«Новые Биотехнологии»: попробовать будущее на вкус. Возникновение биотехнологии, основные достижения

Знаете ли вы, что такое биотехнология? Наверняка вы кое-что о ней слышали. Это важный раздел современной биологии. Она стала, как и физика, одним из основных приоритетов в мировой экономике и науке в конце 20 века. Еще полвека назад никто не знал, что такое биотехнология. Однако основы ее заложил ученый, живший еще в 19 веке. Биотехнология получила мощный толчок к развитию благодаря работам исследователя из Франции Луи Пастера (годы жизни - 1822-1895). Он является основоположником современной иммунологии и микробиологии.

В 20 веке бурно развивалась генетика и молекулярная биология с использованием достижений физики и химии. В это время важнейшим направлением была разработка методов, с помощью которых можно было бы культивировать клетки животных и растений.

Всплеск исследований

В 1980 годах произошел всплеск исследований в области биотехнологии. К этому времени были созданы новые методические и методологические подходы, которые обеспечили переход к применению биотехнологий в науке и практике. Появилась возможность извлечь из этого большой Согласно прогнозам, биотехнологические товары должны были составить уже в начале нового века четверть мировой продукции.

Работа, осуществленная в нашей стране

Активное развитие биотехнологии происходило в это время и в нашей стране. В России также было достигнуто значительно расширение работ в этой области и внедрение в производство их результатов в 1980 годы. В нашей стране в этот период была разработана и осуществлялась первая программа по биотехнологии общенационального масштаба. Были созданы специальные межведомственные центры, подготовлены специалисты-биотехнологи, основаны кафедры и сформированы лаборатории в вузах и научно-исследовательских учреждениях.

Биотехнология сегодня

Сегодня мы настолько привыкли к этому слову, что мало кто задает себе вопрос: "Что такое биотехнология?" А между тем познакомиться с ней подробнее было бы совсем не лишним. Современные процессы в этой области основаны на методах использования рекомбинантных ДНК и клеточных органелл или клеток. Современная биотехнология является наукой о клеточных и генноинженерных технологиях и методах создания и применения трансформированных генетически биологических объектов с целью интенсификации производства либо создания новых видов продуктов. Выделяются три основные направления, о которых мы сейчас расскажем.

Промышленная биотехнология

В этом направлении можно выделить как разновидность красную Она считается самой важной сферой применения биотехнологий. Все большую роль они играют при разработке медикаментов (в частности, для лечения рака). Большое значение биотехнологии имеют также в диагностике. Они применяются, например, при создании биосенсоров, чипов ДНК. В Австрии красная биотехнология сегодня пользуется заслуженным признанием. Она даже считается двигателем развития остальных отраслей.

Переходим к следующей разновидности промышленной биотехнологии. Это биотехнология зеленая. Она используется, когда осуществляется селекция. Биотехнология эта предоставляет сегодня особые методы, с помощью которых разрабатываются средства противодействия против гербицидов, вирусов, грибков, насекомых. Все это также очень важно, согласитесь.

Для области зеленой биотехнологии особое значение имеет генная инженерия. С помощью нее создаются предпосылки для переноса генов одного вида растений на другие, и таким образом ученые могут влиять на развитие устойчивых характеристик и свойств.

Серая биотехнология используется для охраны окружающей среды. Ее методы применяются для очистки канализационных стоков, санации почв, очистки газов и отработанного воздуха, для переработки отходов.

Но и это еще не все. Существует и белая биотехнология, которая охватывает сферу использования в химической промышленности. Биотехнологические методы в данном случае применяются для безопасного с экологической точки зрения и эффективного производства ферментов, антибиотиков, аминокислот, витаминов, а также алкоголя.

И наконец, последняя разновидность. Синяя биотехнология основана на техническом применении различных организмов, а также процессов морской биологии. В этом случае в центре исследований - биологические организмы, населяющие Мировой океан.

Переходим к следующему направлению - клеточной инженерии.

Клеточная инженерия

Она занимается получением гибридов, клонированием, изучением клеточных механизмов, "гибридными" клетками, составлением генетических карт. Начало ее относят к 1960 годам, когда появился метод гибридизации Уже были усовершенствованы к этому времени способы культивирования, возникли и способы выращивания тканей. Соматическую гибридизацию, при которой гибриды создаются без участия полового процесса, сегодня проводят, культивируя различные клетки линий одного вида или используя клетки разных видов.

Гибридомы и их значение

Гибридомы, то есть гибриды между лимфоцитами (обычными клетками иммунной системы) и опухолевыми, обладают свойствами клеточных линий родителей. Они способны, подобно раковым, делиться неограниченно долго на питательных искусственных средах (то есть являются "бессмертными"), а также могут, подобно лимфоцитам, вырабатывать однородные обладающие определенной специфичностью. Эти антитела используются в диагностических и лечебных целях, как чувствительные реагенты на органические вещества и др.

Еще одним направлением клеточной инженерии являются манипуляции с клетками, не имеющими ядер, со свободными ядрами, а также с иными фрагментами. Эти манипуляции сводятся к комбинированию частей клетки. Подобные эксперименты вместе с микроинъекциями красителей или хромосом в клетку проводят, чтобы выяснить, как цитоплазма и ядро влияют друг на друга, какие факторы регулируют активность тех или иных генов и проч.

С помощью соединения на ранних стадиях развития клеток различных зародышей выращивают так называемых мозаичных животных. Иначе их именуют химерами. Они состоят из 2-х видов клеток, различающихся генотипами. Путем данных экспериментов выясняют, как в ходе развития организма происходит дифференцировка тканей и клеток.

Клонирование

Современные биотехнологии немыслимы без клонирования. Опыты, связанные с пересадкой ядер различных соматических клеток в энуклеированные (то есть лишенные ядра) яйцеклетки животных с дальнейшим выращиванием во взрослый организм получившегося зародыша ведутся уже не одно десятилетие. Однако они получили очень широкую известность с конца 20 века. Сегодня мы называем такие опыты клонированием животных.

Мало кому не знакома сегодня овечка Долли. В 1996 году около Эдинбурга (Шотландия) в Рослинском институте было осуществлено первое клонирование млекопитающего, которое осуществилось из клетки взрослого организма. Именно овечка Долли стала первым таким клоном.

Генная инженерия

Появившись в начале 1970 годов, сегодня добилась значительных успехов. Ее методы преобразуют клетки млекопитающих, дрожжей, бактерий в настоящие "фабрики" для производства любого белка. Такое достижение науки предоставляет возможность детально изучить функции и структуру белков для того, чтобы использовать их как лекарственные средства.

Основы биотехнологии сегодня широко применяются. Кишечная палочка, например, стала в наше время поставщиком важных гормонов соматотропина и инсулина. Прикладная генная инженерия ставит перед собой цель конструирования рекомбинантных молекул ДНК. При внедрении в определенный генетический аппарат они могут придавать организму полезные для человека свойства. К примеру, можно получать "биологические реакторы", то есть животные, растения и микроорганизмы, которые продуцировали бы вещества, фармакологически важные для человека. Достижения биотехнологии привели к возможности выведения пород животных и сортов растений с признаками, ценными для людей. С помощью методов генной инженерии можно осуществлять генетическую паспортизацию, создавать ДНК-вакцины, диагностировать различные генетические заболевания и др.

Заключение

Итак, мы ответили на вопрос: "Что такое биотехнология?" Конечно, в статье приведены лишь основные сведения о ней, кратко перечислены направления. Эта ознакомительная информация дает общее представление о том, какие существуют современные биотехнологии и как они используются.

Биоинженерия – одно из перспективнейших научных направлений, при помощи которой можно создать новые органы или даже части тела для их дальнейшей пересадки живому человеку. В отдаленной перспективе биоинженерия позволит больному человеку получить новый глаз, сердце и другие жизненно необходимые органы.

Многие считают, что биоинженеры пытаются «играть в Бога», а их достижения могут быть использованы не для спасения жизней, а для совершенствования человеческого тела вопреки законам природы. Сейчас это кажется фантастикой, но последние достижения биоинженерии говорят об обратном.

Ухо

Человеческое ухо является достаточно сложным по своему строению органом. Однако биоинженерия, как оказалось, способна на многое. Так, ученым Принстонского университета во главе с доцентом Майклом МакАлпайном удалось-таки создать искусственное человеческое ухо, которое они представили в мае 2013 года. Для этого биоинженеры использовали технологию трехмерной печати, при помощи которой создали ухо из животных клеток с применением электронных приборов. Если его пересадить человеку, то он сможет улавливать ранее недоступные ему радиочастоты.

Кровеносные сосуды

Кровеносная система человека представляет собой очень сложный механизм, сбой в которой грозит диабетом, сердечно-сосудистыми и почечными заболеваниями. Но биоинженерия творит чудеса. В 2011 году специалистам компании Cytograft Tissue Engineering удалось создать искусственные кровеносные сосуды. Они были вживлены трем пациентам, страдающим почечными заболеваниями. Результаты эксперимента поразили ученых: через 8 месяцев после операции созданные при помощи биоинженерии кровеносные сосуды по-прежнему исправно работали.

Сердце

В 1980-х годах кардиохирурги совершили настоящий прорыв, пересадив человеку искусственное сердце. Конечно, живое сердце трудно заменить, но с развитием науки достижения биоинженерии позволили усовершенствовать искусственное сердце использованием биологических материалов, а специалистам Массачусетского технологического института и вовсе удалось напечатать сердце на 3D-принтере из клеток грызунов. Будем надеяться, что уже скоро достижения биоинженерии позволят «напечатать» искусственное человеческое сердце, не уступающее настоящему.

Печень

Биоинженерия уже близка к созданию искусственной человеческой печени. Так, миниатюрные образцы этого органа были созданы в 2010 году специалистами Балтийского медицинского центра при Университете Уэйк Форест с применением животных и человеческих клеток. Кроме того, в Йокогамском университете был проведен эксперимент, в результате которого были созданы «зародыши» печени. Но для создания функционирующего органа потребуются тысячи таких элементов.

Трахея

Пусть биоинженерия пока и не может дать человечеству искусственную печень, но создать трахею она в состоянии. Так, в американском штате Иллинойс 2,5-летней Ханне Уоррен была пересажена искусственно выращенная трахея. Операция прошла удачно, но 7 июля 2013 года девочка скончалась в результате сделанной ранее операции на пищевод.

Межпозвоночные диски

Даже небольшое смещение межпозвоночных дисков приводит, в лучшем случае, к сильнейшим болям в спине, а в худшем – без хирургического вмешательства не обойтись. Но в результате операции врачи просто соединяют позвонки между собой, лишая человека подвижности. В редких случаях используются искусственные диски, которые быстро изнашиваются. К счастью, и здесь биоинженерия оправдала все ожидания. В этом году специалисты Университета Дьюка создали диск, который при вживлении в междисковое пространство способен восстанавливать соответствующие ткани, фактически выращивая межпозвоночный диск в теле пациента.

Кишечник

Использование коллагена и стволовых клеток позволило биоинженерии создать небольшой искусственный кишечник. Однако для создания полноценного органа ученым еще далеко.

Почка

Почка – один из самых востребованных органов. Только в США около 60 тысяч пациентов, страдающих от почечной недостаточности, стоят в очереди на пересадку почки. Возможно, эту проблему удастся решить специалистам Калифорнийского университета. Используя последние достижения биоинженерии, они работают над созданием искусственной почки, сделанной на основе силиконовых нанофильтров и клеток человеческой почки. Уже в 2017 году ученые надеются провести испытания этого устройства.

Основные достижения и перспективы развития сельскохозяйственной биотехнологии

Биотехнологические подходы позволяют современным селекционерам выделять отдельные гены, отвечающие за желаемые признаки, и перемещать их из генома одного растения в геном другого – трансгенез.

Благодаря биотехнологии были получены растения с улучшенными питательными свойствами, устойчивые к гербицидам и со встроенной защитой против вирусов и вредителей (соя, помидоры,хлопок, папайа,). ГМ растения, используемые в животноводстве, – кукуруза, соевые бобы, канола и хлопок

С помощью генетических методов были получены также штаммы микроогранизмов (Ashbya gossypii, Pseudomonas denitrificans и др.), которые производят в десятки тысяч раз больше витаминов (С, В 3 , В 13 , и др.), чем исходные формы.

Перспективы:

1. Специалисты биотехнологий разрабатывают возможности увеличения количества белка в растениях, что позволит в будущем отказаться от мяса.

2. Для агрокомплекса ведутся разработки в направлении усовершенствования функций самозащиты растений от насекомых-вредителей, посредством выделения яда.

3. Одной из бурно развивающихся отраслей биотехнологии считается технология микробного синтеза ценных для человека веществ. Дальнейшее развитие этой отрасли повлечет за собой перераспределение ролей растениеводства и животноводства с одной стороны, и микробного синтеза - с другой, в формировании продовольственной базы человечества.

4. В основе промышленного использования достижений биотехнологии лежит техника создания рекомбинантных молекул ДНК. Конструирование нужных генов позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми свойствами.

5. В качестве источников сырья для биотехнологии все большее значение приобретают воспроизводимые ресурсы непищевых растительных материалов, отходов сельского хозяйства, которые служат дополнительным источником как кормовых веществ, так и вторичного топлива (биогаза) и органических удобрений.

6. Биодеградация (переработка) целлюлозы. Полное расщепление целлюлозы до глюкозы может решить множество проблем - получение большого количества углеводов и очистку среды от отбросов лесов и сельскохозяйственного производства. В настоящее время гены целлюлолитических ферментов уже выделены из некоторых микроорганизмов. Разрабатываются методы их переноса в дрожжи, которые могли бы сначала гидролизовать целлюлозу до глюкозы и затем превращать ее в спирт.

Новейшие достижения в области медицинской биотехнологии

В области медицинской биотехнологии были разработаны интерфероны ~ белки, способные подавлять размножение вирусов.

Производство человеческого инсулина путем использования генно-модифицированных бактерий, производство эритропоэтина (гормона, стимулирующего образование эритроцитов в костном мозге.

Стало возможным производить полимеры, заменяющие органы и ткани человека (почки, кровеносные сосуды, клапаны, аппарат сердце - легкие и т.д.).

Массовая иммунизация (вакцинация) стала самым доступным и экономически эффективным способом профилактики инфекционных болезней. Так, за 30 лет вакцинирования российских детей от кори, заболеваемость снизилась ей в 620 раз.

Разработаны методы получения антибиотиков. Открытие антибио­тиков произвело переворот в лечении инфекционных заболева­ний. Ушли в прошлое представления о неизлечимости многих бак­териальных инфекций (чума, туберкулез, сепсис, сифилис и др.).

Одно из последних достижений биотехнологической диагностики – метод биосенсоров, которые «отлавливают» связанные с болезнями молекулы и подают сигналы на датчики. Биосенсорную диагностику используют для определения глюкозы в крови больных диабетом. Предполагается, что со временем можно будет имплантировать датчики биосенсоров в кровеносные сосуды больных, чтобы более точно контролировать их потребность в инсулине.

Стало возможным не только создание «биологических реакторов», трансгенных животных, генно-модифицированных растений, но и проведение генетической паспортизации (полного исследования и анализа генотипа человека, проводимого, как правило, сразу после рождения, для определения предрасположенности к различным заболеваниям, возможную неадекватную (аллергическую) реакцию на те или иные лекарства, а также склонность к определенным видам деятельности). Генетическая паспортизация позволяет прогнозировать и уменьшать риски сердечно-сосудистых и онкологических заболеваний, исследовать и предотвращать нейродегенеративные заболевания и процессы старения и т.д.

Ученым удалось выявить гены, ответственные за проявление различных патологий и способствующие увеличению продолжительности жизни.

Появились возможности для ранней диагностики наследственных болезней и своевременной профилактики наследственной патологии.

Важнейшей областью для медицинской биотехнологии стала клеточная инженерия, в частности технология получения моноклональных антител, которые продуцируются в культуре или в организме животного гибридными лимфоидными клетками - гибридомами. Технология получения моноклональных антител оказала большое влияние на фундаментальные и прикладные исследования в области медицины и на медицинскую практику. На их основе разработаны и применяются новые системы иммунологического анализа - радиоиммунологический и иммуноферментативный анализ. Они позволяют определять в организме исчезающе малые концентрации специфических антигенов и антител.

Самой передовой технологией в диагностике заболеваний ныне считают микрочипы. Их применяют для ранней диагностики инфекционных, онко- и генетических заболеваний, аллергенов, а также при исследовании новых лекарств.


Похожая информация.


Лекция по биотехнологии №1

    Введение в биотехнологию. Экологическая, сельскохозяйственная, промышленная биотехнология.

    Биотехнологическое получение белков, ферментов, антибиотиков витаминов, интерферона.

Вопрос №1

Человек с древнейших времен использовал биотехнологии в виноделии, пивоварении или хлебопечении. Но процессы, лежащие в основе этих производств, долго оставались загадочными. Их природа прояснилась лишь в конце XIX - начале ХХ века, когда были разработаны методы культивирования микроорганизов, пастеризации, выделены чистые линии бактерий и ферменты. Для обозначения наиболее тесно связанных с биологией разнообразных технологий раньше использовали такие наименования, как «прикладная микробиология», «прикладная биохимия», «технология ферментов», «биоинженерия», «прикладная генетика», «прикладная биология». Это привело к возникновению новой отрасли - биотехнологической.

Французский химик Луи Пастер в 1867 году доказал, что брожение - это результат жизнедеятельности микроорганизмов. Немецкий биохимик Эдуард Бухнер уточнил, что оно вызывается и бесклеточным экстрактом, содержащим ферменты, катализирующие химические реакции. Использование чистых ферментов для переработки сырья послужило толчком к развитию зимологии. Например, альфа-амилаза требуется для расщепления крахмала.

В это же время сделаны важные открытия в области нарождавшейся генетики, без которой была бы немыслима биотехнология современного уровня. В 1865 году австрийский монах Грегор Мендель ознакомил Брюннское общество естествоиспытателей со своими «Опытами над растительными гибридами», в которых он описал законы передачи наследственности. В 1902 году биологи Уолтер Саттон и Теодор Бовери предположили, что передача наследственности связана с материальными носителями - хромосомами. Уже тогда было известно, что живой организм состоит из клеток. Немецкий патолог Рудольф Вирхов дополняет клеточную теорию принципом «каждая клетка - из клетки». А опыты ботаника Готлиба Хаберландта продемонстрировали, что клетка может существовать в искусственной среде и отдельно от организма. Эксперименты последнего привели к открытию роли витаминов, минеральных добавок и гормонов.

Потом было слово

Годом рождения самого термина «биотехнология» принято считать 1919-й, когда был опубликован манифест «Биотехнология переработки мяса, жиров и молока на больших сельскохозяйственных фермах». Его автор - венгерский агроэкономист, в то время министр продовольствия Карл Эреки. Манифест описывал переработку сельскохозяйственного сырья в другие пищевые продукты с помощью биологических организмов. Эреки предсказывал новую эпоху в истории человечества, сравнивая открытие этого метода с величайшими технологическими революциями прошлого: появлением производящего хозяйства в эпоху неолита и металлургии в бронзовом веке. Но до конца 1920-х годов под биотехнологией подразумевалось лишь использование микроорганизмов для ферментации. В 1930-е развивается медицинская биотехнология. Открытый в 1928 году Александером Флемингом пенициллин, производимый из грибков Penicillium notatum, уже в 1940-х годах начал выпускаться в промышленных масштабах. А в конце 1960-х - начале 1970-х годов была сделана попытка объединить пищевую промышленность с нефтеперерабатывающей. Компания British Petroleum разработала технологию бактериального синтеза кормового белка из отходов нефтепромышленности.

В 1953 году было совершено открытие, которое вызвало впоследствии переворот в биотехнологии: Джеймс Уотсон и Фрэнсис Крик расшифровали структуру ДНК. И в 1970-х годах к биотехнологическим приемам добавилось манипулирование наследственным материалом. Буквально за два десятилетия были открыты все необходимые для этого инструменты: выделена обратная транскриптаза - фермент, который позволяет «переписывать» генетический код из РНК обратно в ДНК, открыты ферменты для разрезания ДНК, а также полимеразная цепная реакция для многократного воспроизводства отдельных фрагментов ДНК.

В 1973 году создан первый генетически рекомбинантный организм: в бактерию был перенесен генетический элемент от лягушки. Началась эра генетической инженерии, которая едва сразу же не закончилась: в 1975 году в городе Асиломар (США) на Международном конгрессе, посвященном изучению рекомбинантных ДНК-молекул, впервые были высказаны опасения относительно применения новых технологий.

«Тревогу забили не политики, не религиозные группы и не журналисты, как можно было бы ожидать. Это были сами ученые, - вспоминал Пол Берг, один из организаторов конференции и пионер создания рекомбинантных молекул ДНК. - Многие ученые опасались, что общественные дебаты приведут к неоправданным ограничениям на молекулярную биологию, но они поощряли ответственную дискуссию, приведшую к консенсусу». Участники конгресса выступили за мораторий на ряд потенциально опасных исследований.

Тем временем от биотехнологии и генетической инженерии отпочковалась синтетическая биология, которая занимается дизайном новых биологических компонентов и систем и редизайном уже существующих. Первой ласточкой синтетической биологии стал искусственный синтез транспортной РНК в 1970 году, а сегодня возможен уже синтез целых геномов из элементарных структур. В 1978 году фирма Genentech сконструировала в лаборатории бактерию Е.coli, синтезирующую человеческий инсулин. С этого момента генетическая рекомбинация окончательно входит в арсенал биотехнологии и считается едва ли не ее синонимом. Одновременно был осуществлен первый перенос новых генов в геномы животной и растительной клетки. Нобелевский лауреат 1980 года Уолтер Гилберт заявил: «Мы можем получить для медицинских целей или для коммерческого применения фактически любой человеческий белок, способный влиять на важные функции человеческого тела».

В 1985 году проходят первые полевые испытания трансгенных растений, устойчивых к гербицидам, насекомым, вирусам и бактериям. Появляются патенты на растения. Начинается расцвет молекулярной генетики, бурно развиваются аналитические методы, такие как секвенирование, то есть определение первичной последовательности белков и нуклеиновых кислот.

В 1995 году на рынок было выпущено первое трансгенное растение (томат Flavr Savr), а уже к 2010 году трансгенные сельскохозяйственные культуры выращивали в 29 странах на 148 миллионах гектаров (10% от общей площади возделываемых земель). В 1996 году на свет появляется первое клонированное животное - овца Долли. К 2010 году было клонировано больше 20 видов животных: коты, собаки, волки, лошади, свиньи, муфлоны.

Направления биотехнологии и получаемые с ее помощью продукты

Технологии и биотехнологии

Технология - это способы и приемы, используемые для получения из исходного материала (сырья) некоторого продукта. Очень часто для получения одного продукта требуется не один, а несколько источников сырья, не один способ или прием, а последовательность нескольких. Все многообразие технологий можно подразделить на три основных класса:

Физико-механические технологии;

Химические технологии;

Биотехнологии.

В физико-механических технологиях исходный материал (сырье) в процессе получения продукта меняет форму или агрегатное состояние без изменения своего химического состава (например, технология переработки древесины для производства деревянной мебели, различные методы получения металлических изделий: гвоздей, деталей машин и др.).

В химических технологиях в процессе получения продукта сырье претерпевает изменения химического состава (например, получение полиэтилена из природного газа, спирта - из природного газа или древесины, синтетического каучука - из природного газа).

Биотехнология как наука может рассматриваться в двух временных и сущностных измерениях: современном и традиционном, классическом.

Новейшая биотехнология (биоинженерия) - это наука о генно-инженерных и клеточных методах и технологиях создания и использования генетически трансформированных (модифицированных) растений, животных и микроорганизмов в целях интенсификации производства и получения новых видов продуктов различного назначения.

В традиционном, классическом смысле биотехнологию можно определить как науку о методах и технологиях производства, транспортировки, хранения и переработки сельскохозяйственной и другой продукции с использованием обычных, нетрансгенных (природных и селекционных) растений, животных и микроорганизмов, в естественных и искусственных условиях.

Высшим достижением новейшей биотехнологии является генетическая трансформация , перенос чужеродных (природных или искусственно созданных) донорских генов в клетки-реципиенты растений, животных и микроорганизмов, получение трансгенных организмов с новыми или усиленными свойствами и признаками.

Цель биотехнологических исследований - повышение эффективности производства и поиск биологических систем, с помощью которых можно получить целевой продукт.

Биотехнология дает возможность воспроизводить нужные продукты в неограниченных количествах, применяя новые технологии, позволяющие переносить гены в клетки-продуценты или в целый организм (трансгенные животные и растения), синтезировать пептиды, создавать искусственные вакцины.

Основные направления развития биотехнологии

Расширение сфер применения биотехнологии существенно влияет на повышение уровня жизни человека (рис. 1.2). Быстрее всего внедрение биотехнологических процессов дает результаты в медицине, но, по мнению многих специалистов, основной экономический эффект будет получен в сельском хозяйстве и химической промышленности.

Микрочипы, клеточные культуры, моноклональные антитела и белковая инженерия - это лишь небольшая часть современных биотехнологических приемов, используемых на разных стадиях разработки многих видов продукции. Понимание молекулярных основ биологических процессов дает возможность значительно сократить затраты на разработку и подготовку производства определенного продукта, а так-же повысить его качество. Например, сельскохозяйственныебиотехнологические компании, создающие устойчивые к насекомым сорта растений, могут измерять количество защитного белка в клеточной культуре и не тратить ресурсы на выращивание самих растений; фармакологические компании могут использовать клеточные культуры и микрочипы для проверки безопасности и эффективности препаратов, а также для выявления возможных побочных эффектов на ранних стадиях получения лекарственных средств.

Генетически модифицированные животные, в организмах которых происходят процессы, отражающие физиологию различных человеческих заболеваний, обеспечивают ученых вполне адекватными моделями для проверки действия того или иного вещества на организм. Это также позволяет компаниям выявлять наиболее безопасные и эффективные препараты на более ранних стадиях разработки.

Все это свидетельствует о важном значении биотехнологии и широких возможностях ее применения в различных отраслях народного хозяйства. Какие же направления являются наиболее приоритетными в этой области? Рассмотрим их.

1. Повышение безопасности биотехнологического производства для человека и окружающей среды . Требуется создание таких рабочих систем, которые будут функционировать только в строго контролируемых условиях. Например, штаммы кишечной палочки, используемые в биотехнологии, лишены надмембранных структур (оболочек); такие бактерии просто не могут существовать вне лабораторий или вне специальных технологических установок. Повышенной безопасностью обладают и многокомпонентные системы, каждая из которых не способна к самостоятельному существованию.

2. Снижение доли отходов производственной деятельности человека . Отходами производства называются его побочные продукты, которые не могут использоваться человеком или другими компонентами биосферы и применение которых нерентабельно или сопряжено с каким-то риском. Такие отходы накапливаются в пределах производственных помещений (территорий) или выбрасываются в окружающую среду. Следует стремиться к изменению соотношения «полезный продукт/отходы» в пользу полезного продукта. Этого достигают различными способами. Во-первых, отходам необходимо найти полезное применение. Во-вторых, их можно направить на вторичную переработку, создав замкнутый технологический цикл. И наконец, можно изменить саму рабочую систему так, чтобы уменьшить долю отходов.

3. Снижение энергетических затрат на производство продукта, т. е. внедрение энергосберегающих технологий. Принципиальное решение этой проблемы возможно в первую очередь за счет использования возобновляемых источников энергии. Например, годовое потребление энергии ископаемого топлива соизмеримо с объемом чистой валовой продукции всех фотосинтезирующих организмов на Земле. Для трансформации солнечной энергии в формы, доступные для современных силовых установок, создаются (в том числе методами клеточной инженерии) энергетические плантации быстрорастущих растений. Полученная биомасса используется для производства целлюлозы, биотоплива, а также биогумуса. Всесторонние выгоды подобных технологий очевидны. Использование методов клеточной инженерии для постоянного обновления посадочного материала обеспечивает получение в кратчайшие сроки большого количества растений, свободных от вирусов и микоплазм; при этом отпадает необходимость создания маточных плантаций. Снижается нагрузка на естественные насаждения древесных растений (в значительной мере они вырубаются для получения целлюлозы и топлива), уменьшаются потребнотси в ископаемом топливе (в общем-то, оно является экологически неблагоприятным, поскольку при его сжигании образуются недоокисленные вещества). При использовании биотоплива образуются углекислый газ и водяные пары, которые поступают в атмосферу, а затем вновь связываются растениями на энергетических плантациях.

4. Создание многокомпонентных растительных систем. Качество сельскохозяйственной продукции значительно ухудшается при применении минеральных удобрений и ядохимикатов, которые наносят колоссальный ущерб природным экосистемам. Преодолеть негативные последствия химизации сельскохозяйственного производства можно различными способами. Прежде всего необходимо отказаться от монокультур, т. е. от использования ограниченного набора биотипов (сортов, пород, штаммов). Недостатки монокультуры были выявлены еще в конце XIX столетия; они очевидны. Во-первых, в монокультуре возрастают конкурентные отношения между выращиваемыми организмами; в то же время монокультура оказывает лишь одностороннее воздействие на конкурирующие организмы (сорняки). Во-вторых, происходит избирательный вынос элементов минерального питания, что ведет к деградации почв. И наконец, монокультура неустойчива к патогенам и вредителям. Поэтому в течение XX в. она поддерживалась за счет исключительно высокой интенсивности производства. Разумеется, использование монокультур интенсивных сортов (пород, штаммов) упрощает разработку технологии производства продукции. Например, с помощью высоких технологий созданы сорта растений, устойчивые к определенному пестициду, который при возделывании именно данных сортов можно применять в высоких дозах. Однако в этом случае возникает вопрос безопасности такой рабочей системы для человека и окружающей среды. Кроме того, рано или поздно появятся расы патогенов (вредителей), устойчивые к данному пестициду.

Следовательно, необходим планомерный переход от монокультуры к многокомпонентным (поликлональным) композициям, включающим разные биотипы культивируемых организмов. Многокомпонентные композиции должны включать организмы с разным ритмом развития, с различным отношением к динамике физико-химических факторов среды, к конкурентам, патогенам и вредителям. В генетически гетерогенных системах возникают компенсаторные взаимодействия особей с различными генотипами, снижающие уровень внутривидовой конкуренции и автоматически увеличивающие давление культивируемых организмов на конкурирующие организмы других видов (сорняки). По отношению к патогенам и вредителям такая гетерогенная экосистема характеризуется коллективным групповым иммунитетом, который определяется взаимодействием множества структурных и функциональных особенностей отдельных био-типов.

5. Разработка новых препаратов для медицины . В настоящее время ведутся активные исследования в области медицины: создаются различные типы новых препаратов - целевые и индивидуальные.

Целевые препараты . Основными причинами онкологических заболеваний являются неконтролируемое деление клеток и нарушение процессов апоптоза. Действие препаратов, предназначенных для их устранения, может быть направлено на любую из молекул или клеточных структур, участвующих в этих процессах. Исследования, проведенные в области функциональной геномики, уже предоставили нам информацию о молекулярных изменениях, происходящих в предраковых клетках. На основе полученных данных можно создавать диагностические тесты для выявления молекулярных маркеров, сигнализирующих о начале онкологического процесса до того, как появляются первые видимые нарушения клеток или проявляются симптомы заболевания.

Большинство химиотерапевтических препаратов воздействует на белки, участвующие в процессе деления клетки. К сожалению, при этом погибают не только злокачественные клетки, но часто и нормальные делящиеся клетки организма, такие, как клетки системы кроветворения и волосяных фолликул. Чтобы предупредить появление этого побочного эффекта, некоторые компании начали разработку препаратов, которые останавливали бы клеточные циклы здоровых клеток непосредственно перед введением дозы химиотерапевтического агента.

Индивидуальные препараты . На сегодняшнем этапе развития науки начинается эпоха индивидуализированной медицины, в которой генетические различия пациентов будут учитываться для наиболее эффективного применения лекарств. Используя данные функциональной геномики, можно выявлять генетические варианты, отвечающие за предрасположенность конкретных пациентов к отрицательным побочным эффектам одних препаратов и за восприимчивость - к другим. Такой индивидуальный терапевтический подход, базирующийся на знании генома пациента, получил название фармакогеномики.

Биотехнология - это сознательное производство необходимых человеку продуктов и материалов с помощью живых организмов и биологических процессов .

С незапамятных времен биотехнология применялась преимущественно в пищевой и легкой промышленности: в виноделии, хлебопечении, сбраживании молочных продуктов, при обработке льна и кож, основанных на применении микроорганизмов. В последние десятилетия возможности биотехнологии необычайно расширились. Это связано с тем, что ее методы выгоднее обычных по той простой причине, что в живых организмах биохимические реакции, катализируемые ферментами, идут при оптимальных условиях (температуре и давлении), более производительны, экологически чисты и не требуют химических реактивов, отравляющих среду.

Объектами биотехнологии являются многочисленные представители групп живых организмов - микроорганизмы (вирусы, бактерии, простейшие, дрожжевые грибы), растения, животные, а также изолированные из них клетки и субклеточные компоненты (органеллы) и даже ферменты. Биотехнология базируется на протекающих в живых системах физиолого-биохимических процессах, в результате которых осуществляются выделение энергии, синтез и расщепление продуктов метаболизма, формирование химических и структурных компонентов клетки.

Главным направлением биотехнологии является производство с помощью микроорганизмов и культивируемых эукариотических клеток биологически активных соединений (ферменты, витамины, гормоны), лекарственных препаратов (антибиотики, вакцины, сыворотки, высокоспецифичные антитела и др.), а также ценных соединений (кормовые добавки, например, незаменимые аминокислоты, кормовые белки и т. д.).

Методы генетической инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин и соматотропин (гормон роста), которые необходимы для лечения генетических болезней человека.

Одним из важнейших направлений современной биотехнологии является также использование биологических методов борьбы с загрязнением окружающей среды (биологическая очистка сточных вод, загрязненной почвы и т. п.).

Так, для извлечения металлов из сточных вод могут широко использоваться штаммы бактерий, способные накапливать уран, медь, кобальт. Другие бактерии родов Rhodococcus и Nocardia с успехом применяют для эмульгирования и сорбции углеводородов нефти из водной среды. Они способны разделять водную и нефтяную фазы, концентрировать нефть, очищать сточные воды от примесей нефти. Ассимилируя углеводороды нефти, такие микроорганизмы преобразуют их в белки, витамины из группы В и каротины.

Некоторые из штаммов галобактерий с успехом применяют для удаления мазута с песчаных пляжей. Получены также генно-инженерные штаммы, способные расщеплять октан, камфару, нафталин, ксилол, эффективно утилизировать сырую нефть.

Большое значение имеет использование методов биотехнологии для защиты растений от вредителей и болезней.

Биотехнология проникает в тяжелую промышленность, где микроорганизмы используются для добычи, превращения и переработки природных ископаемых. Уже в древности первые металлурги получали железо из болотных руд, производимых железобактериями, которые способны концентрировать железо. Теперь разработаны способы бактериальной концентрации ряда других ценных металлов: марганца, цинка, меди, хрома и др. Эти методы используются для разработки отвалов старых рудников и бедных месторождений, где традиционные методы добычи экономически невыгодны.

Биотехнология решает не только конкретные задачи науки и производства. У нее есть более глобальная методологическая задача - она расширяет и ускоряет масштабы воздействия человека на живую природу и способствует адаптации живых систем к условиям существования человека, т. е. к ноосфере. Биотехнология, таким образом, выступает в роли мощного фактора антропогенной адаптивной эволюции.

У биотехнологии, генетической и клеточной инженерии многообещающие перспективы. При появлении все новых и новых векторов человек с их помощью будет внедрять нужные гены в клетки растений, животных и человека. Это позволит постепенно избавиться от многих наследственных болезней человека, заставить клетки синтезировать необходимые лекарства и биологически активные соединения, а затем - непосредственно белки и незаменимые аминокислоты, употребляемые в пищу. Используя методы, уже освоенные природой, биотехнологи надеются получать с помощью фотосинтеза водород - самое экологически чистое топливо будущего, электроэнергию, превращать в аммиак атмосферный азот при обычных условиях.