Эволюция звезд разной массы. Как умирают звёзды

Привет дорогие читатели! Хотелось бы поговорить о прекрасном ночном небе. Почему о ночном? Спросите Вы. Потому, что на нем ярко видны звезды, эти прекрасные светящиеся маленькие точки на черно-синем фоне нашего неба. Но на самом деле они не маленькие, а просто огромные, а из -за большого расстояния кажутся такими крохотными .

Кто-нибудь из Вас представлял себе как рождаются звезды, как проживают свою жизнь, какая она у них вообще? Я предлагаю Вам сейчас прочесть эту статью и по ходу представить эволюцию звезд. Я подготовила парочку видео для наглядного примера 😉

Небо усеяно множеством звезд, среди которых разбросаны огромные облака пыли и газов, водорода в основном. Звезды рождаются именно в таких туманностях, или межзвездных областях.

Звезда живет настолько долго (до десятков миллиардов лет), что астрономам не под силу проследить жизнь от начала и до конца, хотя бы одной из них. Но зато у них есть возможность наблюдать за разными стадиями развития звезд.

Ученные объединили полученные данные, и смогли проследить за этапами жизни типичных звезд: момент рождения звезды в межзвездном облаке, ее молодость, средний возраст, старость и иногда весьма эффектную смерть.

Рождение звезды.


Возникновение звезды начинается с уплотнения вещества внутри туманности. Постепенно, образовавшееся уплотнение, уменьшается в размерах, сжимаясь под воздействием гравитации. Во время этого сжатия, или коллапса , выделяется энергия, которая разогревает пыль и газ и вызывает их свечение.

Возникает так называемая протозвезда . Температура и плотность вещества в ее центре, или ядре максимальные. Когда температура достигает отметки около 10 000 000°С, в газе начинают протекать термоядерные реакции.

Ядра атомов водорода начиняют соединяться и превращаются в ядра атомов гелия. При таком синтезе выделяется огромное количество энергии. Эта энергия, в процессе конвекции, переносится в поверхностный слой, а потом, в виде света и тепла излучается в космос. Таким вот образом, протозвезда превращается в настоящую звезду.

Излучение, которое исходит из ядра, разогревает газовую среду, создавая давление, которое направленное вовне, и таким образом, препятствуя гравитационному коллапсу звезды.

Результатом является, то, что она обретает равновесие, то есть имеет постоянные размеры, постоянную поверхностную температуру и постоянное количество выделяемой энергии.

Астрономы звезду на этой стадии развития называют звездой главной последовательности , таким образом, указывая место, которое она занимает на диаграмме Герцшпрунга-Ресселла. Эта диаграмма выражает связь между температурой звезды и светимостью.

Протозвезды, имеющие небольшую массу, никогда не разогреваются до температур, которые необходимы для начала термоядерной реакции. Эти звезды, в результате сжатия, превращаются в тусклых красных карликов , или даже еще более тусклых коричневых карликов . Первая звезда коричневый карлик была открыта лишь 1987 году.

Гиганты и карлики.

Диаметр Солнца приблизительно равен 1 400 000 км, а температура его поверхности около 6 000°С, и оно излучает желтоватый свет. Оно на протяжении 5 млрд. лет входит в главную последовательность звезд.

Водородное «топливо» на такой звезде, приблизительно за 10 млрд. лет исчерпается, а в ее ядре останется, главным образом, гелий. Когда больше не остается чему «гореть», интенсивность излучения, направленного от ядра, уже не достаточна для уравновешивания гравитационного коллапса ядра.

Но той энергии, которая при этом выделяется, достаточно для того, чтобы разогреть окружающее вещество. В этой оболочке начинается синтез ядер водорода, выделяется больше энергии.

Звезда начинает ярче светиться, но теперь уже красноватым светом, и одновременно она еще и расширяется, увеличиваясь в размере в десятки раз. Теперь такая звезда называются красным гигантом .

Ядро красного гиганта сжимается, а температура возрастает до 100 000 000°С и более. Здесь происходит реакция синтеза ядер гелия, превращая его в углерод. Благодаря той энергии, которая при этом выделяется, звезда еще светится каких-нибудь 100 млн. лет.

После того как заканчивается гелий и реакции затухают, вся звезда постепенно, под влиянием гравитации, сжимается почти до размеров . Энергии, которая при этом выделяется, достаточно для того, чтобы звезда (теперь уже белый карлик) продолжала еще некоторое время ярко светиться.

Степень сжатия вещества в белом карлике очень высока и, следовательно, у него очень большая плотность – вес одной столовой ложки может достигать тысячи тонн. Таким вот образом проходит эволюция звезд размером с наше Солнце.

Видео показывающее эволюцию нашего Солнца в белого карлика

Жизненный цикл у звезды, масса которой в пять раз превышает массу Солнца, значительно короче, и она несколько иначе эволюционирует. Такая звезда намного ярче, а температура ее поверхности 25 000°С и более, период пребывания в главной последовательности звезд всего лишь около 100 млн. лет.

Когда такая звезда входит в стадию красного гиганта , температура в ее ядре превышает 600 000 000°С. В нем происходят реакции синтеза ядер углерода, который превращается в более тяжелые элементы, включая железо.

Звезда, под действием выделяемой энергии, расширяется до размеров, которые в сотни раз превышают ее первоначальные размеры. Звезду на этой стадии называют сверхгигантом .

В ядре внезапно прекращается процесс производства энергии, и оно в течение считаных секунд сжимается. При всем этом выделяется огромное количество энергии и образуется катастрофическая ударная волна.

Эта энергия проходит через всю звезду и выбрасывает значительную ее часть силой взрыва в космическое пространство, вызывая явление, которое известно как вспышка сверхновой звезды .

Для лучшего представления всего написанного, рассмотрим на схеме цикл эволюции звезд

В феврале 1987 года подобная вспышка наблюдалась в соседней галактике – Большом Магеллановом облаке. Эта сверхновая звезда в течение короткого времени светилась ярче целого триллиона Солнц.

Ядро сверхгиганта сжимается и образует небесное тело диаметром всего лишь 10-20 км, а плотность его настолько велика, что чайная ложка его вещества может весить 100 млн. тонн!!! Такое небесное тело состоит из нейтронов и называется нейтронной звездой .

Нейтронная звезда, которая только что образовалась, отличается большой скоростью вращения и очень сильным магнетизмом.

В результате создается мощное электромагнитное поле, которое испускает радиоволны и другие виды излучения. Они распространяются из магнитных полюсов звезды в форме лучей.

Эти лучи, из-за вращения звезды вокруг своей оси, как бы сканируют космическое пространство. Когда они проносятся мимо наших радиотелескопов, мы их воспринимаем как короткие вспышки, или импульсы (англ. Pulse). Поэтому такие звезды называются пульсарами .

Обнаружены пульсары были благодаря именно радиоволнам, которые они излучают. Сейчас стало известно, что многие из них излучают световые и рентгеновские импульсы.

Первый световой пульсар обнаружили в Крабовидной туманности. Его импульсы повторяются с периодичностью 30 раз в секунду.

Импульсы других пульсаров повторяются гораздо чаще: ПИР (пульсирующий источник радиоизлучения) 1937+21 вспыхивает 642 раза в секунду. Представить даже сложно такое!

Звезды, которые имеют наибольшую массу, превышающую в десятки раз массу Солнца, тоже вспыхивают, как сверхновые. Но из-за огромной массы, их коллапс имеет гораздо более катастрофический характер.

Разрушительное сжатие не прекращается даже на стадии образования нейтронной звезды, создавая область, в которой обычное вещество прекращает свое существование.

Остается только лишь одна гравитация, которая настолько сильная, что ничто, даже свет, не может избежать ее воздействия. Эта область называется черной дырой . Да уж, эволюция больших звезд страшная и очень опасная.

В этом видеоролике речь пойдет о том, как сверхновая превращается в пульсар и в черную дыру

Я не знаю как Вы, дорогие читатели, но лично я очень люблю и интересуюсь космосом и всем, что с ним связанно, это так загадочно и прекрасно, аж дух захватывает! Эволюция звезд нам много поведала о будущем нашей и всей .

Изучение звёздной эволюции невозможно наблюдением лишь за одной звездой - многие изменения в звёздах протекают слишком медленно, чтобы быть замеченными даже по прошествии многих веков. Поэтому учёные изучают множество звёзд, каждая из которых находится на определённой стадии жизненного цикла. За последние несколько десятилетий широкое распространение в астрофизике получило моделирование структуры звёзд с использованием вычислительной техники .

Энциклопедичный YouTube

    1 / 5

    ✪ Звёзды и звёздная эволюция (рассказывает астрофизик Сергей Попов)

    ✪ Звёзды и звёздная эволюция (рассказывают Сергей Попов и Илгонис Вилкс)

    ✪ Эволюция звезд. Эволюция голубого гиганта за 3 минуты

    ✪ Сурдин В.Г. Звёздная эволюция Часть 1

    ✪ С. А. Ламзин - "Звездная эволюция"

    Субтитры

Термоядерный синтез в недрах звёзд

Молодые звёзды

Процесс формирования звёзд можно описать единым образом, но последующие стадии эволюции звезды почти полностью зависят от её массы, и лишь в самом конце эволюции звезды свою роль может сыграть её химический состав.

Молодые звёзды малой массы

Молодые звёзды малой массы (до трёх масс Солнца) [ ] , находящиеся на подходе к главной последовательности , полностью конвективны, - процесс конвекции охватывает все тело звезды. Это ещё по сути протозвёзды, в центрах которых только-только начинаются ядерные реакции, и всё излучение происходит, в основном, из-за гравитационного сжатия. До тех пор пока гидростатическое равновесие не установится, светимость звезды убывает при неизменной эффективной температуре. На диаграмме Герцшпрунга-Рассела такие звёзды формируют почти вертикальный трек, называемый треком Хаяши . По мере замедления сжатия молодая звезда приближается к главной последовательности. Объекты такого типа ассоциируются со звёздами типа T Тельца .

В это время у звёзд массой больше 0,8 масс Солнца ядро становится прозрачным для излучения, и лучистый перенос энергии в ядре становится преобладающим, поскольку конвекция все больше затрудняется всё большим уплотнением звездного вещества. Во внешних же слоях тела звезды превалирует конвективный перенос энергии.

О том, какими характеристиками в момент попадания на главную последовательность обладают звёзды меньшей массы, достоверно неизвестно, так как время нахождения этих звёзд в разряде молодых превышает возраст Вселенной [ ] . Все представления об эволюции этих звёзд базируются только на численных расчётах и математическом моделировании.

По мере сжатия звезды начинает расти давление вырожденного электронного газа и при достижении определённого радиуса звезды сжатие останавливается, что приводит к остановке дальнейшего роста температуры в ядре звезды, вызываемого сжатием, а затем и к её снижению. Для звёзд меньше 0,0767 масс Солнца это не происходит: выделяющейся в ходе ядерных реакций энергии никогда не хватит, чтобы уравновесить внутреннее давление и гравитационное сжатие. Такие «недозвёзды» излучают энергии больше, чем образуется в процессе термоядерных реакций, и относятся к так называемым коричневым карликам . Их судьба - постоянное сжатие, пока давление вырожденного газа не остановит его, и, затем, постепенное остывание с прекращением всех начавшихся термоядерных реакций.

Молодые звёзды промежуточной массы

Молодые звёзды промежуточной массы (от 2 до 8 масс Солнца) [ ] качественно эволюционируют точно так же, как и их меньшие сестры и братья, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

Объекты этого типа ассоциируются с т. н. звёздами Ae\Be Хербига неправильными переменными спектрального класса B-F0. У них также наблюдаются диски и биполярные джеты. Скорость истечения вещества с поверхности, светимость и эффективная температура существенно выше, чем для T Тельца , поэтому они эффективно нагревают и рассеивают остатки протозвёздного облака.

Молодые звёзды с массой больше 8 солнечных масс

Звезды с такими массами уже обладают характеристиками нормальных звезд, поскольку прошли все промежуточные стадии и смогли достичь такой скорости ядерных реакций, которая компенсировала потери энергии на излучение, пока накапливалась масса для достижения гидростатического равновесия ядра. У этих звёзд истечение массы и светимость настолько велики, что не просто останавливают гравитационный коллапс ещё не ставших частью звезды внешних областей молекулярного облака, но, наоборот, разгоняют их прочь. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего, этим и объясняется отсутствие в нашей галактике звёзд с массой больше, чем около 300 масс Солнца.

Середина жизненного цикла звезды

Среди звёзд встречается широкое многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе - от 0,0767 до около 300 Солнечных масс по последним оценкам. Светимость и цвет звезды зависят от температуры её поверхности, которая, в свою очередь, определяется её массой. Все новые звёзды «занимают своё место» на главной последовательности согласно своему химическому составу и массе. Речь, естественно, идёт не о физическом перемещении звезды - только о её положении на указанной диаграмме, зависящем от параметров звезды. Фактически, перемещение звезды по диаграмме отвечает лишь изменению параметров звезды.

Возобновившееся на новом уровне термоядерное «горение» вещества становится причиной чудовищного расширения звезды. Звезда «распухает», становясь очень «рыхлой», и её размер увеличивается приблизительно в 100 раз. Так звезда становится красным гигантом , а фаза горения гелия продолжается около нескольких миллионов лет. Практически все красные гиганты являются переменными звёздами .

Финальные стадии звёздной эволюции

Старые звёзды с малой массой

В настоящее время достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода в их недрах. Поскольку возраст Вселенной составляет 13,7 миллиардов лет, что недостаточно для истощения запаса водородного топлива в таких звёздах, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

Некоторые звёзды могут синтезировать гелий лишь в некоторых активных зонах, что вызывает их нестабильность и сильные звёздные ветры . В этом случае образования планетарной туманности не происходит, и звезда лишь испаряется, становясь даже меньше, чем коричневый карлик [ ] .

Звезда с массой менее 0,5 солнечной не в состоянии преобразовывать гелий даже после того, как в её ядре прекратятся реакции с участием водорода, - масса такой звезды слишком мала для того, чтобы обеспечить новую фазу гравитационного сжатия до степени, достаточной для «поджига» гелия. К таким звёздам относятся красные карлики , такие как Проксима Центавра , срок пребывания которых на главной последовательности составляет от десятков миллиардов до десятков триллионов лет . После прекращения в их ядрах термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра .

Звёзды среднего размера

При достижении звездой средней величины (от 0,4 до 3,4 солнечных масс) [ ] фазы красного гиганта в её ядре заканчивается водород, и начинаются реакции синтеза углерода из гелия . Этот процесс идет при более высоких температурах и поэтому поток энергии от ядра увеличивается и, как следствие, внешние слои звезды начинают расширяться. Начавшийся синтез углерода знаменует новую стадию в жизни звезды и продолжается некоторое время. Для звезды, по размеру близкой к Солнцу, этот процесс может занять около миллиарда лет.

Изменения в величине излучаемой энергии заставляют звезду пройти через периоды нестабильности, включающие в себя изменения размера, температуры поверхности и выпуск энергии. Выпуск энергии смещается в сторону низкочастотного излучения. Все это сопровождается нарастающей потерей массы вследствие сильных звёздных ветров и интенсивных пульсаций. Звёзды, находящиеся в этой фазе, получили название «звёзд позднего типа» (также «звезды-пенсионеры»), OH -IR звёзд или Мира-подобных звёзд, в зависимости от их точных характеристик. Выбрасываемый газ относительно богат производимыми в недрах звезды тяжёлыми элементами, такими как кислород и углерод . Газ образует расширяющуюся оболочку и охлаждается по мере удаления от звезды, делая возможным образование частиц пыли и молекул. При сильном инфракрасном излучении звезды-источника в таких оболочках формируются идеальные условия для активации космических мазеров .

Реакции термоядерного сжигания гелия очень чувствительны к температуре. Иногда это приводит к большой нестабильности. Возникают сильнейшие пульсации, которые в результате сообщают внешним слоям достаточное ускорение, чтобы быть сброшенными и превратиться в планетарную туманность . В центре такой туманности остаётся оголенное ядро звезды, в котором прекращаются термоядерные реакции, и оно, остывая, превращается в гелиевый белый карлик , как правило, имеющий массу до 0,5-0,6 Солнечных масс и диаметр порядка диаметра Земли .

Подавляющее большинство звёзд, и Солнце в том числе, завершают свою эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию . В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды , звезду называют белым карликом . Она лишена источников энергии и, постепенно остывая, становится невидимым черным карликом .

У звёзд более массивных, чем Солнце , давление вырожденных электронов не может остановить дальнейшее сжатие ядра, и электроны начинают «вдавливаться» в атомные ядра , что превращает протоны в нейтроны , между которыми не существуют силы электростатического отталкивания. Такая нейтронизация вещества приводит к тому, что размер звезды, которая теперь, фактически, представляет собой одно огромное атомное ядро, измеряется несколькими километрами, а плотность в 100 млн раз превышает плотность воды. Такой объект называют нейтронной звездой ; его равновесие поддерживается давлением вырожденного нейтронного вещества.

Сверхмассивные звёзды

После того, как звезда с массой большей, чем пять Солнечных масс, входит в стадию красного сверхгиганта , её ядро под действием сил гравитации начинает сжиматься. По мере сжатия растут температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются все более тяжёлые элементы: гелий, углерод, кислород, кремний и железо, что временно сдерживает коллапс ядра.

В результате по мере образования всё более тяжёлых элементов Периодической системы , из кремния синтезируется железо-56. На этой стадии дальнейший экзотермический термоядерный синтез становится невозможен, поскольку ядро железа-56 обладает максимальным дефектом массы и образование более тяжёлых ядер с выделением энергии невозможно. Поэтому когда железное ядро звезды достигает определённого размера, то давление в нём уже не в состоянии противостоять весу вышележащих слоёв звезды, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества.

То, что происходит далее, пока до конца не ясно, но, в любом случае, происходящие процессы в считанные секунды приводят к взрыву сверхновой звезды невероятной мощности .

Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала [ ] - так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется вылетающими из звездного ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют наличие в межзвёздном веществе элементов тяжелее железа, но это не есть единственно возможный способ их образования, что, к примеру, демонстрируют технециевые звёзды .

Взрывная волна и струи нейтрино уносят вещество прочь от умирающей звезды [ ] в межзвёздное пространство. В последующем, остывая и перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим «утилем» и, возможно, участвовать в образовании новых звёзд, планет или спутников.

Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также под вопросом остаётся момент, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта: нейтронные звезды и чёрные дыры.

Нейтронные звёзды

Известно, что в некоторых сверхновых сильная гравитация в недрах сверхгиганта заставляет электроны поглотиться атомным ядром , где они, сливаясь с протонами , образуют нейтроны . Этот процесс называется нейтронизацией . Электромагнитные силы, разделяющие близлежащие ядра, исчезают. Ядро звезды теперь представляет собой плотный шар из атомных ядер и отдельных нейтронов.

Такие звёзды, известные, как нейтронные звёзды, чрезвычайно малы - не более размера крупного города, и имеют невообразимо высокую плотность. Период их обращения становится чрезвычайно мал по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые нейтронные звёзды совершают 600 оборотов в секунду. У некоторых из них угол между вектором излучения и осью вращения может быть таким, что Земля попадает в конус, образуемый этим излучением; в этом случае можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Такие нейтронные звёзды получили название «пульсары », и стали первыми открытыми нейтронными звёздами.

Чёрные дыры

Далеко не все звезды, пройдя фазу взрыва сверхновой, становятся нейтронными звёздами. Если звезда обладает достаточно большой массой, то коллапс такой звезды продолжится, и сами нейтроны начнут обрушиваться внутрь, пока её радиус не станет меньше радиуса Шварцшильда . После этого звезда становится чёрной дырой.

Существование чёрных дыр было предсказано общей теорией относительности . Согласно этой теории,

Эволюция звезд - изменение физ. характеристик, внутр. строения и хим. состава звезд со временем. Важнейшие задачи теории Э.з. - объяснение образования звезд, изменения их наблюдаемых характеристик, исследование генетической связи различных групп звезд, анализ их конечных состояний.

Поскольку в известной нам части Вселенной ок. 98-99% массы наблюдаемого вещества содержится в звездах или прошло стадию звезд, объяснение Э.з. явл. одной из наиболее важных проблем астрофизики.

Звезда в стаыционарном состоянии - это газовый шар, к-рый находится в гидростатич. и тепловом равновесии (т.е. действие сил тяготения уравновешино внутр. давлением, а потери энергии на излучение компенсируются энергией, выделяющейся в недрах звезды, см. ). "Рождение" звезды - это образование гидростатически равновесного объекта, излучение к-рого поддерживаются за счет собст. источников энергии. "Смерть" звезды - необратимое нарушение равновесия, ведущее к разрушению звезды или к ее катастрофич. сжатию.

Выделение гравитац. энергии может играть определяющую роль лишь тогда, когда темп-ра недр звезды недостаточна для того, чтобы ядерное энерговыделение могло компенсировать потери энергии, и звезда в целом или ее часть должна сжиматься для поддержания равновесия. Высвечивание тепловой энергии становится важным лишь после исчерпания запасов ядерной энергии. Т.о., Э.з. можно представить как последовательную смену источников энергии звезд.

Характерное время Э.з. слишком велико для того, чтобы можно было всю эволюцию проследить непосредственно. Поэтому осн. методом исследования Э.з. явл. построение последовательностей моделей звезд, описывающих изменения внутр. строения и хим. состава звезд со временем. Эволюц. последовательности затем сопоставляются с результатами наблюдений, напр., с (Г.-Р.д.), суммирующей наблюдения большого числа звезд, находящихся на разных стадиях эволюции. Особо важную роль играет сравнение с Г.-Р.д. для звездных скоплений, поскольку все звезды скопления имеют одинаковый начальный хим. состав и образовались практически одновременно. По Г.-Р.д. скоплений различного возраста удалось установить направление Э.з. Детально эволюц. последовательности рассчитываются путем численного решения системы дифференциальных уравнений, описывающих распределение массы, плотности, темп-ры и светимости по звезде, к к-рым добавляются , законы энерговыделения и непрозрачности звездного вещества и ур-ния, описывающие изменение хим. состава звезды со временем.

Ход эволюции звезды зависит в основном от ее массы и исходного хим. состава. Определенную, но не принципиальную роль могут играть вращение звезды и ее магн. поле, однако роль этих факторов в Э.з. еще недостаточно исследована. Хим. состав звезды зависит от времени, когда она образовалась, и от ее положения в Галактике в момент образования. Звезды первого поколения сформировались из вещества, состав к-рого определялся космологич. условиями. По=видимому, в нем было примерно 70% по массе водорода, 30% гелия и ничтожная примесь дейтерия и лития. В ходе эволюции звезд первого поколения образовались тяжелые элементы (следующие за гелием), к-рые были выброшены в межзвездное пространство в результате истечения вещества из звезд или при взрывах звезд. Звезды последующих поколений сформировались уже из вещества, содержавшего до 3-4% (по массе) тяжелых элементов.

Наиболее непосредственным указанием на то, что звездообразование в Галактике происходит и в настоящее время, явл. существование массивных ярких звезд спектр. классов O и B, время жизни к-рых не может превосходить ~ 10 7 лет. Скорость звездообразования в совр. эпоху оценивается в 5 в год.

2. Образование звезд, стадия гравитационного сжатия

Согласно наиболее распространенной точке зрения, звезды образуются в результате гравитац. конденсации вещества межзвездной среды. Необходимое для этого разделение межзвездной среды на две фазы - плотные холодные облака и разреженную среду с более высокой темп-рой - может происходить под воздействием тепловой неустойчивости Рэлея-Тейлора в межзвездном магн. поле. Газово-пылевые комплексы с массой , характерным размером (10-100) пк и концентрацией частиц n ~10 2 см -3 . действительно наблюдаются благодаря излучению ими радиоволн. Сжатие (коллапс) таких облаков требует определенных условий: гравитац. частиц облака должна превосходить сумму энергии теплового движения частиц, энергии вращения облака как целого и магн. энергии облака (критерий Джинса). Если учитывается только энергия теплового движения, то с точностью до множителя порядкаединицы критерий Джинса записывается в виде: align="absmiddle" width="205" height="20">, где - масса облака, T - темп-ра газа в К, n - число частиц в 1 см 3 . При типичных для совр. межзвездных облаков темп-рах К могут сколлапсировать лишь облака с массой, не меньшей . Критерий Джинса указывает, что для образования звезд реально наблюдаемого спектра масс концентрация частиц в коллапсирующих облаках должна достигать (10 3 -10 6) см -3 , т.е. в 10-1000 раз превышать наблюдаемую в типичных облаках. Однако такие концентрации частиц могут достигаться в недрах облаков, уже начавших коллапс. Отсюда следует, что происходит путем последовательной, осуществляющейся в неск. этапов, фрагментации массивных облаков. В этой картине естественно объясняется рождение звезд группами - скоплениями. При этом все еще неясными остаются вопросы, относящиеся к тепловому балансу в облаке, полю скоростей в нем, механизму, определяющему спектр масс фрагментов.

Коллапсирующие объекты звездной массы наз. протозвездами. Коллапс сферически-симметричной невращающейся протозвезды без магн. поля включает неск. этапов. В начальный момент времени облако однородно и изотермично. Оно прозрачно для собств. излучения, поэтому коллапс идет с объемными потерями энергии, гл. обр. за счет теплового излучения пыли, к-рой передают свою кинетич. энергию частицы газа. В однородном облаке нет градиента давления и сжатие начинается в режиме свободного падения с характерным временем , где G - , - плотность облака. С началом сжатия возникает волна разрежения, перемещающаяся к центру со скоростью звука, а т.к. коллапс происходит быстрее там, где плотность выше, протозвезда разделяется на компактное ядро и протяженную оболочку, в к-рой вещество распределяется по закону . Когда концентрация частиц в ядре достигает ~ 10 11 см -3 оно становится непрозрачным для ИК-излучения пылинок. Выделяющаяся в ядре энергия медленно просачивается к поверхности благодаря лучистой теплопроводности. Темп-ра начинает повышаться почти адиабатически, это приводит к росту давления, и ядро приходит в состояние гидростатич. равновесия. Оболочка продолжает падать на ядро, и на его периферии возникает . Параметры ядра в это время слабо зависят от общей массы протозвезды: К. По мере увеличения массы ядра за счет аккреции, его темп-ра изменяется практически адиабатически, пока не достигнет 2000 К, когда начинается диссоциация молекул H 2 . В результате расхода энергии на диссоциацию, а не не увеличение кинетич. энергии частиц, значение показателя адиабаты становится меньше 4/3, изменения давления не способны компенсировать силы тяготения и ядро повторно коллапсирует (см. ). Образуется новое ядро с параметрами , окруженное ударным фронтом, на которое аккрецируют остатки первого ядра. Подобная же перестройка ядра происходит при водорода.

Дальнейший рост ядра за счет вещества оболочки продолжается до тех пор, пока все вещество упадет на звезду либо рассеется под действием или , если ядро достаточно массивно (см. ). У протозвезд с характерное время вещества оболочки t a >t кн , поэтому их светимость определяется энерговыделением сжимающихся ядер.

Звезда, состоящая из ядра и оболочки, наблюдается как ИК-источник из-за переработки излучения в оболочке (пыль оболочки, поглощая фотоны УФ-излучения ядра, излучает в ИК-диапазоне). Когда оболочка становится оптически тонкой, протозвезда начинает наблюдаться как обычный объект звездной природы. У наиболее массивных звезд оболочки сохраняются до начала термоядерного горения водорода в центре звезды. Давление излучения ограничивает массу звезд величиной, вероятно, . Если даже и образуются более массивные звезды, то они оказываются пульсационно-неустойчивыми и могут потерять значит. часть массы на стадии горения водорода в ядре. Продолжительность стадии коллапса и рассеяния протозвездной оболочки того же порядка, что и время свободного падения для родительского облака, т.е. 10 5 -10 6 лет. Освещенные ядром сгустки темного вещества остатков оболочки, ускоренные звездным ветром, отождествляются с объектами Хербига-Аро (звездообразными сгущениями, имеющими эмиссионный спектр). Звезды малых масс, когда они становятся видимыми, находятся в области Г.-Р.д., занимаемой звездами типа Т Тельца (карликовыми ), более массивные - в области, где находятся эмиссионные звезды Хербига (неправильные ранних спектр. классов с эмиссионными линиями в спектрах).

Эволюц. треки ядер протозвезд с постоянной массой на стадии гидростатич. сжатия показаны на рис. 1. У звезд малых масс в момент, когда устанавливается гидростатич. равновесие, условия в ядрах таковы, что энергия в них переносится . Расчеты показывают, что темп-ра поверхности полностью конвективной звезды почти постоянна. Радиус звезды непрерывно уменьшается, т.к. она продолжает сжиматься. При неизменной темп-ре поверхности и уменьшающемся радиусе светимость звезды должна падать и на Г.-Р.д. этой стадии эволюции соответствуют вертикальные участки треков.

По мере продолжения сжатия темп-ра в недрах звезды повышается, вещество становится более прозрачным, и у звезд с align="absmiddle" width="90" height="17"> возникают лучистые ядра, но оболочки остаются конвективными. Менее массивные звезды остаются полностью конвективными. Их светимость регулируется тонким лучистым слоем в фотосфере. Чем массивнее звезда и чем выше ее эффективная темп-ра, тем больше у нее лучистое ядро (в звездах с align="absmiddle" width="74" height="17"> лучистое ядро возникает сразу). В конце концов, практически вся звезда (за исключением поверхностной конвективной зоны у звезд с массой ) переходит в состояние лучистого равновесия, при к-ром вся выделяющаяся в ядре энергия переносится излучением.

3. Эволюция на основе ядерных реакций

При темп-ре в ядрах ~ 10 6 К начинаются перве ядерные реакции - выгорают дейтерий, литий, бор. Первичное количество этих элементов настолько мало, что их выгорание практически не выдерживает сжатия. Сжатие прекращается, когда темп-ра в центре звезды достигает ~ 10 6 К и загорается водород, т.к. энергии, выделяющейся при термоядерном горении водорода, достаточно для компенсации потерь на излучение (см. ). Однородные звезды, в ядрах к-рых горит водород, образуют на Г.-Р.д. начальную главную последовательность (НГП). Массивные звезды достигают НГП быстрее звезд малой массы, т.к. у них скорость потерь энергии на единицу массы, а следовательно, и темп эволюции выше,чем у маломассивных звезд. С момента выхода на НГП Э.з. происходит на основе ядерного горения, главные стадии к-рого суммирована в табл. Ядерное горение может происходить до образования элементов группы железа, у к-рых наибольшая среди всех ядер энергия связи. Эволюц. треки звезд на Г.-Р.д. изображены на рис. 2. Эволюция центральных значений темп-ры и плотности звезд показана на рис. 3. При К осн. источником энергии явл. реакция водородного цикла, при б"ольших T - реакции углерод-азотного (CNO) цикла (см. ). Побочным эффектом CNO-цикла явл. установление равновесных концентраций нуклидов 14 N, 12 C, 13 C - соответственно 95%, 4% и 1% по массе. Преобладание азота в слоях, где происходило горение водорода, подтверждается результатами наблюдений , у к-рых эти слои оказываются на поверхности в результате потери внеш. слоев. У звезд, в центре к-рых реализуется CNO-цикл ( align="absmiddle" width="74" height="17">), возникает конвективное ядро. Причина этого в очень сильной зависимости энерговыделения от темп-ры: . Поток же лучистой энергии ~ T 4 (см. ), следовательно, он не может перенести всю выделяющуюся энергию, и должна возникнуть конвекция, более эффективная, чем лучистый перенос. У наиболее массивных звезд конвекцией охвачено более 50% массы звезд. Значение конвективного ядра для эволюции определяется тем, что ядерное горючее равномерно истощается в области, значительно большей, чем область эффективного горения, в то время как у звезд без конвективного ядра оно вначале выгорает лишь в малой окрестности центра, где темп-ра достаточно высока. Время выгорания водорода заключено в пределах от ~ 10 10 лет для до лет для . Время всех последующих стадий ядерного горения не превосходит 10% времени горения водорода, поэтому звезды на стадии горения водорода образуют на Г.-Р.д. густонаселенную область - (ГП). У звезд с темп-ра в центре никогда не достигает значений, необходимых для загорания водорода, они неограниченно сжимаются, превращаясь в "черные" карлики. Выгорание водорода при водит к увеличению ср. молекулярной массы вещества ядра, и поэтому для поддержания гидростатич. равновесия давление в центре дожно возрастать, что влечет за собой увеличение темп-ры в центре и градиента темп-ры по звезде, а следовательно, и светимости. К увеличению светимости приводит также и уменьшение непрозрачности вещества с ростом темп-ры. Ядро сжимается для поддержания условий ядерного энерговыделения с уменьшением содержания водорода, а оболочка расширяется из-за необходимости перенести возросший поток энергии от ядра. На Г.-Р.д. звезда перемещается вправо от НГП. Уменьшение непрозрачности приводит к отмиранию конвективных ядер у всех звезд, кроме наиболее массивныых. Темп эволюции массивных звезд наиболее высок, и они первыми покидают ГП. Время жизни на ГП составляет для звезд с ок. 10 млн. лет, с ок. 70 млн. лет, а с ок. 10 млрд. лет.

Когда содержание водорода в ядре уменьшается до 1%, расширение оболочек звезд с align="absmiddle" width="66" height="17"> сменяется общим сжатием звезды, необходимым для поддержания энерговыделения. Сжатие оболочки вызывает нагрев водорода в слое, прилегающем к гелиевому ядру, до темп-ры его термоядерного горения, и возникает слоевой источник энерговыделения. У звезд с массой , у к-рых в меньшей степени зависит от темп-ры и область энерговыделения не столь сильно концентрируется к центру, стадия общего сжатия отсутствует.

Э.з. после выгорания водорода зависит от их массы. Важнейшим фактором, влияющим на ход эволюции звезд с массой , явл. вырождение газа электронов при больших плотностях. В из-за большой плотности число квантовых состояний с малой энергией ограничено в силу принципа Паули и электроны заполняют квантовые уровни с высокой энергией, значительно превышающей энергию их теплового движения. Важнейшая особенность вырожденного газа состояит в том, что его давление p зависит лишь от плотности: для нерелятивистского вырождения и для релятивистского вырождения. Давление газа электронов намного превосходит давление ионов. Отсюда следует принципиальный для Э.з. вывод: поскольку сила тяготения, действующая на единичный объем релятивистски вырожденного газа, , зависит от плотности так же, как и градиент давления , должна существовать предельная масса (см. ), такая, что при align="absmiddle" width="66" height="15"> давление электронов не может противодействовать тяготению и начинается сжатие. Предельная масса align="absmiddle" width="139" height="17">. Граница области, в к-рой газ электронов вырожден, показана на рис. 3 . У звезд малых масс вырождение играет заметную роль уже в процессе образования гелиевых ядер.

Второй фактор, определяющий Э.з. на поздних стадиях, - это нейтринные потери энергии. В звездных недрах при T ~10 8 К осн. роль в рождении играют: фотонейтринный процесс , распад квантов плазменных колебаний (плазмонов) на пары нейтрино-антинейтрино (), аннигиляция пар электрон-позитрон () и (см. ). Важнейшая особенность нейтрино состояит в том, что вещество звезды для них практически прозрачно и нейтрино беспрепятственно уносят энергию из звезды.

Гелиевое ядро, в к-ром еще не возникли условия для горения гелия, сжимается. Темп-ра в слоевом источнике, прилегающем к ядру, увеличивается, скорость горения водорода возрастает. Необходимость переноса возросшего потока энергии приводит к расширению оболочки, на что тратится часть энергии. Поскольку светимость звезды не изменяется, темп-ра ее поверхности падает, и на Г.-Р.д. звезда перемещается в область, занимаемую красными гигантамию Время перестройки звезды на два порядка меньше времени выгорания водорода в ядре, поэтому между полосой ГП и областью красных сверхгигантов мало звезд. С уменьшением темп-ры оболочки возрастает ее прозрачность, вследствие этого появляется внеш. конвективная зона и возрастает светимость звезды.

Отвод энергии из ядра посредством теплопроводности вырожденных электронов и нейтринных потерь у звезд с оттягивает момент загорания гелия. Темп-ра начинает заметно расти лишь тогда, когда ядро становится почти изотермичным. Горение 4 He определяет Э.з. с момента, когда энерговыделение превышает потери энергии путем теплопроводности и излучения нейтрино. Это же условие относится к горению всех последующих видом ядерного топлива.

Примечательная особенность звездных ядер из вырожденного газа, охлаждаемых нейтрино, - это "конвергенция" - сближение треков, к-рые характеризуют соотношение плотности и темп-ры T c в центре звезды (рис. 3). Скорость энерговыделения при сжатии ядра определяется скоростью присоединения вещества к нему через слоевой источник, к-рая зависит только от массы ядра при данном виде топлива. В ядре должен поддерживаться баланс притока и оттока энергии, поэтому в ядрах звезд устанавливается одинаковое распределение темп-ры и плотности. К моменту загорания 4 He масса ядра в зависимости от содержания тяжелых элементов. В ядрах из вырожденного газа загорание 4 He имеет характер теплового взрыва, т.к. энергия, выделяющаяся при горении, идет на увеличение энергии теплового движения электронов, но давление с ростом темп-ры почти не изменяется до тех пор, пока тепловая энергия электронов не сравняется с энергией вырожденного газа электронов. Тогда вырождение снимается и ядро быстро расширяется - происходит гелиевая вспышка. Гелиевые вспышки, вероятно, сопровождаются потерей звездного вещества. У , где массивные звезды уже давно закончили эволюцию и красные гиганты имеют массы , звезды на стадии горения гелия находятся на горизонтальной ветви Г.-Р.д.

В гелиевых ядрах звезд с align="absmiddle" width="90" height="17"> газ не вырожден, 4 He загорается спокойно, но ядра также расширяются из-за возрастания T c . У наиболее массивных звезд загорание 4 He происходит еще тогда, когда они явл. голубыми сверхгигантами. Расширение ядра ведет к уменьшению T в области водородного слоевого источника, и светимость звезды после гелиевой вспышки падает. Для поддержания теплового равновесия оболочка сжимается, и звезда уходит из области красных сверхгигантов. Когда 4 He в ядре истощается, снова начинается сжатие ядра и расширение оболочки, звезда опять становится красным сверхгигантом. Образуется слоевой источник горения 4 He, к-рый доминирует в энерговыделении. Снова возникает внеш. конвективная зона. По мере выгорания гелия и водорода толщина слоевых источников уменьшается. Тонкий слой горения гелия оказывается термически неустойчивым, т.к. при очень сильной чувствительности энерговыделения к темп-ре () теплопроводность вещества недостаточна для того, чтобы погасить тепловые возмущения в слое горения. При тепловых вспышках в слое возникает конвекция. Если она проникает в слои, богатые водородом, то в результате медленного процесса (s -процесса, см. ) синтезируются элементы с атомными массами от 22 Ne до 209 B.

Давление излучения на пыль и молекулы, образующиеся в холодных протяженных оболочках красных сверхгигантов, приводит к непрерывной потере вещества со скоростью до в год . Непрерывная потеря массы может дополнятся потерями, обусловленными неустойчивостью слоевого горения или пульсациями, что может привести к выбросу одной или неск. оболочек. Когда количество вещества над углеродно-кислородным ядром становится меньшим нек-рого предела, оболочка для поддержания темп-ры в слоях горения вынуждена сжиматься до тех пор, пока сжатие способно поддерживать горение; звезда на Г.-Р.д. смещается почти горизонтально влево. На этом этапе неустойчивость слоев горения также может приводить к расширению оболочки и потере вещества. Пока звезда достаточно горяча, она наблюдается как ядро с одной или неск. оболочками. Когда слоевые источники смещаются к поверхности звезды настолько, что темп-ра в них становится ниже необходимой для ядерного горения, звезда охлаждается, превращаясь в белый карлик с , излучающий за счет расхода тепловой энергии ионного компонента его вещества. Характерное время охлаждения белых карликов ~ 10 9 лет. Нижняя граница масс одиночных звезд, превращающихся в белые карлики, неясна, она оценивается в 3-6 . У звезд с электронный газ вырождается на стадии роста углеродно-кислородных (C,O-) ядер звезд. Как и в гелиевых ядрах звезд, из-за нейтринных потерь энергии происходит "конвергенция" условий в центре и к моменту загорания углерода в C,O-ядре . Загорание 12 C при таких условиях, скорее всего, имеет характер взрыва и приводит к полному разрушению звезды. Полного разрушения может не произойти, если . Такая плотность достижима, когда скорость роста ядра определяется аккрецией вещества спутника в тесной двойной системе.

ВВЕДЕНИЕ

ГЛАВА 1. Эволюция звезд

ГЛАВА 2. Термоядерный синтез в недрах звезд и рождение звезд

ГЛАВА 3. Середина жизненного цикла звезды

ГЛАВА 4. Поздние годы и гибель звезд

ЗАКЛЮЧЕНИЕ

Литература

ВВЕДЕНИЕ

Современные научные источники указывают на то, что вселенная состоит на 98% из звезд, которые «в свою очередь» являются основным элементом галактики. Информационные источники дают различные определения данному понятию, вот некоторые из них:

Звезда - небесное тело, в котором идут, шли или будут идти термоядерные реакции. Звезды представляют собой массивные светящиеся газовые (плазменные) шары. Образующиеся из газово-пылевой среды (водорода и гелия) в результате гравитационного сжатия. Температура вещества в недрах звёзд измеряется миллионами кельвинов, а на их поверхности - тысячами кельвинов. Энергия подавляющего большинства звёзд выделяется в результате термоядерных реакций превращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Звёзды часто называют главными телами Вселенной, поскольку в них заключена основная масса светящегося вещества в природе.

Звезды – это огромные объекты, шаровидной формы, состоящие из гелия и водорода, а также других газов. Энергия звезды содержится в ее ядре, где ежесекундно гелий взаимодействует с водородом.

Как все органическое в нашей вселенной, звезды возникают, развиваются, изменяются и исчезают – этот процесс занимает миллиарды лет и называется процессом «Эволюции звезд».

ГЛАВА 1. Эволюция звезд

Эволюция звезд - последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло.

Звезда начинает свою жизнь как холодное разряжённое облако межзвёздного газа (разряженная газовая среда, заполняющая всё пространство между звёздами), сжимающееся под действием собственного тяготения и постепенно принимающее форму шара. При сжатии энергия гравитации (универсальное фундаментальное взаимодействие между всеми материальными телами) переходит в тепло, и температура объекта возрастает. Когда температура в центре достигает 15-20 миллионов К, начинаются термоядерные реакции и сжатие прекращается. Объект становится полноценной звездой. Первая стадия жизни звезды подобна солнечной - в ней доминируют реакции водородного цикла. В таком состоянии он пребывает большую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга - Расселла (рис. 1) (показывает зависимость между абсолютной звездной величиной, светимостью, спектральным классом и температурой поверхности звезды, 1910 год), пока не закончатся запасы топлива в его ядре. Когда в центре звезды весь водород превращается в гелий, образуется гелиевое ядро, а термоядерное горение водорода продолжается на его периферии. В этот период структура звезды начинает меняться. Её светимость растёт, внешние слои расширяются, а температура поверхности снижается - звезда становится красным гигантом, которые образуют ветвь на диаграмме Герцшпрунга-Рассела. На этой ветви звезда проводит значительно меньше времени, чем на главной последовательности. Когда накопленная масса гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; если звезда достаточно массивна, возрастающая при этом температура может вызвать дальнейшее термоядерное превращение гелия в более тяжёлые элементы (гелий - в углерод, углерод - в кислород, кислород - в кремний, и наконец - кремний в железо).

Рис. 1. Диаграмма Герцшпрунга-Рассела

Эволюция звезды класса G на примере Солнца

ГЛАВА 2. Термоядерный синтез в недрах звезд

К 1939 году было установлено, что источником звёздной энергии является происходящий в недрах звёзд термоядерный синтез. Большинство звёзд излучаются потому, что в их недрах четыре протона соединяются через ряд промежуточных этапов в одну альфа-частицу. Это превращение может идти двумя основными путями, называемыми протон-протонным, или p-p-циклом, и углеродно-азотным, или CN-циклом. В маломассивных звёздах энерговыделение в основном обеспечивается первым циклом, в тяжёлых - вторым. Запас ядерного топлива в звезде ограничен и постоянно тратится на излучение. Процесс термоядерного синтеза, выделяющий энергию и изменяющий состав вещества звезды, в сочетании с гравитацией, стремящейся сжать звезду и тоже высвобождающей энергию, а также с излучением с поверхности, уносящим выделяемую энергию, являются основными движущими силами звёздной эволюции.

Рождение звезд

Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см³. Молекулярное облако имеет плотность около миллиона молекул на см³. Масса такого облака превышает массу Солнца в 100 000-10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

Пока облако свободно вращается вокруг центра родной галактики, ничего не происходит. Однако из-за неоднородности гравитационного поля в нем могут возникнуть возмущения, приводящие к локальным концентрациям массы. Такие возмущения вызывают гравитационный коллапс облака. Один из сценариев, приводящих к этому - столкновение двух облаков. Другим событием, вызывающим коллапс, может быть прохождением облака через плотный рукав спиральной галактики. Также критическим фактором может стать взрыв близлежащей сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются в результате столкновения. В общем, любые неоднородности в силах, действующих на массу облака, могут инициировать процесс образования звезды.

Из-за возникших неоднородностей давление молекулярного газа больше не может препятствовать дальнейшему сжатию, и газ начинает под действием сил гравитационного притяжения собираться вокруг центра будущей звезды. Половина высвобождающейся гравитационной энергии уходит на нагрев облака, а половина - на световое излучение. В облаках же давление и плотность нарастают к центру, и коллапс центральной части происходит быстрее, нежели периферии. По мере сжатия длина свободного пробега фотонов уменьшается, и облако становится всё менее прозрачным для собственного излучения. Это приводит к более быстрому росту температуры и ещё более быстрому росту давления. В итоге градиент давления уравновешивает гравитационную силу, образуется гидростатическое ядро, массой порядка 1 % от массы облака. Этот момент невидим. Дальнейшая эволюция протозвезды - это аккреция продолжающего падать на «поверхность» ядра вещества, которое за счет этого растет в размерах. Масса свободно перемещающегося в облаке вещества исчерпывается и звезда становится видимой в оптическом диапазоне. Этот момент считается концом протозвёздной фазы и началом фазы молодой звезды.

Время жизни звезд состоит из нескольких этапов, проходя через которые миллионы и миллиарды лет светила неуклонно стремятся к неизбежному финалу, превращаясь в яркие вспышки или в угрюмый черных дыр.

Время жизни звезды любого типа – невероятно долгий и сложный процесс, сопровождаемый явлениями космического масштаба. Многогранность его просто невозможно полностью проследить и изучить, даже используя весь арсенал современной науки. Но на основании тех уникальных знаний, накопленных и обработанных за весь период существования земной астрономии, нам становятся доступными целые пласты ценнейшей информации. Это позволяет связать последовательность эпизодов из жизненного цикла светил в относительно стройные теории и смоделировать их развитие. Что же это за этапы?

Не пропустите наглядное интерактивное приложение « »!

Эпизод I. Протозвезды

Жизненный путь звезд, как и всех объектов макромира и микрокосма, начинается с рождения. Это событие берет свое начало в формировании невероятно огромного облака, внутри которого появляются первые молекулы, поэтому образование называется молекулярным. Иногда употребляется еще и другой термин, непосредственно раскрывающий суть процесса, – колыбель звезд.

Только когда в таком облаке, в силу непреодолимых обстоятельств, происходит чрезвычайно быстрое сжатие составляющих его частиц, имеющих массу, т. е. гравитационный коллапс, начинает формироваться будущая звезда. Причиной этому является выплеск энергии гравитации, часть которой сжимает молекулы газа и разогревает материнское облако. Затем прозрачность образования постепенно начинает пропадать, что способствует еще большему нагреванию и возрастанию давления в его центре. Заключительным эпизодом в протозвездной фазе является аккреция падающего на ядро вещества, в ходе чего происходит рост зарождающегося светила, и оно становится видимым, после того, как давление испускаемого света буквально сметает всю пыль на окраины.

Найди протозвезды в туманности Ориона!

Эта огромная панорама туманности Ориона получена из снимков . Данная туманность одна из самых больших и близких к нам колыбелей звезд. Попробуйте найти в этой туманности протозвезды, благо разрешение этой панорамы позволяет это сделать.

Эпизод II. Молодые звезды

Фомальгаут, изображение из каталога DSS. Вокруг этой звезды еще остался протопланетный диск.

Следующим этапом или циклом жизни звезды является период ее космического детства, который, в свою очередь, делится на три стадии: молодые светила малой (<3), промежуточной (от 2 до 8) и массой больше восьми солнечных единиц. На первом отрезке образования подвержены конвекции, которая затрагивает абсолютно все области молодых звезд. На промежуточном этапе такое явление не наблюдается. В конце своей молодости объекты уже во всей полноте наделены качествами, присущими взрослой звезде. Однако любопытно то, что на данной стадии они обладают колоссально сильной светимостью, которая замедляет или полностью прекращает процесс коллапса в еще не сформировавшихся солнцах.

Эпизод III. Расцвет жизненного пути звезды

Солнце снятое в линии H альфа. Наше звезда в самом расцвете сил.

В середине своей жизни космические светила могут обладать самыми разнообразными цветами, массой и габаритами. Цветовая палитра варьируется от голубоватых оттенков до красных, а их масса может быть значительно меньше солнечной, либо превышать ее более чем в триста раз. Главная последовательность жизненного цикла звезд длится около десяти миллиардов лет. После чего в ядре космического тела заканчивается водород. Этот момент принято считать переходом жизни объекта на следующий этап. По причине истощения водородных ресурсов в ядре останавливаются термоядерные реакции. Однако в период вновь начавшегося сжатия звезды начинается коллапс, который приводит к возникновению термоядерных реакций уже с участием гелия. Этот процесс стимулирует просто невероятное по масштабам расширение звезды. И теперь она считается красным гигантом.

Эпизод IV. Конец существования звезд и их гибель

Старые светила, как и их юные собратья, делятся на несколько видов: с малой массой, средних размеров, сверхмассивные звезды, и . Что касается объектов с небольшой массой, то до сих пор нельзя точно утверждать какие именно процессы с ними происходят на последних стадиях существования. Все подобные явления гипотетически описаны при помощи компьютерного моделирования, а не на основании тщательных наблюдений за ними. После окончательного выгорания углерода и кислорода происходит увеличение атмосферной оболочки звезды и быстрая потеря ею газовой составляющей. В финале своего эволюционного пути светила многократно сжимаются, а их плотность наоборот значительно возрастает. Такую звезду принято считать белым карликом. Затем в ее жизненной фазе следует период красного сверхгиганта. Последним в цикле существования звезды является ее превращение, в результате очень сильного сжатия, в нейтронную звезду. Однако не все подобные космические тела становятся таковыми. Некоторые, чаще всего наиболее крупные по параметрам (больше 20-30 масс Солнца), переходят в разряд черных дыр в результате коллапса.

Интересные факты из жизненных циклов звезд

Одним из самых своеобразных и примечательных сведений из звездной жизни космоса является то, что подавляющее большинство светил в нашей находятся на стадии красных карликов. Такие объекты обладают массой значительно меньшей, чем у Солнца.

Довольно интересно также и то, что магнитное притяжение нейтронных звезд в миллиарды раз выше аналогичного излучения земного светила.

Влияние массы на звезду

Еще одним не менее занимательным фактом можно назвать продолжительность существования самых огромных из известных типов звезд. В силу того, что их масса способна в сотни раз превышать солнечную, выделение ими энергии тоже многократно больше, иногда даже в миллионы раз. Следовательно, период их жизни длится гораздо меньше. В некоторых случаях их существование укладывается всего в несколько миллионов лет, против миллиардов лет жизни звезд с небольшой массой.

Интересным фактом также является противоположность черных дыр белым карликам. Примечательно то, что первые возникают из самых гигантских по массе звезд, а вторые, наоборот, из наименьших.

Во Вселенной существует огромное количество уникальных явлений, о которых можно говорить бесконечно, ведь космос крайне слабо изучен и исследован. Все человеческие знания о звездах и их жизненных циклах, которыми обладает современная наука, в основном получены из наблюдений и теоретических расчетов. Такие малоизученные явления и объекты дают почву для постоянной работы тысячам исследователей и ученых: астрономов, физиков, математиков, химиков. Благодаря их непрерывному труду, эти знания постоянно накапливаются, дополняются и изменяются, становясь, таким образом, более точными, достоверными и всеобъемлющими.