Температурная шкала фаренгейта, цельсия, кельвина. Введение.Температурные шкалы

Температура - важнейший параметр окружающей среды (ОС). Температура ОС характеризует степень нагретости, которая определяется внутренней кинетической энергией теплового движения молекул. Температуру можно определить как параметр теплового состояния. Для сравнения степени нагретости тел использует изменение какого либо физического их свойства, зависящего от температуры и легко поддающегося измерению (например, объемное расширение жидкости, изменение электрического сопротивления металла и т.д.).

Чтобы перейти к количественному определению температуры, необходимо установить шкалу температур., т.е. выбрать начало отсчета (нуль температурной шкалы) и единицу измерения температурного интервала (градус).

Температурные шкалы, применяемые до введения единой температурной шкалы, представляет собой ряд отметок внутри температурного интервала, ограниченного двумя легко воспроизводимыми постоянными (основными реперными или опорными) точками кипения и плавления химически чистых веществ. Эти температуры принимали равными произвольным числовым значениям t" и t”. Таким образом, 1 град = (t" - t”)/n, где t" и t” - две постоянные легко воспроизводимые температуры; n - целое число, на которое разбит температурный интервал.

Для разметки температурной шкалы чаще всего использовали объемное расширение тел при нагревании, а за постоянные точки принимали температуры кипения воды и таяния льда. На этом принципе основаны температурные шкалы, созданные Ломоносовым, Фаренгейтом, Реомюром и Цельсием. При построении этих шкал была принята линейная зависимость между объемным расширением жидкости и температурой, т.е.

где k - коэффициент пропорциональности (соответствует относительно температурному коэффициенту объемного расширения). Интегрирование уравнения (1) дает

где D - постоянная интегрирования.

Для определения постоянных k и D используют две выбранные температуры t" и t”. Приняв при температуре t" объем V", а при температуре t” - V”, получим

t" = kV" + D; (3)

t” = kV” + D; (4).

Вычтя уравнение (3) из уравнений (2) и (4), получим

t - t" = k(V - V") (5);

t” - t" = k(V” - V") (6).

Разделив уравнение (5) на уравнение (6), получим

где t" и t” - температура соответственно таяния льда и кипения воды при нормальном давлении и ускорении свободного падения 980,665 см/с 2 ; V" и V” - объемы жидкостей, соответствующие температурам t" и t”; V - объем жидкости, соответствующий температуре t.

В природе нет жидкостей с линейной зависимостью между коэффициентом объемного расширения и температурой поэтому показания термометров зависят от природы термометрического вещества (ртути, спирта и т.п.).

С развитием науки и техники возникла необходимость в создании единой температурной шкалы, несвязанной с какими либо частными свойствами термометрического вещества и пригодные в широком интервале температур. В 1848 году Кельвин, исходя из второго начала термодинамики, предложил определять температуру на основании равенства

T 2 /(T 2 - T 1) = Q 2 /(Q 2 - Q 1),

где Т 1 и Т 2 - температура соответственно холодильника и нагревателя; Q 1 и Q 2 - количество теплоты, соответственно полученной рабочим веществом от нагревателя и отданной холодильнику (для идеальной тепловой машины, работающей по циклу Карно).

Пусть Т 2 равно температуре кипения воды (Т 100), а Т 1 - температура таяния льда (Т 0); тогда, приняв разность T 2 - T 1 равной 100 град и обозначив количество теплоты, соответствующее этим температурам, через Q 100 и Q 0 , получим

Т 100 = Q 100 100/(Q 100 - Q 0); Т 0 = Q 0 100/(Q 100 - Q 0).

При любой температуре нагревателя

Т = Q 100/(Q 100 - Q 0) (8).

Уравнение является уравнением термодинамической шкалы температур, которое не зависит от свойств термометрического вещества.

Решением XI Генеральной конференции по мерам и весам в России предусмотрено применение двух температурных шкал: термодинамической и международной практической.

В термодинамической шкале Кельвина нижней точкой является точка абсолютного нуля (0К), а единственной экспериментальной основной точкой - тройная точка воды. Этой точке соответствует 273,16К. Тройная точка воды (температура равновесия воды в твердой, жидкой и газообразной фазах) ваше точки таяния льда на 0,01 град. Термодинамическую шкалу называют абсолютной, если в ней за нуль принята точка на 273,16К ниже точки плавления льда.

Строго говоря, осуществить шкалу Кельвина невозможно, т.к. уравнение ее выведено из идеального цикла Карно. Термодинамическая шкала температур совпадает со шкалой газового термометра, наполненного идеальным газом. Известно, что некоторые реальные газы (водород, гелий, неон, азот) в широком интервале температур по своим свойствам сравнительно мало отличаются от идеального газа. Так, шкала водородного термометра (с учетом поправок на отклонение свойств реального газа от идеального) представляет собой практически термодинамическую шкалу температур.

Международная практическая температурная шкала основана на ряде воспроизводимых равновесных состояний, которым соответствуют определенные значения температур (основные реперные точки), и на эталонных приборах, градуированных при этих температурах. В интервале между температурами основных реперных точек интерполяцию выполняют по формулам, устанавливающим связь между показаниями эталонных приборов и значениями международной практической шкалы. Основные реперные точки реализуются как определенные состояния фазовых равновесий некоторых чистых веществ и охватывают интервал температур от -259,34 0 С (тройная тоска равновесия водорода) до +1064,43 0 С (точка затвердевания золота).

Эталонным прибором, используемым в области температур от -259,34 до +630,74 0 С, является платиновый термометр сопротивления, от +630,74 до +1064,43 0 С - термоэлектрический термометр с термоэлектродами и платинародия (10% родия) и платины. Для области температур выше 1064,43 0 С температуру по международной практической шкале определяют в соответствии с законом излучения Планка.

Температуру, измеряемую по международной практической шкале, обозначают t, а числовые значения сопровождают знаком 0 С.

Температура по термодинамической шкале связана с температурой по международной практической шкале соотношением T = t + 273,15. На IX генеральной конференции по мерам и весам в 1948 году международная практическая температурная шкала была названа шкалой Цельсия. Для международной практической шкалы температур и шкалы Цельсия общей является одна постоянная точка (температура кипения воды); во всех остальных точках эти шкалы существенно различаются, особенно при высоких температурах.

Аннотация: Понятие шкалирования. Существующие виды шкал и их области применения. Причины появления шкал.

ШКА"ЛА, ы , ж . [латин. scala - лестница].- 1 . Линейка с делениями в различных измерительных приборах. Ш. термометра . 2 . Ряд величин, цифр в восходящем или нисходящем порядке (спец.). Ш. температуры больного. Ш. заболеваний. Ш. заработной платы .

Типы шкал :

Шкалы измерений принято классифицировать по типам измеряемых данных, которые определяют допустимые для данной шкалы математические преобразования, а также типы отношений, отображаемых соответствующей шкалой. Современная классификация шкал была предложена в 1946 году Стэнли Смитом Стивенсом.

Шкала наименований (номинальная, классификационная)

Используется для измерения значений качественных признаков. Значением такого признака является наименование класса эквивалентности, к которому принадлежит рассматриваемый объект . Примерами значений качественных признаков являются названия государств, цвета, марки автомобилей и т.п. Такие признаки удовлетворяют аксиомам тождества:

При большом числе классов используют иерархические шкалы наименований. Наиболее известными примерами таких шкал являются шкалы, используемые для классификации животных и растений.

С величинами, измеряемыми в шкале наименований, можно выполнять только одну операцию - проверку их совпадения или несовпадения. По результатам такой проверки можно дополнительно вычислять частоты заполнения (вероятности) для различных классов, которые могут использоваться для применения различных методов статистического анализа - критерия согласия Хи-квадрат, критерия Крамера для проверки гипотезы о связи качественных признаков и др.

Порядковая шкала (или ранговая)

Строится на отношении тождества и порядка. Субъекты в данной шкале ранжированы. Но не все объекты можно подчинить отношению порядка. Например, нельзя сказать что больше, круг или треугольник, но можно выделить в этих объектах общее свойство-площадь, и таким образом становится легче установить порядковые отношения. Для данной шкалы допустимо монотонное преобразование. Такая шкала груба, потому что не учитывает разность между субъектами шкалы. Пример такой шкалы: балльные оценки успеваемости (неудовлетворительно, удовлетворительно, хорошо, отлично), шкала Мооса.

Интервальная шкала

Здесь происходит сравнение с эталоном. Построение такой шкалы позволяет большую часть свойств существующих числовых систем приписывать числам, полученным на основе субъективных оценок. Например, построение шкалы интервалов для реакций. Для данной шкалы допустимым является линейное преобразование. Это позволяет приводить результаты тестирования к общим шкалам и осуществлять, таким образом сравнение показателей. Пример: шкала Цельсия.

Шкала отношений

В шкале отношений действует отношение "во столько-то раз больше". Это единственная из четырех шкал имеющая абсолютный ноль. Нулевая точка характеризует отсутствие измеряемого качества. Данная шкала допускает преобразование подобия ( умножение на константу). Определение нулевой точки - сложная задача для исследований, накладывающая ограничение на использование данной шкалы. С помощью таких шкал могут быть измерены масса, длина , сила, стоимость (цена). Пример: шкала Кельвина (температур, отсчитанных от абсолютного нуля, с выбранной по соглашению специалистов единицей измерения - Кельвин).

Шкала разностей

Начало отсчета произвольно, единица измерения задана. Допустимые преобразования - сдвиги. Пример: измерение времени.

Абсолютная шкала

В ней присутствует дополнительный признак - естественное и однозначное присутствие единицы измерения. Эта шкала имеет единственную нулевую точку. Пример: число людей в аудитории.

Из рассмотренных шкал первые две являются неметрическими, а остальные - метрическими.

С вопросом о типе шкалы непосредственно связана проблема адекватности методов математической обработки результатов измерения. В общем случае адекватными являются те статистики, которые инвариантны относительно допустимых преобразований используемой шкалы измерений.

Использование в психометрии . Используя различные шкалы, можно производить различные психологические измерения. Самые первые методы психологических измерений были разработаны в психофизике. Основной задачей психофизиков являлось то, каким образом определить, как соотносятся физические параметры стимуляции и соответствующие им субъективные оценки ощущений. Зная эту связь , можно понять, какое ощущение соответствует тому или иному признаку. Психофизическая функция устанавливает связь между числовым значением шкалы физического измерения стимула и числовым значением психологической или субъективной реакцией на этот стимул.

Шкала Цельсия

1701 года в Швеции. Область его интересов: астрономия, общая физика, геофизика. Преподавал в Упсальском университете астрономию, основал там астрономическую обсерваторию.

Цельсий первым измерил яркость звезд, установил взаимосвязь между северным сиянием и колебаниями в магнитном поле Земли.

Он принимал участие в Лапландской экспедиции 1736-1737 годов по измерению меридиана. По возвращении из полярных областей Цельсий начал активную работу по организации и строительству астрономической обсерватории в Упсале и в 1740 стал ее директором. Умер Андерс Цельсий 25 марта 1744 года. В честь него назван минерал цельзиан – разновидность бариевого полевого шпата.

В технике, медицине, метеорологии и в быту используется шкала Цельсия, в которой температура тройной точки воды равна 0,01 , и следовательно точка замерзания воды при давлении в 1 атм равна 0 . В настоящее время шкалу Цельсия определяют через шкалу Кельвина: градус Цельсия равен кельвину, . Таким образом, точка кипения воды, изначально выбранная Цельсием, как реперная точка, равная 100 , утратила свое значение , и по современным оценкам температура кипения воды при нормальном атмосферном давлении составляет около 99,975 . Шкала Цельсия практически очень удобна, поскольку вода очень распространена на нашей планете и на ней основана наша жизнь. Ноль Цельсия - особая точка для метеорологии, поскольку связана с замерзанием атмосферной воды. Шкала предложена Андерсом Цельсием в 1742 г.

Шкала Фаренгейта

Габриэль Фаренгейт . Даниэль Габриэль Фаренгейт (Daniel Gabriel (1686–1736) - немецкий физик. Родился 24 мая 1686 в Данциге (ныне Гданьск, Польша). Изучал физику в Германии, Голландии и Англии. Почти всю жизнь прожил в Голландии, где занимался изготовлением точных метеорологических приборов. В 1709 изготовил спиртовой, в 1714 – ртутный термометр, использовав новый способ очистки ртути. Для ртутного термометра Фаренгейт построил шкалу,имеющую три реперные точки: соответствовал температуре смеси вода – лед – нашатырный спирт, – температуре тела здорового человека, а в качестве контрольной температуры было принято значение для точки таяния льда. Температура кипения чистой воды по шкале Фаренгейта составила . Шкала Фаренгейта применяется во многих англоязычных странах, хотя постепенно уступает место шкале Цельсия. Помимо изготовления термометров, Фаренгейт занимался усовершенствованием барометров и гигрометров. Исследовал также зависимость изменения температуры кипения жидкости от атмосферного давления и содержания в ней солей, обнаружил явление переохлаждения воды, составил таблицы удельных весов тел. Умер Фаренгейт в Гааге 16 сентября 1736.

В Англии и, в особенности, в США используется шкала Фаренгейта. Ноль градусов Цельсия - это 32 градуса Фаренгейта, а градус Фаренгейта равен 5/9 градуса Цельсия.

В настоящее время принято следующее определение шкалы Фаренгейта : это температурная шкала , 1 градус которой (1 ) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия () соотношением . Предложена Г. Фаренгейтом в 1724.

Шкала Реомюра

Рене Реомюр . Рене Антуан де Реомюр (Rene Antoin de Reaumur) родился 28

февраля 1683 года в Ла-Рошель, французский естествоиспытатель, иностранный почетный член Петербургской АН (1737). Труды по регенерации, физиологии, биологии колоний насекомых. Предложил температурную шкалу, названную его именем. Он усовершенствовал некоторые способы приготовления стали, им, одним из первых, были сделаны попытки научного обоснования некоторых процессов литья, написал работу "Искусство превращения железа в сталь". Он пришел к ценному выводу: железо, сталь, чугун, различаются по количеству некоторой примеси. Добавляя эту примесь к железу, путем цементации или сплавления с чугуном, Реомюр получал сталь. В 1814 году К. Каретен доказал, что этой примесью является углерод.

Реомюр дал способ приготовления матового стекла.

Сегодня память связывает его имя только лишь с изобретением долго

использовавшейся температурной шкалы. На самом же деле Рене Антуан Фершант де Реомюр, живший в 1683-1757 годах, главным образом, в Париже, относился к тем ученым, универсальность которых в наше время - время узкой специализации - трудно себе представить. Реомюр был одновременно техником, физиком и естествоиспытателем. Большую известность за пределами Франции он приобрел как энтомолог. В последние годы своей жизни Реомюр пришел к идее, что поиски таинственной преобразующей силы следует вести в тех местах, где ее проявление наиболее очевидно - при преобразовании пищи в организме, т.е. при ее усвоении. Скончался 17 октября 1757 года в замке Бермовдьер близ Сен-Жюльен-дю-Терру(Майенн).

Предложена в 1730 году Р. А. Реомюром, который описал изобретенный им спиртовой термометр.

Единица - градус Реомюра (), равен 1/80 части температурного интервала между опорными точками - температурой таяния льда () и кипения воды ()

В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции, на родине автора.

Сравнение температурных шкал
Описание Кельвин Цельсий Фаренгейт Ньютон Реомюр
Абсолютный ноль 0 -273.15 -459.67 -90.14 -218.52
Температура таяния смеси Фаренгейта (соли и льда в равных количествах) 255.37 -17.78 0 -5.87 -14.22
Температура замерзания воды (нормальные условия) 273.15 0 32 0 0
Средняя температура человеческого тела 310.0 36.8 98.2 12.21 29.6
Температура кипения воды (нормальные условия) 373.15 100 212 33 80
Температура поверхности Солнца 5800 5526 9980 1823 4421

Температурные шкалы , системы сопоставимых числовых значений температуры. Температура не является непосредственно измеряемой величиной; ее значение определяют по температурному изменению какого-либо удобного для измерения физического свойства термометрического вещества. Выбрав термометрическое вещество и свойство, необходимо задать начальную точку отсчета и размер единицы температуры - градуса. Таким образом, определяют эмпирические температурные шкалы (далее Т.ш.). В Т. ш. обычно фиксируют две основные температуры, соответствующие точкам фазовых равновесий однокомпонентных систем (так называемые реперные или постоянные точки), расстояние между которыми называется основным температурным интервалом шкалы. В качестве реперных точек используют: тройную точку воды, точки кипения воды, водорода и кислорода, точки затвердевания серебра, золота и др. Размер единичного интервала (единицы температуры) устанавливают как определенную долю основного интервала. За начало отсчета Т. ш. принимают одну из реперных точек. Так можно определить эмпирическую (условную) Т. ш. по любому термометрическому свойству . Если принять, что связь между и температурой линейна, то температура , где , и - числовые значения свойства при температуре , в начальной и конечной точках основного интервала, - размер градуса, - число делений основного интервала.

В Цельсия шкале, например, за начало отсчета принята температура затвердевания воды (таяния льда), основной интервал между точками затвердевания и кипения воды разделен на 100 равных частей ().

Т. ш. представляет собой, таким образом, систему последовательных значений температуры, связанных линейно со значениями измеряемой физической величины (эта величина должна быть однозначной и монотонной функцией температуры). В общем случае Т. ш. могут различаться по термометричкому свойству (им может быть тепловое расширение тел, изменение электрического сопротивления проводников с температурой и т. п.), по термометрическому веществу (газ, жидкость, твердое тело), а также зависеть от реперных точек. В простейшем случае Т. ш. различаются числовыми значениями, принятыми для одинаковых реперных точек. Так, в шкалах Цельсия (), Реомюра () и Фаренгейта () точкам таяния льда и кипения воды при нормальном давлении приписаны разные значения температуры. Соотношение для пересчета температуры из одной шкалы в другую:

Непосредственный пересчет для Т. ш., различающихся основными температурами, без дополнительных экспериментальных данных невозможен. Т. ш., различающиеся по термометрическому свойству или веществу, существенно различны. Возможно неограниченное число не совпадающих друг с другом эмпирических Т. ш., так как все термометрические свойства связаны с температурой нелинейно и степень нелинейности различна для разных свойств и вещественную температуру, измеренную по эмпирической Т. ш., называют условной ("ртутная", "платиновая" температура и т. д.), ее единицу - условным градусом. Среди эмпирических Т. ш. особое место занимают газовые шкалы, в которых термометрическим веществом служат газы ("азотная", "водородная", "гелиевая" Т. ш.). Эти Т. ш. меньше других зависят от применяемого газа и могут быть (введением поправок) приведены к теоретической газовой Т. ш. Авогадро, справедливой для идеального газа. Абсолютной эмпирической Т. ш. называют шкалу, абсолютный нуль которой соответствует температуре, при которой численное значение физического свойства (например, в газовой Т. ш. Авогадро абсолютный нуль температуры соответствует нулевому давлению идеального газа). температуры ( по эмпирической Т. ш.) и ( по абсолютной эмпирической Т. ш.) связаны соотношением , где - абсолютный нуль эмпирической Т. ш. (введение абсолютного нуля является экстраполяцией и не предполагает его реализации).

Принципиальный недостаток эмпирической Т. ш. - их зависимость от термометрического вещества - отсутствует у термодинамической Т. ш., основанной на втором начале термодинамики. При определении абсолютной термодинамической Т. ш. ( шкала Кельвина) исходят из Карно цикла . Если в цикле Карно тело, совершающее цикл, поглощает теплоту при температуре и отдает теплоту при температуре , то отношение не зависит от свойств рабочего тела и позволяет по доступным для измерений величинам и определять абсолютную температуру. Вначале основной интервал этой шкалы был задан точками таяния льда и кипения воды при атмосферном давлении, единица абсолютной температуры соответствовала части основного интервала, за начало отсчета была принята точка таяния льда. В 1954 Х Генеральная конференция по мерам и весам установила термодинамическую Т. ш. с одной реперной точкой - тройной точкой воды, температура которой принята 273,16 К (точно), что соответствует . температура в абсолютной термодинамической Т. ш. измеряется в кельвинах (К). Термодинамическая Т. ш., в которой для точки таяния льда принята температура , называется стоградусной. Соотношения между температурами, выраженными в шкале Цельсия и абсолютной термодинамической Т. ш.:

так что размер единиц в этих шкалах одинаков. В США и некоторых др. странах, где принято измерять температуру по шкале Фаренгейта, применяют также абсолютную Т. ш. Ранкина. Соотношение между кельвином и градусом Ранкина: , по шкале Ранкина точка таяния льда соответствует , точка кипения воды .

Любая эмпирическая Т. ш. приводится к термодинамической Т. ш. введением поправок, учитывающих характер связи термометрического свойства с термодинамической температурой. Термодинамическая Т. ш. осуществляется не непосредственно (проведением цикла Карно с термометрическим веществом), а с помощью других процессов, связанных с термодинамической температурой. В широком интервале температур (примерно от точки кипения гелия до точки затвердевания золота) термодинамические Т. ш. совпадают с Т. ш. Авогадро, так что термодинамическую температуру определяют по газовой, которую измеряют газовым термометром. При более низких температурах термодинамическая Т. ш. осуществляется по температурной зависимости магнитной восприимчивости парамагнетиков, при более высоких - шкала несколько раз переопределялась (МТШ-48, МПТШ-68, МТШ-90): менялись реперные температуры, методы интерполяции, но принцип остался тот же - основой шкалы является набор фазовых переходов чистых веществ с определенными значениями термодинамических температур и интерполяционные приборы, градуированные в этих точках. В настоящее время действует шкала МТШ-90. Основной документ (Положение о шкале) устанавливает определение Кельвина, значения температур фазовых переходов (реперных точек) и методы интерполяции.

Используемые в быту температурные шкалы - как Цельсия, так и Фаренгейта (используемая, в основном, в США), - не являются абсолютными и поэтому неудобны при проведении экспериментов в условиях, когда температура опускается ниже точки замерзания воды, из-за чего температуру приходится выражать отрицательным числом. Для таких случаев были введены абсолютные шкалы температур.

Одна из них называется шкалой Ранкина, а другая - абсолютной термодинамической шкалой (шкалой Кельвина); температуры по ним измеряются, соответственно, в градусах Ранкина () и кельвинах (К). Обе шкалы начинаются при температуре абсолютного нуля. Различаются они тем, что кельвин равен градусу Цельсия, а градус Ранкина - градусу Фаренгейта. Температуре замерзания воды при стандартном атмосферном давлении соответствуют , , .

Масштаб шкалы Кельвина привязан к тройной точке воды (273,16 К), при этом от нее зависит постоянная Больцмана. Это создает проблемы с точностью интерпретации измерений высоких температур. Сейчас МБМВ рассматривает возможность перехода к новому определению кельвина и фиксированию постоянной Больцмана, вместо привязки к температуре тройной точки.

Краткие итоги : обучающийся познакомился с классификацией шкал и их областью применения.

Набор для практики

Вопросы :

  1. Когда и кем была предложена современная классификация шкал?
  2. Дайте определение слову ШКАЛА.
  3. Перечислите все известные Вам виды шкал и объясните в чем их различия?
  4. Почему шкалы используются в психометрии?
  5. Какие шкалы больше всего используются в Англии и Америке?
  6. Какая из вышеописанных шкал появилась первой?
  7. В какой стране дольше всего использовалась шкала Реомюра?
  8. В чем измеряется температура в абсолютной термодинамической температурной шкале?
  9. Назовите примеры абсолютных шкал температур.
  10. Чему равно соотношение между кельвином и градусом Ранкина?

Упражнения

  1. Нарисуйте схему, отражающую современную классификацию шкал. Можете ли составить шкалы по иерархии.
  2. Определите значение температуры в разных температурных шкалах(по Фаренгейту, по Кельвину)

Измерение теплоэнергетических величин

Одной из важнейших теплоэнергетических величин является температура. Температура – физическая величина, характеризующая степень нагретости тела или его теплоэнергетический потенциал. Практически все технологические процессы и различные свойства вещества зависят от температуры.

В отличие от таких физических величин, как масса, длина и т.п., температура является не экстенсивной (параметрической), а интенсивной (активной) величиной. Если гомогенное тело разделить пополам, то его масса также делится пополам. Температура, являясь интенсивной величиной, таким свойством аддитивности не обладает, т.е. для системы, находящейся в термическом равновесии, любая часть системы имеет одинаковую температуру. Поэтому не представляется возможным создание эталона температуры, подобно тому, как создаются эталоны экстенсивных величин.

Измерить температуру можно только косвенным путем, основываясь на зависимости от температуры таких физических свойств тел, которые поддаются непосредственному измерению. Эти свойства тел называют термометрическими. К ним относятся длина, плотность, объем, термоэ.д.с., электросопротивление и т.д. Вещества, характеризующиеся термометрическими свойствами, называю термометрическими. Средство измерения температуры называют термометром. Для создания термометра необходимо иметь температурную шкалу.

Температурной шкалой называют конкретную функциональную числовую связь температуры со значениями измеряемого термометрического свойства. В этой связи представляется возможным построение температурных шкал на основе выбора любого термометрического свойства. В тоже время нет ни обного термометрического свойства, которое линейно связано с изменением температуры и не зависит от других факторов в широком интервале измерения температур.

Первые температурные шкалы появились в XVIII веке. Для построения их выбирались две опорные (реперные) точки t 1 и t 2 , представляющие собой температуры фазового равновесия чистых веществ. Разность температур t 2 - t 1 называют основным температурным интервалом. Немецкий физик Габриель Даниель Фаренгейт (1715 г.), шведский физик Андерс Цельсий (1742 г.) и французский физик Рене Антуан Реомюр (1776 г.) при построении шкал основывались на допущении линейной связи между температурой t и термометрическим свойством, в качестве которого использовали расширение объема жидкости V , т.е.

t = a + bV , (1)

где а и b – постоянные коэффициенты.

Подставив в это уравнение V = V 1 при t = t 1 и V = V 2 при t = t 2 , после преобразования получим уравнение температурной шкалы:


В шкалах Фаренгейта, Реомюра и Цельсия точке плавления льда t 1 соответствовали +32 0 , 0 0 и0 0 , а точке кипения воды t 2 – 212 0 , 80 0 и 100 0 . Основной интервал t 2 – t 1 в этих шкалах делится соответственно на N = 180, 80 и 100 равных частей, и 1/N часть каждого из интервалов называют градусом Фаренгейта – t 0 F, градусом Реомюра t 0 R и градусом Цельсия t 0 C. Таким образом, для шкал, построенных по указанному принципу, градус не является единицей измерения, а представляет собой единичный промежуток – масштаб шкалы.

Для пересчета температуры из одной шкалы в другую используют соотношение:

(3)

Позднее было выяснено, что показания термометров, имеющих разные термометрические вещества (ртуть, спирт и др.), использующих одно и тоже термометрическое свойство и равномерную градусную шкалу, совпадают лишь в реперных точках, а в других точках показания расходятся. Последнее особенно заметно при измерении температур, значения которых расположены далеко от основного интервала.

Это обстоятельство объясняется тем, что связь между температурой и термометрическим свойством на самом деле нелинейна и эта нелинейность различна для разных термометрических веществ. В частности, нелинейность между температурой и изменением объема жидкости объясняется тем, что температурный коэффициент объемного расширения жидкости сам изменяется от температуры и это изменение различно для разных капельных жидкостей.

На основе описанного принципа можно построить любое количество шкал, значительно различающихся между собой. Такие шкалы называют условными, а масштабы этих шкал - условными градусами.

Проблема создания температурной шкалы, не зависящей от термометрических свойств веществ, была решена в 1848 г. Кельвином, а предложенная им шкала названа термодинамической. В отличие от условных температурных шкал термодинамическая температурная шкала является абсолютной .

Термодинамическая шкала температур основана на использовании второго закона термодинамики. В соответствии с этим законом коэффициент полезного действия h тепловой машины, работающей по обратному циклу Карно, определяется только температурой нагревателя Т н и холодильника Т х и не зависит от свойств рабочего вещества:

(4)

где Q н и Q х – соответственно количество теплоты, полученное рабочим веществом от нагревателя и отданное холодильнику.

Кельвином было предложено для определения температуры использовать равенство

Следовательно, используя один объект в качестве нагревателя, а другой – в качестве холодильника и проведя между ними цикл Карно, можно определить отношение температур объектов путем измерения отношения теплоты, взятой от одного объекта и отданной другому. Полученная шкала температур не зависит от свойств рабочего вещества и называется абсолютной шкалой температур. Чтобы абсолютная температура имела определенное значение, было предложено принять разность термодинамических температур между точками кипения воды Т кв и таяния льда Т тл равной 100 0 . Принятие такой разности преследовало цель сохранения преемственности числового значения термодинамической температурной шкалы от стоградусной температурной шкалы Цельсия. Т.О., обозначая количество теплоты, полученной от нагревателя (кипящая вода) и отдаваемой холодильнику (тающий лед), соответственно через Q кв и Q тл, и приняв Т кв – Т тл = 100, получим:

и (6)

Для любой температуры Т нагревателя при неизменном значении Т тл холодильника и количества теплоты Q тл, отдаваемой ему рабочим веществом машины Карно, будем иметь:

(7)

Уравнение (6) является уравнением стоградусной термодинамической шкалы температур и показывает, что значение температуры Т по данной шкале линейно связано с количеством теплоты Q, полученной рабочим веществом тепловой машины при совершении ею цикла Карно, и, как следствие, не зависит от свойств термодинамического вещества. За один градус термодинамической температуры принимают такую разность между температурой тела и температурой таяния льда, при которой производимая по обратному циклу Карно работа равна 1/100 части работы, совершаемой в цикле Карно между температурой кипения воды и таяния льда (при условии, что в обоих циклах количество теплоты, отдаваемой холодильнику, одинаково).

Из определения к.п.д. следует, что при максимальном значении h=1 должна быть равна нулю Т х. Эта наименьшая температура была названа Кельвином абсолютным нулем. Температуру по термодинамической шкале обозначают «К».

Термодинамическая шкала температур, основанная на двух реперных точках, обладает недостаточной точностью измерения. Практически трудно воспроизвести температуры указанных точек, т.к. они зависят от давления, а также от содержания солей в воде. Поэтому Кельвин и Менделеев высказали соображение о целесообразности построения термодинамической шкалы температур по одной реперной точке.

Консультативный комитет по термометрии Международного комитета мер и весов в 1954 году принял рекомендацию о переходе к определению термодинамической шкалы с использованием одной реперной точки – тройной точки воды (точки равновесия воды в твердой, жидкой и газообразной фазах), которая легко воспроизводится в специальных сосудах с погрешность не более 0,0001 К. Температура этой точки принята равной 273, 16 К, т.е. выше температуры таяния льда на 0,01 К. Такое число выбрано для того, чтобы значения температур по новой шкале практически не отличались от старой шкалы Цельсия с двумя реперными точками. Второй реперной точкой является абсолютный нуль, который практически не реализуется, но имеет строго фиксированной положение.

В 1967 году XIII Генеральная ассамблея по мерам и весам уточнила определение единицы термодинамической температуры в следующей редакции: «Кельвин – 1/273,16 часть термодинамической температуры тройной точки воды». Термодинамическая температура может быть выражена также в градусах Цельсия:

t = T – 273,15 K (8)


Самыми известными, на данный момент, температурными шкалами являются шкалы Фаренгейта, Цельсия и Кельвина.

Температурная шкала Фаренгейта наиболее популярна в США. Измеряется температура в градусах, например, 48,2°F(сорок восемь и два градуса по Фаренгейту), символ F указывает, что используется шкала Фаренгейта.

Европейцы привыкли к температурной шкале Цельсия , которая измеряет температуру также в градусах, например, 48,2°C (сорок восемь и два градуса по Цельсию), символ С указывает, что используется шкала Цельсия.

Ученым более привычно оперировать с температурной шкалой Кельвина . До 1968 года кельвин официально именовался градусом Кельвина, потом было принято решение именовать значение температуры, измеренной по шкале Кельвина, просто в кельвинах (без градусов), например, 48,2 К (сорок восемь и два кельвина).

Даниель Габриель Фаренгейт свою шкалу изобрел в 18 веке, занимаясь изготовлением термометров в Амстердаме. За нулевую точку температуры Фаренгейт взял температуру замороженного раствора соли, который в то время использовался для получения низких температур в лабораторных условиях. Значение в 32°F немецкий физик установил для температуры плавления льда и замораживания воды (при повышении и понижении температуры соответственно). В соответствии с полученной шкалой, температура закипания воды равна 212°F.

В том же 18 веке шведский ученый Андерс Цельсий изобрел свою температурную шкалу, в основе которой лежит температура замерзания (0°C) и закипания (100°C) чистой воды при нормальном атмосферном давлении.

Шкала Кельвина была изобретена в 19 веке британским ученым Уильямом Томсоном , который впоследствии получил почетный титул барона Кельвина. В основу своей температурной шкалы Томсон положил понятие абсолютного нуля. Позднее шкала Кельвина стала основной в физике, и сейчас через нее определяются системы Фаренгейта и Цельсия.

По своей сути температура любого объекта характеризует меру движения его молекул - чем быстрее движутся молекулы, тем выше температура объекта, и наоборот. Чем ниже температура, тем молекулы движутся медленнее. При абсолютном нуле (0 К) молекулы останавливаются (чего в природе быть не может). По этой причине, достичь температуры абсолютного нуля или еще более низких температур невозможно.

Надо сказать, что градуировка шкал Кельвина и Цельсия совпадают (один градус Цельсия равен одному кельвину), а 0 К = -273,15°C.

Таким образом, связать температурные шкалы Кельвина и Цельсия очень просто:

K = C+273,15 C = K-273,15

Попробуем связать шкалы Цельсия и Фаренгейта.

Как известно, вода замерзает при 32°F и 0°C: 32°F=0°C . Закипает вода при 212°F и 100°C: 212°F=100°C .

Таким образом, на 180 градусов шкалы Фаренгейта приходится 100 градусов шкалы Цельсия (соотношение 9/5): 212°F-32°F=100°C-0°C.

Также следует учесть, что нулевая точка шкалы Цельсия соответствует 32-градусной точке шкалы Фаренгейта.

Учитывая вышеизложенные соответствия двух шкал, выводим формулу перевода температуры из одной шкалы в другую:

С = (5/9)·(F-32) F = (9/5)·C+32

Если решить данную систему уравнений, можно узнать, что -40°C = -40°F - это единственная температура, при которой значение обеих шкал совпадают.

Действуя аналогичным образом, связываем шкалы Кельвина и Фаренгейта:

F = (9/5)·(K-273,15)+32 = (9/5)K-459,67 K = (5/9)·(F+459,67)

Температура и температурные шкалы

Температура - степень нагретости вещества. Данное понятие основано на способности передавай тепло различными телами (веществом) друг другу при разной степени их нагретости и находиться в состоянии теплового равновесия при равных температурах. Причем тепло всегда передается от тела с более высокой температурой к телу с низкой температурой. Температура может быть также определена как параметр теплового состояния вещества, обуславливаемый средней кинетической энергией движения его молекул. Отсюда очевидно, что понятие «температура» для одной молекулы неприменимо, т.к. при какой-либо конкретной температуре энергия одной молекулы не может быть охарактеризована средним значением. Из данного положения следует, что понятие «температура» является статистическим.

Температура измеряется приборами, которые называются термометрами, в основу работы которых могут быть заложены различные физические принципы. Возможность измерения температуры такими приборами основывается на явлении теплового обмена телами с разной степенью нагретости и изменении их физических (термометрических) свойств при нагревании (охлаждении).

Для количественного определения температуры необходимо выбрать ту или иную температурную шкалу. Температурные шкалы строятся на основе определенных физических свойств какого-либо вещества, которые не должны зависеть от посторонних факторов и должны быть точно и удобно замеряемыми. На самом деле не существует ни одного термометрического свойства для термометрических тел или веществ, которые бы полностью удовлетворяли указанным условиям во всем диапазоне измеряемых температур. Поэтому температурные шкалы определяются для различных температурных диапазонов, построенных на произвольном допущении линейной зависимости

между свойством термометрического тела и температурой. Такие шкалы называются условными, а измеряемая по ним температура -условной.

4 К условной температурной шкале относится одна из распространенных шкал - шкала Цельсия. По этой шкале в качестве границ условного диапазона измерения приняты точки плавления льда и кипения воды при нормальном атмосферном давлении, а одну сотую часть данной шкалы принято называть одним градусом Цельсия (\ С),

| Однако, построение такой температурной шкалы с не пользованием жидкостных термометров может привести к ряду затруднений, связанных со свойствами используемых термометрических жидкостей. Например, показания ртутного и спиртового термометров, работающих на принципе расширения жидкости, будут различными при измерении одной и той же температуры в силу различных коэффициентов их объемного расширения.

| Поэтому для усовершенствования условной температурной шкалы было предложено использование газового термометра с использованием газов, свойства которых незначительно отличались бы от свойств идеального газа (водород, гелий, азот и др.).

С помощью газового термометра измерение температуры может быть основано на изменении объема или давления газа в замкнутой термосистеме.

На практике более широкое распространение получил способ, основанный на измерении давления при постоянном объеме, т.к. является более точным и легко реализуемым.

Для создания единой температурной шкалы, не связанной с термометрическими свойствами различных веществ для широкого интервала температур, Кельвином была предложена шкала температур, основанная на втором законе термодинамики. Эта шкала получила название термодинамической температурной шкалы.

В ее основе лежат следующие положения:

Если при обратимом цикле Карно тело поглощает теплоту 0, при температуре Т, и отдает тепло С? 3 при температуре Т 2 , то должно соблюдаться следующее равенство:

Т. О,

п<Г (21)

Согласно положениям термодинамики данное соотношение не зависит от свойств рабочего тела.

I Термодинамическая температурная шкала Кельвина стала использоваться как исходная шкала для других температурных шкал, не зависящих от термометрических свойств рабочего вещества. Для определения одного градуса по этой шкале интервал, находящийся между точками плавления льда и кипения воды, делится, как и в стоградусной шкале Цельсия, на сто равных частей. Таким образом, I П С оказывается равным ] °К

* По данной шкале, принятой называться абсолютной за нулевую точку принимается температура на 273,15° ниже точки плавления льда, называемая абсолютным нулем. Теоретически доказано, что при этой температуре прекращается всякое тепловое движение молекул любого вещества, поэтому эта шкала в известной мере носит теоретический характер.

Между температурой Т, выраженной в Кельвинах, и температурой *, выраженной в градусах Цельсия, действует соотношение:

1=Т-Т 0 , (2.2)

где Т 0 = 273,15 К.

Из существующих термометров наиболее точно реализуют абсолютную температурную шкалу газовые термометры в интервале не выше 1200 °С. Использование этих термометров при более высоких температурах сталкивается с большими трудностями, кроме того, газовые термометры являются достаточно сложными и громоздкими приборами, что для практических целей неудобно. Поэтому для практического и удобного воспроизведения термодинамической шкалы в широких диапазонах изменения температурпринятыииспользуютсяМеждународные практические

температурные шкапы (МПТШ). В настоящее время действует принятая в 1968 году температурная шкала МПТШ-68, построение которой базируется на реперных точках, определяемых фазовым состоянием веществ. Данные реперные точки используются для эталонизации температур в различных диапазонах, которые приведены в табл. 2.1.