Испускание и поглощение. Квантовые постулаты Бора

Типы оптических спектров.
Поглощение и испускание света
атомами. Происхождение линейчатых
спектров
Мирозданье постигая, все познай, не
отбирая:
Что - внутри, во внешнем сыщешь.
Так примите ж без оглядки
Мира внятные загадки.
Гете

Дисперсия света - это
зависимости показателя
преломления вещества и
скорости света в нем от
частоты световой волны.
Белый свет - это сложный свет, он состоит из
простых лучей, которые при прохождении через
призму отклоняются, но не разлагаются, и только
в совокупности монохроматические лучи дают
ощущение белого света.

линза
щель
Спектральные приборы - приборы,
хорошо разделяющие волны различной длины и не допускающие перекрытия отдельных участков спектра.
призма

Сплошной спектр
Раскаленные
твердые тела
Раскаленные
жидкости
Газы под высоким
давлением
Основную роль в излучении играет
возбужде-ние атомов и молекул при
хаотическом
дви-жении
этих
частиц,
обусловленное высокой температурой.

Линейчатый спектр
спектр, состоящий из отдельных резко очерченных цветных линий,
отделенных друг от друга широкими темными промежутками.
Вещество излучает свет только вполне
определенных длин волн. Каждая из
линий имеет конечную ширину.
Спектры получаются от светящихся атомарных газов или паров.
натрий
Линейчатые спектры различных химических элементов отличаются цветом,
положением и числом отдельных светящихся линий.

Полосатый спектр
состоит из отдельных полос, разделенных темными промежутками.
Каждая полоса представляет собой
совокупность большого числа очень
тесно расположенных линий.
Излучаются отдельными возбужденными молекулами (молекулярный газ).
Излучение вызвано как электронными
переходами в атомах, так и колебательными движениями самих атомов в
молекуле.

Полосатый спектр
Сплошной спектр
Линейчатый спектр
Спектр испускания
получают при разложении света, излученного
самосветящимися телами.

Спектр поглощения
получают, пропуская свет от источника, дающего сплошной спектр, через вещество,
атомы и молекулы которого находятся в невозбужденном состоянии.
поглощения
Na
испускания
Na
H
H

Закон обратимости спектральных
линий:
линии поглощения соответствуют
линиям испускания, т.е. атомы
менее нагретого вещества
поглощают из сплошного спектра
как раз те частоты, которые они в
других условиях испускают.
Густав Роберт Кирхгоф
12. 03. 1824 - 17. 10. 1887

10.

Спектр атомов каждого химического элемента уникален.

11.

Спектральный анализ - это метод исследования химического
состава различных веществ по их
спектрам.
Анализ, проводимый по спектрам
испускания, называют эмиссионным.
Г. Кирхгоф
Анализ проводимый по спектрам
поглощения называют абсорбционным спектральным анализом.
В. Бунзен

12.

Эмиссионный анализ:
1. Каждый элемент имеет свой спектр,
который не зависит от способов возбуждения.
2. Интенсивность спектральных линий зависит от концентрации элемента в данном веществе.
Выполнение анализа:
1. Заставить атомы этого вещества излучать свет с линейчатым спектром.
2. Разложить этот свет в спектр и определить длины волн наблюдаемых
в нем линий.

13.

Применение спектрального анализа
металлургия
машиностроение
Атомная промышленность
геология
археология
криминалистика

14.

Как объяснить, почему
атомы каждого химического элемента имеют
свой строго индивидуальный набор спектральных
линий?
Почему совпадают
линии излучения и
поглощения в спектре
данного элементы?
Чем обусловлены
различия в спектрах
атомов разных
элементов?

15.

Постулат стационарных состояний:
атомная система может находиться
только в особых стационарных
(квантовых) состояниях, каждому из
которых соответствует определенная
энергия, находясь на которых атом
не излучает и не поглощает энергии.
Правило частот: при переходе атома
из одного стационарного состояния в
другое излучается или поглощается
квант энергии.
14. /Билет21.doc
15. /Билет22.doc
16. /Билет23.doc
17. /Билет24.doc
18. /Билет25.doc
19. /Билет26.doc
20. /Билет3.doc
21. /Билет4.doc
22. /Билет5.doc
23. /Билет6.doc
24. /Билет7.doc
25. /Билет8.doc
26. /Билет9.doc
27. /ЗАДАЧИ к билетам.doc
28. /Содержание.doc Механическое движение Относительность движения, Система отсчета, Материальная точка, Траектория. Путь и перемещение. Мгновенная скорость. Ускорение. Равномерное и равноускоренное движение
Билет №10 Кристаллические и аморфные тела. Упругие и пластические деформации твердых тел. План ответа
Закон термодинамики. Применение первого закона к изопроцессам. Адиабатный процесс
Закон Кулона. Закон сохранения электрического заряда
Электроемкость конденсатора. Применение конденсаторов
Работа и мощность в цепи постоянного тока. Электродвижущая сила. Закон Ома для полной цепи
Магнитное поле, условия его существования. Действие магнитного поля на электрический заряд и опыты, подтверждающие это действие. Магнитная индукция
Полупроводники. Собственная и примесная проводимость полупроводников. Полупроводниковые приборы
Закон электромагнитной индукции. Правило Ленца
Явление самоиндукции. Индуктивность. Электромагнитное поле
1. Определение. Колебательный контур Формула Томпсона
Закон Ньютона План ответа
Электромагнитные волны и их свойства. Принципы радиосвязи и примеры их практического использования
Волновые свойства света. Электромагнитная теория света
Билет №22 Опыты Резерфорда по рассеянию α-частиц. Ядерная модель атома План ответа Опыты Резерфорда. Ядерная модель атома. Слово «атом» в переводе с греческого означает «неделимый»
Билет №23 Квантовые постулаты Бора. Испускание и поглощение света атомами. Спектральный анализ
Билет №24 Фотоэффект и его законы. Уравнение Эйнштейна для фотоэффекта и постоянная Планка. Применение фотоэффекта в технике Плав ответа
Билет №25 Состав ядра атома. Изотопы. Энергия связи ядра атома. Цепная ядерная реакция, условия ее осуществления. Термоядерные реакции
Билет №26 Радиоактивность. Виды радиоактивных излучений и методы их регистрации. Биологическое действие ионизирующих излучений План ответа
Закон сохранения импульса в природе и технике
Закон всемирного тяготения. Сила тяжести. Вес тела. Невесомость План ответа
Билет5 Превращение энергии при механических колебаниях. Свободные и вынужденные колебания. Резонанс План ответа
Билет №6 Опытное обоснование основных положений мкт строения вещества. Масса и размер молекул. Постоянная Авогадро План ответа
Билет №7 Идеальный газ. Основное уравнение мкт идеального газа. Температура и ее измерение. Абсолютная температура План ответа
Билет №8 Уравнение состояния идеального газа. (Уравнение Менделеева-Клапейрона.) Изопропессы План ответа
Билет №9 Испарение и конденсация. Насыщенные и ненасыщенные пары. Влажность воздуха. Измерение влажности воздуха План ответа
Задачи применение закона сохранения энергии
Отсчета. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорость. Ускорение. Равномерное и равноускоренное движение
Билет №23

Квантовые постулаты Бора. Испускание и поглощение света атомами. Спектральный анализ

План ответа

1. Первый постулат. 2. Второй постулат. 3. Ви­ды спектров.

В основу своей теории Бор положил два посту­лата. Первый постулат: атомная система может на­ходиться только в особых стационарных или кван­товых состояниях, каждому из которых соответ­ствует своя энергия; в стационарном состоянии атом не излучает.

Это означает, что электрон (например, в атоме водорода) может находиться на нескольких вполне определенных орбитах. Каждой орбите электрона со­ответствует вполне определенная энергия.

Второй постулат: при переходе из одного ста­ционарного состояния в другое испускается или по­глощается квант электромагнитного излучения. Энергия фотона равна разности энергий атома в двух состояниях: hv = Е m Ε n ; h = 6,62 10 -34 Дж с, где h - постоянная Планка.

При переходе электрона с ближней орбиты на более удаленную, атомная система поглощает квант энергии. При переходе с более удаленной орбиты электрона на ближнюю орбиту по отношению к ядру атомная система излучает квант энергии.

Теория Бора позволила объяснить существова­ние линейчатых спектров.

Спектр излучения (или поглощения) - это набор волн определенных частот, которые излучает (или поглощает) атом данного вещества.

Спектры бывают сплошные, линейчатые и по­лосатые.

Сплошные спектры излучают все вещества, находящиеся в твердом или жидком состоянии. Сплошной спектр содержит волны всех частот види­мого света и поэтому выглядит как цветная полоса с плавным переходом от одного цвета к другому в та­ком порядке: Красный, Оранжевый, Желтый, Зеле­ный, Синий и Фиолетовый (Каждый Охотник Желает Знать, где Сидит Фазан).

Линейчатые спектры излучают все вещества в атомарном состоянии. Атомы всех веществ излучают свойственные только им наборы волн вполне определенных частот. Как у каждого человека свои личные отпечатки пальцев, так и у атома данного вещества свой, характерный только ему спектр. Линейчатые спектры излучения выглядят как цветные линии, разделенные промежутками. Природа линейчатых спектров объясняется тем, что у атомов конкретного вещества существуют только ему свойственные ста­ционарные состояния со своей характерной энергией, а следовательно, и свой набор пар энергетических уровней, которые может менять атом, т. е. электрон в атоме может переходить только с одних определен­ных орбит на другие, вполне определенные орбиты для данного химического вещества.

Полосатые спектры излучаются молекулами. Выглядят полосатые спектры подобно линейчатым, только вместо отдельных линий наблюдаются от­дельные серии линий, воспринимаемые как отдель­ные полосы.

Характерным является то, что какой спектр излучается данными атомами, такой же и погло­щается, т. е. спектры излучения по набору излу­чаемых частот совпадают со спектрами поглощения. Поскольку атомам разных веществ соответствуют свойственные только им спектры, то существует спо­соб определения химического состава вещества мето­дом изучения его спектров. Этот способ называется спектральным анализом. Спектральный анализ применяется для определения химического состава ископаемых руд при добыче полезных ископаемых, для определения химического состава звезд, атмо­сфер, планет; является основным методом контроля состава вещества в металлургии и машиностроении.

На вопрос помогите ответь на вопросы по физике. 1)Поглощение и испускание света атомом. 2Сила Ампера, Сила лоренца кратно напешите заданный автором Невролог лучший ответ это 1)
Теория Бора позволила объяснить существование линейчатых спектров.
Спектр излучения (или поглощения) - это набор волн определенных частот, которые излучает (или поглощает) атом данного вещества.
Спектры бывают сплошные, линейчатые и полосатые.
Сплошные спектры излучают все вещества, находящиеся в твердом или жидком состоянии. Сплошной спектр содержит волны всех частот видимого света и поэтому выглядит как цветная полоса с плавным переходом от одного цвета к другому в таком порядке: красный, оранжевый, желтый, зеленый, синий и фиолетовый (каждый охотник желает знать, где сидит фазан) .
Линейчатые спектры излучают все вещества в атомарном состоянии. Атомы всех веществ излучают свойственные только им наборы волн вполне определенных частот. Как у каждого человека свои личные отпечатки пальцев, так и у атома данного вещества свой, характерный только ему спектр. Линейчатые спектры излучения выглядят как цветные линии, разделенные промежутками. Природа линейчатых спектров объясняется тем, что у атомов конкретного вещества существуют только ему свойственные стационарные состояния со своей характерной энергией, а следовательно, и свой набор пар энергетических уровней, которые может менять атом, т. е. электрон в атоме может переходить только с одних определенных орбит на другие, вполне определенные орбиты для данного химического вещества.
Полосатые спектры излучаются молекулами. Выглядят полосатые спектры подобно линейчатым, только вместо отдельных линий наблюдаются отдельные серии линий, воспринимаемые как отдельные полосы. Характерным является то, что какой спектр излучается данными атомами, такой же и поглощается, т. е. спектры излучения по набору излучаемых частот совпадают со спектрами поглощения. Поскольку атомам разных веществ соответствуют свойственные только им спектры, то существует способ определения химического состава вещества методом изучения его спектров. Этот способ называется спектральным анализом. Спектральный анализ применяется для определения химического состава ископаемых руд при добыче полезных ископаемых, для определения химического состава звезд, атмосфер, планет; является основным методом контроля состава вещества в металлургии и машиностроении.
2) Сила Ампера.
На проводник с током, находящийся в магнитном поле, действует сила, равная
F = I·L·B·sina
I - сила тока в проводнике;

L - длина проводника, находящегося в магнитном поле;
a - угол между вектором магнитного поля инаправлением тока в проводнике.
Силу, действующую на проводник с током в магнитном поле, называют силой Ампера.
Максимальная сила Ампера равна:
F = I·L·B
Ей соответствует a = 900.
Сила Лоренца.

Сила Лоренца определяется соотношением:
Fл = q·V·B·sina
где q - величина движущегося заряда;
V - модуль его скорости;
B - модуль вектора индукции магнитного поля;
a - угол между вектором скорости заряда и вектором магнитной индукции.

Ответ от Кирилл Старков [новичек]

1. В основу своей теории Бор положил два посту¬лата. Первый постулат: атомная система может на¬ходиться только в особых стационарных или кван¬товых состоя-ниях, каждому из которых соответ¬ствует своя энергия; в стационарном состоянии атом не излучает.
Это означает, что электрон (например, в атоме во-дорода) может находиться на нескольких вполне опреде-ленных орбитах. Каждой орбите электрона со¬ответствует вполне определенная энергия.
Второй постулат: при переходе из одного ста-ционарного состояния в другое испускается или по-глощается квант электромагнитного излучения. Энергия фотона равна разности энергий атома в двух состояниях: hv = Еm – Εn; h = 6,62 10-34 Дж с, где h - постоянная Планка.
При переходе электрона с ближней орбиты на более удаленную, атомная система поглощает квант энергии. При переходе с более удаленной орбиты электрона на ближнюю орбиту по отношению к ядру атомная система излучает квант энергии.
Теория Бора позволила объяснить существова¬ние линейчатых спектров.
2. Сила Ампера - это сила, с которой магнитное поле действует на помещенный в него проводник с током.
Силу, действующую со стороны магнитного поля на движущиеся в нем заряды, называют силой Лоренца.


Шпаргалка

Спектр излучения или поглощения это набор волн определенных частот которые излучает или поглощает атом данного вещества. Сплошные спектры излучают все вещества находящиеся в твердом или жидком состоянии. Линейчатые спектры излучают все вещества в атомарном состоянии. Как у каждого человека свои личные отпечатки пальцев так и у атома данного вещества свой характерный только ему спектр.

Билет №2 3

Квантовые постулаты Бора. Испускание и поглощение света атомами. Спектральный анализ

План ответа

1. Первый постулат. 2. Второй постулат. 3. Виды спектров.

В основу своей теории Бор положил два постулата. Первый постулат: атомная система может находиться только в особых стационарных или квантовых состояниях, каждому из которых соответствует своя энергия; в стационарном состоянии атом не излучает.

Это означает, что электрон (например, в атоме водорода) может находиться на нескольких вполне определенных орбитах. Каждой орбите электрона соответствует вполне определенная энергия.

Второй постулат: при переходе из одного стационарного состояния в другое испускается или поглощается квант электромагнитного излучения. Энергия фотона равна разности энергий атома в двух состояниях: hv = Е m – Ε n ; h = 6,62 10 -34 Дж с, где h — постоянная Планка.

При переходе электрона с ближней орбиты на более удаленную, атомная система поглощает квант энергии. При переходе с более удаленной орбиты электрона на ближнюю орбиту по отношению к ядру атомная система излучает квант энергии.

Теория Бора позволила объяснить существование линейчатых спектров.

Спектр излучения (или поглощения) — это набор волн определенных частот, которые излучает (или поглощает) атом данного вещества.

Спектры бывают сплошные, линейчатые и полосатые.

Сплошные спектры излучают все вещества, находящиеся в твердом или жидком состоянии. Сплошной спектр содержит волны всех частот видимого света и поэтому выглядит как цветная полоса с плавным переходом от одного цвета к другому в таком порядке: Красный, Оранжевый, Желтый, Зеленый, Синий и Фиолетовый (Каждый Охотник Желает Знать, где Сидит Фазан).

Линейчатые спектры излучают все вещества в атомарном состоянии. Атомы всех веществ излучают свойственные только им наборы волн вполне определенных частот. Как у каждого человека свои личные отпечатки пальцев, так и у атома данного вещества свой, характерный только ему спектр. Линейчатые спектры излучения выглядят как цветные линии, разделенные промежутками. Природа линейчатых спектров объясняется тем, что у атомов конкретного вещества существуют только ему свойственные стационарные состояния со своей характерной энергией, а следовательно, и свой набор пар энергетических уровней, которые может менять атом, т. е. электрон в атоме может переходить только с одних определенных орбит на другие, вполне определенные орбиты для данного химического вещества.

Полосатые спектры излучаются молекулами. Выглядят полосатые спектры подобно линейчатым, только вместо отдельных линий наблюдаются отдельные серии линий, воспринимаемые как отдельные полосы.

Характерным является то, что какой спектр излучается данными атомами, такой же и поглощается, т. е. спектры излучения по набору излучаемых частот совпадают со спектрами поглощения. Поскольку атомам разных веществ соответствуют свойственные только им спектры, то существует способ определения химического состава вещества методом изучения его спектров. Этот способ называется спектральным анализом. Спектральный анализ применяется для определения химического состава ископаемых руд при добыче полезных ископаемых, для определения химического состава звезд, атмосфер, планет; является основным методом контроля состава вещества в металлургии и машиностроении.


А также другие работы, которые могут Вас заинтересовать

10303. Общество - совокупность исторически сложившихся форм совместной деятельности людей 13.85 KB
Общество совокупность исторически сложившихся форм совместной деятельности людей. В узком смысле слова общество может рассматриваться как конкретное общество в единстве его общих особенных и единичных признаков. Становление общества долгий процесс длившийся неско...
10304. Философия Людвига Фейербаха 12.67 KB
Философия Людвига Фейербаха Несмотря на то что классическая немецкая философия получила свое наиболее полное выражение в идеалистических философских системах именно в этот момент возникла одна из мощнейших материалистических идей Людвига Фейербаха. Фейербах ст
10305. Современная философия 12.45 KB
Современная философия чрезвычайно многообразна. Вместе с тем в ней есть свои центры притяжения в виде относительно самостоятельных направлений или течений. Их тоже много но в плане самой общей картины можно ограничиться тремя: аналитическим феноменологическим и постм
10306. Раннегреческая философия (милетская и элейская школы философии) 13.1 KB
Раннегреческая философия милетская и элейская школы философии Милетская школа существовала в Древней Греции в VI в. до н. э. Представителями данной школы являлись Фалес Анаксимандр Анаксимен. Философы милетской школы: выступали с материалистических позиций; занимал
10307. Философия французского просвещения 11.36 KB
Во Франции философия являлась мощным общественно культурным движением. Все идеи французских философов подготовили почву к великой французской революции. Приведем пример двух самых ярких просветителей этого времени. Вольтер французский философпросветитель. Боро
10308. Фихте Иоганн немецкий философ и общественный деятель 14.79 KB
Фихте Иоганн немецкий философ и общественный деятель представитель нем. классического идеализма. Родился в крестьянской семье. Учился в университете Лейпцига. Под влиянием событий Великой французской революции Ф. написал работу посвященную защите свободы мысли. Вслед
10309. Фридрих Шеллинг 11.72 KB
Фридрих Шеллинг оказался своеобразным связывающим звеном между философией Канта идеями Фихте. В центре его философских размышлений оказывается задача построить единую систему познания истины в частных областях. Все это реализуется в его âнатурфилософииâ. Основн...
10310. Формування стратегії розвитку туристичної дестинації «Подільські Товтри» 2.55 MB
Розкити сутність понять «дестинація», «екологічна дестинація», «стратегія»; Визначити теоретичні основи формування стратегії розвитку туристичної дестинації; Сформулювати систему оціночних показників для визначення привабливості дестинації; Здійснити комплексний аналіз туристичного потенціалу дестинації «Подільські Товтри»; Визначити передумови для створення стратегії розвитку дестинації «Подільські Товтри»...
10311. Эпоха эллинизма 12.39 KB
Эллинизм охватывающий период от завоеваний Александра Македонского до падения западной Римской Империи характеризует собой последующую античную философию. Сохранив многое из античной классики Эллинизм по существу завершил ее. Исходные принципы заложенные великими...

Согласно постулатам Бора электрон может находиться на нескольких определенных орбитах. Каждой орбите электрона соответствует определенная энергия. При переходе электрона с ближней на дальнюю орбиту атомная система поглощает квант энергии. При переходе с более удаленной орбиты электрона на ближнюю орбиту по отношению к ядру, атомная система излучает квант энергии.

Спектры

Теория Бора позволила объяснить существование линейчатых спектров.
Формула (1) даёт качественное представление о том, почему атомные спектры испускания и поглощения являются линейчатыми. В самом деле, атом может излучать волны лишь тех частот, которые соответствуют разностям значений энергии E 1 , E 2 , . . . , E n , . . Вот поэтому спектр излучения атомов состоит из отдельно расположенных резких ярких линий. Вместе с тем, атом может поглотить не любой фотон, а только тот, энергия которого в точности равна разности E n E k каких-то двух разрешённых значений энергии E n и E k . Переходя в состояние с более высокой энергией E n , атомы поглощают ровно те самые фотоны, которые способны излучить при обратном переходе в исходное состояние E k . Попросту говоря, атомы забирают из непрерывного спектра те линии, которые сами же и излучают; вот почему тёмные линии спектра поглощения холодного атомарного газа находятся как раз в тех местах, где расположены яркие линии спектра испускания этого же газа в нагретом состоянии.

Сплошной спектр спектр испускания водорода спектр поглощения водорода

Слово «атом» в переводе с греческого означает «неделимый». Под атомом долгое время, вплоть до начала XX в., подразумевали мельчайшие неделимые частицы вещества. К началу XX в. в науке накопилось много фактов, говоривших о сложном строении атомов.

Большие успехи в исследовании строения атомов были достигнуты в опытах английского ученого Эрнеста Резерфорда по рассеянию α-частиц при прохождении через тонкие слои вещества. В этих опытах узкий пучок α-частиц, испускаемых радиоактивным веществом, направлялся на тонкую золотую фольгу. За фольгой помещался экран, способный светиться под ударами быстрых частиц. Было обнаружено, что большинство α-частиц отклоняется от прямолинейного распространения после прохождения фольги, т. е. рассеивается, а некоторые а-частицы вообще отбрасываются назад. Рассеяние α-частиц Резерфорд объяснил тем, что положительный заряд не распределен равномерно в шаре радиусом 10 -10 м, как предполагали ранее, а сосре-доточен в центральной части атома - атомном ядре. При прохождении около ядра а-частица, имею-щая положительный заряд, отталкивается от него, а при попадании в ядро - отбрасывается в противоположном направлении. Так ведут себя частицы, имеющие одинаковый заряд, следовательно, существует центральная положительно заряженная часть атома, в которой сосредоточена значительная масса атома. Расчеты показали, что для объяснения опытов нужно принять радиус атомного ядра равным примерно 10 -15 м.



Резерфорд предположил, что атом устроен подобно планетарной системе. Суть модели строения атома по Резерфорду заключается в следующем: в центре атома находится положительно заряженное ядро, в котором сосредоточена вся масса, вокруг ядра по круговым орбитам на больших расстояниях вращаются электроны (как планеты вокруг Солнца). Заряд ядра совпадает с номером химического элемента в таблице Менделеева.



h - постоянная Планка.

1. Слово «атом» в переводе с греческого означает «неделимый». Под атомом долгое время, вплоть до начала XX в., подразумевали мельчайшие неделимые частицы вещества. К началу XX в. в науке накопилось много фактов, говоривших о сложном строении атомов.

Большие успехи в исследовании строения атомов были достигнуты в опытах английского ученого Эрнеста Резерфорда по рассеянию а-частиц при прохождении через тонкие слои вещества. В этих опытах узкий пучок а-частиц, испускаемых радиоактивным веществом, направлялся на тонкую золотую фольгу. За фольгой помещался экран, способный светиться под ударами быстрых частиц. Было обнаружено, что большинство а-частиц отклоняется от прямолинейного распространения после прохождения фольги, т. е. рассеивается, а некоторые а-частицы вообще отбрасываются назад. Рассеяние а-частиц Резерфорд объяснил тем, что положительный заряд не распределен равномерно в шаре радиусом 10^~10м, как предполагали ранее, а сосре-доточен в центральной части атома - атомном ядре. При прохождении около ядра а-частица, имею-щая положительный заряд, отталкивается от него, а при попадании в ядро - отбрасывается в противоположном направлении. Так ведут себя частицы, имеющие одинаковый заряд, следовательно, существует центральная положительно заряженная часть атома, в которой сосредоточена значительная масса атома. Расчеты показали, что для объясне-ния опытов нужно принять радиус атомного ядра равным примерно 10^~15 м.

Резерфорд предположил, что атом устроен по-добно планетарной системе. Суть модели строения атома по Резерфорду заключается в следующем: в центре атома находится положительно заряженное ядро, в котором сосредоточена вся масса, вокруг ядра по круговым орбитам на больших расстояниях вращаются электроны (как планеты вокруг Солнца). Заряд ядра совпадает с номером химического элемента в таблице Менделеева.

Планетарная модель строения атома по Резерфорду не смогла объяснить ряд известных фактов: электрон, имеющий заряд, должен за счет кулонов-ских сил притяжения упасть на ядро, а атом - это устойчивая система; при движении по круговой орбите, приближаясь к ядру, электрон в атоме должен излучать электромагнитные волны всевозможных частот, т. е. излучаемый свет должен иметь непрерывный спектр, на практике же получается иное: электроны атомов излучают свет, имеющий линейчатый спектр. Разрешить противоречия планетарной ядерной модели строения атома первым попытался датский физик Ни лье Бор.

В основу своей теории Бор положил два постулата. Первый постулат: атомная система может находиться только в особых стационарных или квантовых состояниях, каждому из которых соответствует своя энергия; в стационарном состоянии атом не излучает Это означает, что электрон (например, в атоме водорода) может находиться на нескольких вполне определенных орбитах. Каждой орбите электрона соответствует вполне определенная энергия.

Второй постулат: при переходе из одного стационарного состояния в другое испускается или поглощается квант электромагнитного излучения. Энергия фотона равна разности энергий атома в двух состояниях: , где

h - постоянная Планка.

При переходе электрона с ближней орбиты на более удаленную атомная система поглощает квант энергии. При переходе с более удаленной орбиты электрона на ближнюю орбиту по отношению к ядру атомная система излучает квант энергии.

В науке очень долго считалось, что Атом – это наименьшая, НЕДЕЛИМАЯ частиц вещества.

1.Первым, кто нарушил эти представления был Томсон: он считал, что атом – это некая положительная субстанция, в которую «как изюминки в кекс» вкраплены электроны. Важность этой теории – то, что атом перестали признавать неделимым
2. Резерфорд поставил опыт по рассеиванию альфа-частиц. Радиоактивным веществом бомбардировались тяжелые элементы (золотая фольга). Резерфорд ожидал увидеть светящиеся круги, а увидел светящиеся кольца.
Объяснение Резерфорда: в центре атома находится весь положительный заряд, а электроны ни оказывают никакого влияния на поток альфа-частиц.
3. Планетарная модель атома водорода по БОРУ

Излучая порцию энергии (видимой) атом дает только ему присущий набор длин волн – спектр.

Виды спектров:

1. Спектр излучения (испускания): (дают тела в нагретом состоянии)

а) Сплошной – дают все атомы в твердом, жидком состоянии или плотные газы

б) Линейчатый – дают атомы в газообразном состоянии

1. Спектр поглощения: если через вещество пропустить свет, то это вещество будет поглощать именно те волны, которые излучает в нагретом состоянии (на сплошном спектре появляются темные полоски)

Спектральный анализ – это метод определения химического состава вещества по его спектру излучения или поглощения.

Метод основан на том, что каждому химическому элементу присущ свой набор длин волн.

Применение спектрального анализа: в криминалистике, медицине, в астрофизике.

Спектрограф – это прибор, для проведения спектрального анализа. Спектроскоп отличается от спектрографа тем, что с помощью него можно не просто наблюдать за спектрами, но и сделать фотографический снимок спектра.

Билет №21

1. Термодинамический подход к изучению физических явлений. Внутренняя энергия и способы ее изменения. Первый закон термодинамики. Применение первого закона термодинамики к изотермическому, изохорному и адиабатному процессам.

2. Модели строение атомного ядра; ядерные силы; нуклонная модель ядра; энергия связи ядра; ядерные реакции.

1. Каждое тело имеет вполне определенную структуру, оно состоит из частиц, которые хаотически движутся и взаимодействуют друг с другом, поэтому любое тело обладает внутренней энергией. Внутренняя энергия - это величина, характеризующая собственное состояние тела, т. е. энергия хаотического (теплового) движения микрочастиц системы

(молекул, атомов, электронов, ядер и т. д.) и энергия взаимодействия этих частиц. Внутренняя энергия одноатомного идеального газа определяется по формуле U = 3/2 т/М RT.

Внутренняя энергия тела может изменяться только в результате его взаимодействия с другими телами. Существует два способа изменения внутренней энергии: теплопередача и совершение механической работы (например, нагревание при трении или при сжатии, охлаждение при расширении).

Теплопередача - это изменение внутренней энергии без совершения работы: энергия передается от более нагретых тел к менее нагретым. Теплопередача бывает трех видов: теплопроводность (непосредственный обмен энергией между хаотически движущимися частицами взаимодействующих тел или частей одного и того же тела); конвекция (перенос энергии потоками жидкости или газа) и излучение (перенос энергии электромагнитными волнами). Мерой переданной энергии при теплопередаче является количество теплоты (Q).

Эти способы количественно объединены в закон сохранения энергии, который для тепловых процессов читается так: изменение внутренней энергии замкнутой системы равно сумме количества теплоты, переданной системе, и работы внешних сил, совершенной над системой. , где - изменение внутренней энергии, Q - количество теплоты, переданное системе, А - работа внешних сил. Если система сама совершает работу, то ее условно обозначают А*. Тогда закон сохранения энергии для тепловых процессов, который называется первым законом термодинамики, можно записать так: , т.е. количество теплоты, переданное системе, идет на совершение системой работы и изменение ее внутренней энергии.

При изобарном нагревании газ совершает работу над внешними силами , где V1 и V2 - начальный и конечный объемы газа. Если процесс не является изобарным, величина работы может быть определена площадью фигуры ABCD, заключенной между линией, выражающей зависимость p(V), и начальным и конечным объемами газа V

Рассмотрим применение первого закона термодинамики к изопроцессам, происходящим с идеальным газом.

В изотермическом процессе температура постоянная, следовательно, внутренняя энергия не меняется. Тогда уравнение первого закона термодинамики примет вид: , т. е. количество теплоты, переданное системе, идет на совершение работы при изотермическом расширении, именно поэтому температура не изменяется.

В изобарном процессе газ расширяется и количество теплоты, переданное газу, идет на увеличение его внутренней энергии и на совершение им работы: .

При изохорном процессе газ не меняет своего объема, следовательно, работа им не совершается, т. е. А = 0, и уравнение первого закона имеет вид , т. е. переданное количество теплоты идет на увеличение внутренней энергии газа.

Адиабатным называют процесс, протекающий без теплообмена с окружающей средой. Q = 0, следовательно, газ при расширении совершает работу за счет уменьшения его внутренней энергии, следовательно, газ охлаждается, Кривая, изображающая адиабатный процесс, называется адиабатой.
2. Состав ядра атома. Ядерные силы. Дефект массы и энергия связи ядра атома. Ядерные реакции. Ядерная энергетика.

Ядро атома любого вещества состоит из протонов и нейтронов. (Общее название протонов и нейтронов - нуклоны.) Число протонов равно заряду ядра и совпадает с номером элемента в таблице Менделеева. Сумма числа протонов и нейтронов равна массовому числу. Например, ядро атома кислорода состоит из 8 протонов и 16 - 8 = 8 нейтронов. Ядро атома состоит из 92 протонов и 235 - 92 = 143 нейтронов.

Силы, которые удерживают протоны и нейтроны в ядре – называются ядерными силами . Это самый сильный вид взаимодействия.

В 1932 г. английский физик Джеймс Чедвик открыл частицы с нулевым электрическим зарядом и единичной массой. Эти частицы назвали нейтронами. Обозначается нейтрон п. После открытия нейтрона физики Д. Д. Иваненко и В. Гейзенберг в 1932 г. выдвинули протонно-нейтронную модель атомного ядра. Согласно этой модели, ядро атома любого вещества состоит из протонов и нейтронов. (Общее название протонов и нейтронов - нуклоны.) Число протонов равно заряду ядра и совпадает с номером элемента в таблице Менделеева. Сумма числа протонов и нейтронов равна массовому числу. Например, ядро атома кислорода состоит из 8 протонов и 16 - 8 = 8 нейтронов. Ядро атома состоит из 92 протонов и 235 - 92 = 143 нейтронов.

Химические вещества, занимающие одно и то же место в таблице Менделеева, но имеющие разную атомную массу, называются изотопами. Ядра изотопов отличаются числом нейтронов. Например, водород имеет три изотопа: протии - ядро состоит из одного протона, дейтерий - ядро состоит из одного протона и одного нейтрона, тритий - ядро состоит из одного протона и двух нейтронов.

Если сравнить массы ядер с массами нуклонов, то окажется, что масса ядра тяжелых элементов больше суммы масс протонов и нейтронов в ядре, а для легких элементов масса ядра меньше суммы масс протонов и нейтронов в ядре. Следовательно, существует разность масс между массой ядра и суммой масс протонов и нейтронов, называемая дефектом массы. М = Мn - (Мp + Мn).

Цепная реакция деления - это ядерная реакция, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции. Необходимым условием для развития цепной реакции деления является требование k > 1, где k - коэффициент размножения нейтронов, т. е. отношение числа нейтронов в данном поколении к их числу в предыдущем поколении. Способностью к цепной ядерной реакции обладает изотоп урана 235U. При наличии определенных критических параметров (критическая масса - 50 кг, шаровая форма радиусом 9 см) три нейтрона, выделившиеся при делении первого ядра, попадают в три соседних ядра и т. д. Процесс идет в виде цепной реакции, которая протекает за доли секунды в виде ядерного взрыва. Неуправляемая ядерная реакция применяется в атомных бомбах. Впервые решил задачу об управлении цепной реакцией деления ядер физик Энрико Ферми. Им был изобретен ядерный реактор в 1942 г. У нас в стране реактор был запущен в 1946 г. под руководством И. В. Курчатова.

Термоядерные реакции - это реакции синтеза легких ядер, происходящие при высокой температуре (примерно 107 К и выше). Необходимые условия для синтеза ядер гелия из протонов имеются в недрах звезд. На Земле термоядерная реакция осуществлена только при экспериментальных взрывах, хотя ведутся международные исследования по управлению этой реакцией.

Если сравнить массы ядер с массами нуклонов, то окажется, что масса ядра тяжелых элементов больше суммы масс протонов и нейтронов в ядре, а для легких элементов масса ядра меньше суммы масс протонов и нейтронов в ядре. Следовательно, существует разность масс между массой ядра и суммой масс протонов и нейтронов, называемая дефектом массы. М = Мn - (Мp + Мn).

Так как между массой и энергией существует связь , то при делении тяжелых ядер и при синтезе легких ядер должна выделяться энергия, существующая из-за дефекта масс, и эта энергия называется энергией связи атомного ядра.

Выделение этой энергии может происходить при ядерных реакциях. Ядерная реакция - это процесс изменения заряда ядра и его массы, происходящий при взаимодействии ядра с другими ядрами или элементарными частицами. При протекании ядерных реакций выполняются законы сохранения электрических зарядов и массовых чисел: сумма зарядов (массовых чисел) ядер и частиц, вступающих в ядерную реакцию, равна сумме зарядов (массовых чисел) конечных продуктов (ядер и частиц) реакции.

Цепная реакция деления - это ядерная реакция, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции. Способностью к цепной ядерной реакции обладает изотоп урана 235 U. При наличии определенных критических параметров (критическая масса - 50 кг, шаровая форма радиусом 9 см) три нейтрона, выделившиеся при делении первого ядра, попадают в три соседних ядра и т. д. Процесс идет в виде цепной реакции, которая протекает за доли секунды в виде ядерного взрыва. Неуправляемая ядерная реакция применяется в атомных бомбах. Впервые решил задачу об управлении цепной реакцией деления ядер физик Энрико Ферми. Им был изобретен ядерный реактор в 1942 г. У нас в стране реактор был запущен в 1946 г. под руководством И. В. Курчатова.

Термоядерные реакции - это реакции синтеза легких ядер, происходящие при высокой температуре (примерно 107 К и выше). Необходимые условия для синтеза ядер гелия из протонов имеются в недрах звезд. На Земле термоядерная реакция осуществлена только при экспериментальных взрывах, хотя ведутся международные исследования по управлению этой реакцией.

Это перспективные направления ядерной энергетики. Так как данную энергию можно применять в мирных целях. Примером тому служат Атомные электростанции. Морские корабли, ледоколы, работающие за счет ядерных установок.

Большие успехи в исследовании строения атомов были достигнуты в опытах английского ученого Эрнеста Резерфорда по рассеянию α-частиц при прохождении через тонкие слои вещества. В этих опытах узкий пучок α - частиц, испускаемых радиоактивным веществом, направлялся на тонкую золотую фольгу. За фольгой помещался экран, способный светиться под ударами быстрых

α-частиц. Было обнаружено, что большинство α-частиц отклоняется от прямолинейного распространения после прохождения фольги, т. е. рассеивается, а некоторые α-частицы вообще отбрасываются назад.. Расчеты показали, что для объяснения опытов нужно принять

Резерфорд предположил, что атом устроен подобно планетарной системе. Суть модели строения атома по Резерфорду заключается в следующем: в центре атома находится положительно заряженное ядро, в котором сосредоточена вся масса, вокруг ядра по круговым орбитам на больших расстояниях вращаются электроны (как планеты вокруг Солнца). Заряд ядра совпадает с номером химического элемента в таблице Менделеева.

Планетарная модель строения атома по Резерфорду не смогла объяснить ряд известных фактов: электрон, имеющий заряд, должен за счет кулоновских сил притяжения упасть на ядро, а атом - это устойчивая система.

При движении по круговой орбите, приближаясь к ядру, электрон в атоме должен излучать электромагнитные волны всевозможных частот, т. е. излучаемый свет должен иметь непрерывный спектр, на практике же получается иное: электроны атомов излучают свет, имеющий линейчатый спектр. Разрешить противоречия планетарной ядерной модели строения атома первым попытался датский физик Нильс Бор.

В основу своей теории Бор положил два постулата. Первый постулат: атомная система может находиться только в особых стационарных или квантовых состояниях, каждому из которых соответствует своя энергия; в стационарном состоянии атом не излучает.

Это означает, что электрон (например, в атоме водорода) может находиться на нескольких вполне определенных орбитах. Каждой орбите электрона соответствует вполне определенная энергия.Второй постулат: при переходе из одного стационарного состояния в другое испускается или поглощается квант электромагнитного излучения . Энергия фотона равна разности энергий атома в двух состояниях: , , где - постоянная Планка.

При переходе электрона с ближней орбиты на более удаленную атомная система поглощает квант энергии. При переходе с более удаленной орбиты электрона на ближнюю орбиту по отношению к ядру и томная система излучает квант энергии. Теория Бора позволила объяснить существование линейчатых спектров.

Билет № 24

1. Какое строение имеет ядро атома? Какими особенностями обладают ядерные силы? Дайте определение дефекта массы и энергии связи ядра атома. Приведите примеры ядерных реакций.

В 1932г. после открытия протона и нейтрона учеными Д.Д. Иваненко (СССР) и В. Гейзенберг (Германия) была выдвинута протонно-нейтронная модель ядра атома

Согласно этой модели:
- ядра всех химических элементов состоят из нуклонов: протонов и нейтронов
- заряд ядра обусловлен только протонами
- число протонов в ядре равно порядковому номеру элемента
- число нейтронов равно разности между массовым числом и числом протонов (N=A-Z)

Условное обозначение ядра атома химического элемента:

X – символ химического элемента
А – массовое число, которое показывает:
- массу ядра в целых атомных единицах массы (а.е.м.)
(1 а.е.м. = 1/12 массы атома углерода)
- число нуклонов в ядре (A = N + Z) , где N – число нейтронов в ядре атома
Z – зарядовое число, которое показывает:
- заряд ядра в элементарных электрических зарядах (э.э.з.)
(1э.э.з. = заряду электрона = 1,6 х 10 -19 Кл)
- число протонов
- число электронов в атоме
- порядковый номер в таблице Менделеева
Ядерные силы - силы притяжения, связывающие протоны и нейтроны в ядре.

Свойства:

1.На расстояниях порядка 10 -13 см сильные взаимодействия соответствуют притяжению, при уменьшении расстояния – отталкиванию.

2.Независимы от наличия электрического заряда (свойство зарядовой независимости).

Одинаковая сила действует и на протон и на нейтрон.

3.Взаимодействуют с ограниченным числом нуклонов (свойство насыщения).

4.Короткодействующие: быстро убывают, начиная с r ≈ 2,2 . 10 -15 м.

Энергия, которая необходима для полного расщепления ядра на отдельные нуклоны, называется энергией связи . Энергия связи очень велика. При синтезе 4 г гелия выделяется такое же количество энергии, как при сжигании двух вагонов каменного угля.

Масса ядра всегда меньше суммы масс покоя свободных протонов и нейтронов, его составляющих.
Разность между массой ядра и суммой масс протонов и нейтронов называется дефектом масс.

Формула для вычисления энергии связи:

- дефект массы.

m p – масса покоя протона; m n – масса покоя нейтрона. М я - масса ядра атома.

В атомной физике массу удобно выражать в атомных единицах массы:

1 а.е.м.=1,67·10 -27 кг . Коэффициент связи энергии и массы (равный с 2): с 2 = 931,5 МэВ/а·е·м .

Ядерные реакции - превращения атомных ядер, вызванные их взаимодействиями с различными частицами или друг с другом .

Символическая запись: А + а = В + b. При написании ядерных реакций используются законы сохранения заряда и массового числа (числа нуклонов).

Примеры:

Энергетический выход ядерной реакции - разность между суммарной энергией связи частиц, участвующих в реакции и продуктов реакции.

Реакции, происходящие с выделением энергии, наз. экзотермическими, с поглощением - эндотермическими.

Эрнест Резерфорд – это один из основателей фундаментального учения о внутреннем строении атома. Родился ученый в Англии, в семье эмигрантов из Шотландии. Резерфорд был четвертым ребенком в своей семье, при этом оказался самым талантливым. Особый вклад ему удалось внести в теорию строения атома.