Так Северный и Южный полюсы более, чем экваториальная зона, подвержены воздействию космических лучей, из-за наличия у Земли магнитного поля, отклоняющего заряженные частицы. Кроме того, чем выше от поверхности земли, тем интенсивнее космическое излучение. Так, проживая в горных районах и постоянно пользуясь воздушным транспортом, мы подвергаемся дополнительному риску облучения. Люди, живущие выше 2000 м над уровнем моря, получают из-за космических лучей эффективную эквивалентную дозу в несколько раз больше, чем те, кто живет на уровне моря. При подъеме с высоты 4000 м (максимальная высота проживания людей) до 12000 м (максимальная высота полета пассажирского транспорта) уровень облучения возрастает в 25 раз. А за 7,5 часа полета на обычном турбовинтовом самолете полученная доза облучения составляет примерно 50 мкЗв. Всего за счет использования воздушного транспорта население Земли получает в год дозу облучения около 10000 чел-Зв, что составляет на душу населения в мире в среднем около 1 мкЗв в год, а в Северной Америке примерно 10 мкЗв.

Ионизирующее излучение отрицательно воздействует на здоровье человека, оно нарушает жизнедеятельность живых организмов:

· обладая большой проникающей способностью, разрушает наиболее интенсивно делящиеся клетки организма: костного мозга, пищеварительного тракта и т. д.

· вызывает изменения на генном уровне, что приводит в последствии к мутациям и возникновению наследственных заболеваний.

· вызывает интенсивное деление клеток злокачественных новообразований, что приводит к возникновению раковых заболеваний.

· приводит к изменениям в нервной системе и работе сердца.

· угнетается половая функция.

· вызывает нарушение зрения.

Радиация из космоса влияет даже на зрение авиапилотов. Были изучены состояния зрения 445 мужчин в возрасте около 50 лет, из которых 79 были пилотами авиалайнеров. Статистика показала, что для профессиональных пилотов риск развития катаракты ядра хрусталика втрое выше, чем для представителей иных профессий, а тем более для космонавтов.

Космическое излучение является одним из неблагоприятных факторов для организма космонавтов, значимость которого постоянно возрастает по мере увеличения дальности и продолжительности полетов. Когда человек оказывается за пределами атмосферы Земли, где бомбардировка галактическими лучами, а также солнечными космическими лучами намного сильнее: сквозь его тело за секунду может пронестись около 5 тысяч ионов, способных разрушить химические связи в организме и вызвать каскад вторичных частиц. Опасность радиационного воздействия ионизирующего излучения в низких дозах обусловлена увеличением рисков возникновения онкологических и наследственных заболеваний. Наибольшую опасность межгалактических лучей представляют тяжелые заряженные частицы.

На основании медико-биологических исследований и предполагаемых уровней радиации, существующих в космосе, были определены предельно допустимые дозы радиации для космонавтов. Они составляют 980 бэр для ступней ног, голеностопных суставов и кистей рук, 700 бэр для кожного покрова, 200 бэр для кроветворных органов и 200 бэр для глаз. Результаты экспериментов показали, что в условиях невесомости влияние радиации усиливается. Если эти данные подтвердятся, то опасность космической радиации для человека, вероятно, окажется большей, чем предполагалось первоначально.

Космические лучи способны оказывать влияние на погоду и климат Земли. Британские метеорологи доказали, что в периоды наибольшей активности космических лучей наблюдается пасмурная погода. Дело в том, что когда космические частицы врываются в атмосферу, они порождают широкие «ливни» заряженных и нейтральных частиц, которые могут провоцировать рост капелек в облаках и увеличение облачности.

По исследованиям Института солнечно-земной физики в настоящее время наблюдается аномальный всплеск солнечной активности, причины которого неизвестны. Солнечная вспышка – это выброс энергии, сравнимый с взрывом нескольких тысяч водородных бомб. При особо сильных вспышках электромагнитное излучение, достигая Земли, изменяет магнитное поле планеты – словно встряхивает его, что сказывается на самочувствии метеочувствительных людей. Таких, по данным Всемирной организации здравоохранения, 15% населения планеты. Также при высокой солнечной активности интенсивнее начинает размножаться микрофлора и увеличивается предрасположенность человека ко многим инфекционным заболеваниям. Так, эпидемии гриппа начинаются за 2,3 года до максимума солнечной активности или спустя 2,3 года – после.

Таким образом, мы видим, что даже небольшая часть космического излучения, которая доходит до нас сквозь атмосферу, может оказать заметное влияние на организм и здоровье человека, на процессы, протекающие в атмосфере. Одна из гипотез зарождения жизни на Земле, говорит о том, что космические частицы играют значительную роль в биологических и химических процессах на нашей планете.

5. СРЕДСТВА ЗАЩИТЫ ОТ КОСМИЧЕСКОГО ИЗЛУЧЕНИЯ

Проблемы, связанные с проникновением

человека в космос, - своего рода пробный

камень зрелости нашей науки.

Академик Н. Сисакян.

Несмотря на то, что излучение Вселенной, возможно, и привело к зарождению жизни и появлению человека, для самого человека в чистом виде оно губительно.

Жизненное пространство человека ограничено совсем незначительными

расстояниями – это Земля и несколько километров над ее поверхностью. А далее – «враждебное» пространство.

Но, поскольку человек не оставляет попыток проникнуть в просторы Вселенной, а все более интенсивно их осваивает, то возникла необходимость создания определенных средств защиты от негативного влияния космоса. Особое значение это имеет для космонавтов.

Вопреки распространенному мнению, от атаки космических лучей нас защищает не магнитное поле Земли, а толстый слой атмосферы, где на каждый см 2 поверхности приходится килограмм воздуха. Поэтому, влетев в атмосферу, космический протон в среднем преодолевает лишь 1/14 ее высоты. Космонавты же лишены такой защитной оболочки.

Как показывают расчеты, свести риск радиационного поражения к нулю во время космического полета нельзя . Но можно его минимизировать. И здесь самое главное – пассивная защита космического корабля, т. е. его стенки.

Чтобы уменьшить риск дозовых нагрузок от солнечных космических лучей , их толщина должна быть для легких сплавов не менее 3-4 см. Альтернативой металлам могли бы выступить пластмассы. Например, полиэтилен, тот самый из которого сделаны обычные сумки-пакеты, задерживает на 20% больше космических лучей, чем алюминий. Усиленный полиэтилен в 10 раз прочнее алюминия и при этом легче «крылатого металла».

С защитой от галактических космических лучей , обладающих гигантскими энергиями, все гораздо сложнее. Предлагается несколько способов защиты от них космонавтов. Можно создать вокруг корабля слой защитного вещества подобного земной атмосфере. Например, если использовать воду, которая в любом случае необходима, то потребуется слой толщиной 5 м. При этом масса водного резервуара приблизится к 500 т, что очень много. Можно также использовать этилен – твердое вещество, для которого не нужны резервуары. Но даже тогда необходимая масса составила бы не менее 400 т. Можно использовать жидкий водород. Он блокирует космические лучи в 2,5 раза лучше, чем алюминий. Правда, ёмкости для топлива оказались бы громоздкими и тяжелыми.

Была предложена другая схема защиты человека на орбите , которую можно назвать магнитной схемой . На заряженную частицу, движущуюся поперек магнитного поля, действует сила, направленная перпендикулярно направлению движения (сила Лоренца). В зависимости от конфигурации линий поля частица может отклониться почти в любую сторону или выйти на круговую орбиту, где она будет вращаться бесконечно. Для создания такого поля потребуются магниты на основе сверхпроводимости. Такая система будет иметь массу 9 т, она гораздо более легкая, чем защита веществом, но всё равно тяжела.

Приверженцы еще одной идеи предлагают зарядить космический корабль электричеством , если напряжение внешней обшивки составит 2 10 9 В, то корабль сможет отразить все протоны космических лучей с энергиями до 2 ГэВ. Но электрическое поле при этом будет простираться до расстояния в десятки тысяч километров, и космический корабль будет стягивать к себе электроны из этого огромного объема. Они станут врезаться в обшивку с энергией 2 ГэВ и вести себя так же, как космические лучи.

«Одежда» для космических прогулок космонавтов вне пределов космического корабля должна представлять собой целую спасательную систему:

· должна создавать необходимую атмосферу для дыхания и поддержания давления;

· должна обеспечивать отвод тепла, выделяемого телом человека;

· она должна защищать от перегрева, если человек находится на солнечной стороне, и от охлаждения – если в тени; разница между ними составляет более 100 0 С;

· защищать от ослепления солнечной радиацией;

· защищать от метеорного вещества;

· должна позволять свободно перемещаться.

Разработка космического скафандра началась в 1959 году. Существует несколько модификаций скафандров, они постоянно изменяются и усовершенствуются, в основном за счет использования новых, более совершенных материалов.

Космический скафандр - это сложное и дорогостоящее устройство, и это легко понять, если ознакомиться с требованиями, предъявленными, например, к скафандру космонавтов корабля «Аполлон». Этот скафандр должен обеспечивать защиту космонавта от воздействия следующих факторов:

Строение полужесткого скафандра (для космоса)

Первый скафандр для выхода в открытый космос, который использовал А.Леонов, был жестким, неподатливым, весом около 100 кг, но современники его считали настоящим чудом техники и «машиной посложнее автомобиля».

Таким образом, все предложения по защите космонавтов от космических лучей не надежны.

6. ОБРАЗОВАНИЕ ВСЕЛЕННОЙ

Если говорить честно, мы хотим не только узнать,

как устроена, но и по возможности достичь цели

утопической и дерзкой на вид – понять, почему

природа является именно такой. В этом состоит

прометеевский элемент научного творчества.

А. Эйнштейн.

Итак, космическое излучение приходит к нам из безграничных просторов Вселенной. А как же образовалась сама Вселенная?

Именно Эйнштейну принадлежит теорема, на основе которой были выдвинуты гипотезы ее возникновения. Существует несколько гипотез образования Вселенной. В современной космологии наиболее популярными являются две: теория Большого Взрыва и инфляционная.

Современные модели Вселенной основываются на общей теории относительности А. Эйнштейна. Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологических моделей.

Первая модель была разработана А. Эйнштейном в 1917 году. Он отбросил постулаты Ньютона об абсолютности и бесконечности пространства и времени. В соответсвии с этой моделью мировое пространство однородно и изотропно, материя в нем распределена равномерно, гравитационное притяжение масс компенсируется универсальным космологическим отталкиванием. Время существования Вселенной бесконечно, а пространство безгранично, но конечно. Вселенная в космологической модели Эйнштейна стационарна, бесконечна во времени и безгранична в пространстве.

В 1922 году русский математик и геофизик А.А. Фридман отбросил постулат о стационарности и получил решение уравнения Эйнштейна, описывающее Вселенную с «расширяющимся» пространством. В 1927 году бельгийский аббат и ученый Ж. Леметр на основе астрономических наблюдений ввел понятие начала Вселенной как сверхплотного состояния и рождения Вселенной как Большого Взрыва. В 1929 году американский астроном Э. П. Хаббл обнаружил, что все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию, - система галактик расширяется. Расширение Вселенной считается научно установленным фактом. Согласно расчетам Ж. Леметра, радиус Вселенной в первоначальном состоянии был 10 -12 см, что

близко по размерам к радиусу электрона, а ее

плотность составляла 10 96 г/см 3 . От

первоначального состояния Вселенная перешла к расширению в результате большого взрыва . Ученик А. А. Фридмана Г. А. Гамов предположил, что температура вещества после взрыва была велика и падала с расширением Вселенной . Его расчеты показали, что Вселенная в своей эволюции проходит определенные этапы, в ходе которых происходит образование химических элементов и структур.

Эра адронов (тяжелых частиц, вступающих в сильные взаимодействия). Продолжительность эры 0,0001 с, температура 10 12 градусов по Кельвину, плотность 10 14 г/см 3 . В конце эры происходит аннигиляция частиц и античастиц, но остается некоторое количество протонов, гиперонов, мезонов.

Эра лептонов (легких частиц, вступающих в электромагнитное взаимодействие). Продолжительность эры 10 с, температура 10 10 градусов по Кельвину, плотность 10 4 г/см 3 . Основную роль играют легкие частицы, принимающие участие в реакциях между протонами и нейтронами.

Фотонная эра. Продолжительность 1 млн. лет. Основная доля массы – энергии Вселенной – приходится на фотоны. К концу эры температура падает с 10 10 до 3000 градусов по Кельвину, плотность – с 10 4 г/см 3 до 1021 г/см 3 . Главную роль играет излучение, которое в конце эры отделяется от вещества.

Звездная эра наступает через 1 млн. лет после зарождения Вселенной. В звездную эру начинается процесс образования протозвезд и протогалактик.

Затем разворачивается грандиозная картина образования структуры Метагалактики.

Еще одной гипотезой является инфляционная модель Вселенной, в которой рассматривается творение Вселенной. Идея творения связана с квантовой космологией. В этой модели описывается эволюция Вселенной, начиная с момента 10 -45 с после начала расширения.

В соответствии с этой гипотезой космическая эволюция в ранней Вселенной проходит ряд этапов. Начало Вселенной определяется физиками-теоретиками как состояние квантовой супергравитации с радиусом Вселенной в 10 -50 см (для сравнения: размер атома определяется как 10 -8 см, а размер атомного ядра 10-13 см). Основные события в ранней Вселенной разыгрывались за ничтожно малый промежуток времени от 10-45 с до 10 -30 с.

Стадия инфляции. В результате квантового скачка Вселенная перешла в состояние возбужденного вакуума и в отсутствие в ней вещества и излучения интенсивно расширялась по экспоненциальному закону . В этот период создавалось само пространство и время Вселенной. За период инфляционной стадии продолжительностью 10 -34 с Вселенная раздулась от невообразимо малых квантовых размеров (10 -33) до невообразимо больших (10 1000000) см, что на много порядков превосходит размер наблюдаемой Вселенной – 10 28 см. Весь этот первоначальный период во Вселенной не было ни вещества, ни излучения.

Переход от инфляционной стадии к фотонной. Состояние ложного вакуума распалось, высвободившаяся энергия пошла на рождение тяжелых частиц и античастиц, которые после аннигиляции дали мощную вспышку излучения (света), осветившего космос.

Этап отделения вещества от излучения : оставшееся после аннигиляции вещество, стало прозрачным для излучения, контакт между веществом и излучением пропал. Отделившееся от вещества излучение и составляет современный реликтовый фон – это остаточное явление от первоначального излучения, возникшего после взрыва в момент начала образования Вселенной. В дальнейшем развитие Вселенной шло в направлении от максимально простого однородного состояния к созданию все более сложных структур – атомов (первоначально атомов водорода), галактик, звезд, планет, синтезу тяжелых элементов в недрах звезд, в том числе и необходимых для создания жизни, к возникновению жизни и как венца творения – человека.

Различие между этапами эволюции Вселенной в инфляционной модели и модели Большого Взрыва касается только первоначального этапа порядка 10 -30 с, далее между этими моделями принципиальных расхождений нет. Различия в объяснении механизмов космической эволюции связаны с мировоззренческими установками .

Первой стала проблема начала и конца времени существования Вселенной , признание которой противоречило материалистическим утверждениям о вечности, несотворимости и неуничтожимости и т. п. времени и пространства.

В 1965 году американскими физиками-теоретиками Пенроузом и С.Хокингом была доказана теорема, согласно которой в любой модели Вселенной с расширением обязательно должна быть сингулярность – обрыв линий времени в прошлом, что можно понимать как начало времени. Это же верно и для ситуации, когда расширение сменится на сжатие – тогда возникнет обрыв линий времени в будущем – конец времени. Причем точка начала сжатия интерпретируется как конец времени – Великий Сток, куда стекаются не только галактики, но и сами «события» всего прошлого Вселенной.

Вторая проблема связана с творением мира из ничего. У А.А.Фридмана математически момент начала расширения пространства выводится с нулевым объемом и в своей популярной книге «Мир как пространство и время», изданной в 1923 году, он говорит о возможности «сотворения мира из ничего». Попытку разрешить проблему возникновения всего из ничего предприняли в 80-ых годах американский физик А.Гут и советский физик А.Линде. Энергию Вселенной, которая сохраняется, разделили на гравитационную и негравитационную части, имеющие разные знаки. И тогда полная энергия Вселенной будет равна нулю.

Самая большая трудность для ученых возникает при объяснении причин космической эволюции. Можно выделить две основные концепции, объясняющие эволюцию Вселенной: концепцию самоорганизации и концепцию креационизма.

Для концепции самоорганизации материальная Вселенная является единственной реальностью, и никакой другой реальности помимо нее не существует. В данном случае эволюция описывается так: идет самопроизвольное упорядочивание систем в направлении становления все более сложных структур. Динамичный хаос порождает порядок. Цели космической эволюции нет.

В рамках концепции креационизма, то есть творения, эволюция Вселенной связывается с реализацией программы, определяемой реальность более высокого порядка, чем материальный мир. Сторонники креационизма обращают внимание на существование направленного развития от простых систем к более сложным и информационно емким, в ходе которого создавались условия для возникновения жизни и человека. Существование той Вселенной, в которой мы живем, зависит от численных значений фундаментальных физических констант – постоянной Планка, постоянной гравитации и т. д. Численные значения этих постоянных определяют основные особенности Вселенной, размеры атомов, планет, звезд, плотность вещества и время жизни Вселенной. Отсюда делается вывод, что физическая структура Вселенной запрограммирована и направлена к появлению жизни. Конечная цель космической эволюции – появление человека во Вселенной в соответствие с замыслами Творца.

Другая нерешенная проблемадальнейшая судьба Вселенной. Будет ли она продолжать расширяться бесконечно или этот процесс через некоторое время сменится обратным и начнется стадия сжатия? Выбор между этими сценариями можно сделать при наличии данных о полной массе вещества во Вселенной (или средней ее плотности), которых пока недостаточно.

Если плотность энергии во Вселенной мала, то она будет вечно расширяться и постепенно остывать. Если же плотность энергии больше некоторого критического значения, то стадия расширения сменится стадией сжатия. Вселенная будет сжиматься в размерах и нагреваться.

Инфляционная модель предсказывала, что плотность энергии должна быть критической. Однако астрофизические наблюдения, проводимые до 1998 г, говорили о том, что плотность энергии составляет приблизительно 30% от критической. Но открытия последних десятилетий позволили «найти» недостающую энергию. Было доказано, что вакуум обладает положительной энергией (которую называют темной энергией), и она равномерно распределена в пространстве (что еще раз доказывает, что в вакууме отсутствуют какие либо «невидимые» частицы).

Сегодня вариантов ответа на вопрос о будущем Вселенной значительно больше и они существенно зависят от того, какая теория, объясняющая скрытую энергию, является правильной. Но можно сказать однозначно, что наши потомки будут видеть окружающий мир совсем иным, чем мы с вами.

Существуют весьма обоснованные подозрения, что кроме видимых нами объектов во Вселенной существуют еще большее количество скрытых, но тоже обладающих массой, причем эта «темная масса» может в 10 или более раз превышать видимую.

Кратко характеристику Вселенной можно представить в таком виде.

Краткая Биография Вселенной

Возраст: 13,7 миллиардов лет

Размер наблюдаемой части Вселенной:

13,7 миллиардов световых лет, примерно 10 28 см

Средняя плотность вещества: 10 -29 г/см 3

Вес: более 10 50 тонн

Вес в момент рождения:

согласно теории Большого взрыва – бесконечный

согласно инфляционной теории – меньше миллиграмма

Температура Вселенной:

в момент взрыва – 10 27 К

современная – 2,7 К

7. ЗАКЛЮЧЕНИЕ

Собирая информацию о космическом излучении и его влиянии на окружающую среду, я убедился, что всё в мире взаимосвязано, всё течет и изменяется, и мы постоянно ощущаем на себе отголоски далекого прошлого, начиная с момента образования Вселенной.

Частицы, дошедшие до нас из других галактик, несут с собой информацию о далеких мирах. Эти «космические пришельцы» способны оказывать заметное влияние на природу и биологические процессы на нашей планете.

В космосе все другое: Земля и небо, закаты и рассветы, температура и давление, скорости и расстояния. Многое в нем нам кажется непостижимым.

Космос пока что нам не друг. Он противостоит человеку как чужая и враждебная сила, и каждый космонавт, отправляясь на орбиту, должен быть готов вступить в борьбу с ней. Это очень нелегко, и человек не всегда выходит победителем. Но чем дороже дается победа, тем она ценнее.

Влияние космического пространства оценить достаточно сложно, с одной стороны оно привело к возникновению жизни и, в конечном счете, создало самого человека, с другой мы вынуждены от него защищаться. В данном случае, очевидно, необходимо найти компромисс, и постараться не разрушить то хрупкое равновесие, которое существует в настоящее время.

Юрий Гагарин, впервые увидев Землю из космоса, воскликнул: « Какая же она маленькая!». Мы должны помнить эти слова и всеми силами беречь свою планету. Ведь даже в космос мы можем попасть только с Земли.

8. БИБЛИОГРАФИЯ.

1. Булдаков Л.А., Калистратова В.С. Радиоактивное излучение и здоровье, 2003.

2. Левитан Е.П. Астрономия. – М.: Просвещение, 1994.

3. Паркер Ю. Как защитить космических путешественников.// В мире науки. - 2006, №6.

4. Пригожин И.Н. Прошлое и будущее Вселенной. – М.: Знание, 1986.

5. Хокинг С. Краткая история времени от большого взрыва до черных дыр. – СПб: Амфора, 2001.

6. Энциклопедия для детей. Космонавтика. – М.: «Аванта+», 2004.

7. http:// www. rol. ru/ news/ misc/ spacenews/ 00/12/25. htm

8. http:// www. grani. ru/ Society/Sciense/m. 67908. html