Обыкновенные и десятичные дроби и действия над ними. Десятичные дроби, определения, запись, примеры, действия с десятичными дробями

Что если они знают теорию рядов, то значит без неё никаких метаматических понятий вводить нельзя. Более того, эти люди полагают, что тот, кто не использует её повсеместно, - невежда. Оставим воззрения этих людей на их совести. Давайте лучше разберёмся с тем, что такое бесконечная периодическая дробь и как с ней быть нам, необразованным людям, не знающим пределов.

Поделим 237 на 5. Нет, не нужно запускать «Калькулятор». Давайте лучше вспомним среднюю (или даже начальную?) школу и просто поделим столбиком:

Ну как, вспомнили? Тогда можно и к делу переходить.

Понятие «дробь» в математике имеет два значения:

  1. Нецелое число.
  2. Форма записи нецелого числа.
Существует два вида дробей - в смысле, две формы записи нецелых чисел:
  1. Простые (или вертикальные ) дроби, вроде 1/2 или 237/5.
  2. Десятичные дроби, например, 0,5 или 47,4.
Заметим, что вообще само использование дроби-записи не означает, что записанное есть дробь-число, например 3/3 или 7,0 - не дроби в первом смысле слова, но во втором, конечно, дроби.
В математике, вообще искони принят счёт десятичный, а потому и десятичные дроби удобнее простых, т. е. дробь с десятичным знаменателем (Владимир Даль. Толковый словарь живого великорусского языка. «Десять»).
А раз так, то хочется всякую дробь вертикальную сделать десятичной («горизонтальной»). А для этого нужно просто-напросто числитель поделить на знаменатель. Возьмём, например, дробь 1/3 и попробуем сделать из неё десятичную.

Даже совсем необразованный заметит: сколько ни дели - не разделится: так и будут тройки до бесконечности появляться. Так и запишем: 0,33... Имеем в виду при этом «число, которое получается, когда делишь 1 на 3», или, короче, «одна третья». Естественно, что одна третья - дробь в первом смысле слова, а «1/3» и «0,33...» - дроби во втором смысле слова, то есть формы записи числа, которое находится на числовой прямой на таком расстоянии от нуля, что если трижды его отложить, получится единица.

Теперь попробуем разделить 5 на 6:

Снова запишем: 0,833... Имеем в виду «число, которое получается, когда делишь 5 на 6», или, короче, «пять шестых». Однако, тут возникает путаница: имеется ли в виду 0,83333 (и дальше тройки повторяются), или же 0,833833 (и дальше 833 повторяется). Поэтому запись с многоточием нас не устраивает: непонятно, откуда начинается повтряющаяся часть (она называется «период»). Поэтому период мы будем брать в скобки, вот так: 0,(3); 0,8(3).

0,(3) не просто равно одной третьей, это есть одна третья, ведь мы специально эту запись придумали, чтобы представлять это число в виде десятичной дроби.

Эта запись и называется бесконечной периодической дробью , или просто периодической дробью.

Всегда, когда мы делим одно число на другое, если не получается дробь конечная, то получается дробь бесконечная периодическая, то есть обязательно когда-нибудь последовательности цифр начнут повторяться. Почему это так можно понять чисто умозрительно, посмотрев внимательно на алгоритм деления столбиком:

В местах, обозначенных галочками, не могут всё время получаться разные пары чисел (потому, что таких пар в принципе конечное множество). А как только там появится такая пара, которая уже была, разность тоже будет такой же - и дальше весь процесс начнёт повторяться. Нет нужды проверять это, ведь совершенно очевидно, что при повторении тех же действий результаты будут те же.

Теперь, когда мы хорошо понимаем суть периодической дроби, давайте попробуем умножить одну треть на три. Да, получится, конечно, один, но давайте запишем эту дробь в десятичной форме и умножим столбиком (двусмыслицы из-за многоточия здесь не возникает, так как все цифры после запятой одинаковые):

И снова мы замечаем, что всё время будут после запятой появляться девятки, девятки и девятки. То есть, используя, обратно, скобочную запись, мы получим 0,(9). Поскольку мы знаем, что произведение одной трети и трёх есть единица, то 0,(9) - это такая вот причудливая форма записи единицы. Однако использовать такую форму записи нецелесообразно, ведь единица прекрасно записывается и без использования периода, вот так: 1.

Как видим, 0,(9) - это один из тех случаев, когда целое число записано в форме дроби, вроде 3/3 или 7,0. То есть, 0,(9) - это дробь лишь во втором смысле слова, но никак не в первом.

Вот так, безо всяких пределов и рядов мы разобрались с тем, что такое 0,(9) и как с ним бороться.

Но всё же вспомним о том, что на самом-то деле мы умные и изучали анализ. Действительно, трудно отрицать, что:

Но, пожалуй, никто не будет спорить и с тем, что:

Всё это, конечно, верно. Действительно, 0,(9) является и суммой приведённого ряда, и удвоенным синусом указанного угла, и натуральным логарифмом числа Эйлера.

Но ни то, ни другое, ни третье не является определением.

Утверждать, что 0,(9) - сумма бесконечного ряда 9/(10 n), при n от единицы, - это всё равно, что утверждать, что синус - это сумма бесконечного ряда Тейлора:

Это совершенно верно , и это является важнейшим фактом для вычислительной математики, но это не определение, и, что самое главное, это ничуть не приближает человека к пониманию сути синуса. Суть же синуса некоторого угла состоит в том, что это всего навсего отношение противолежащего углу катета к гипотенузе.

Дак вот, периодическая дробь - это всего навсего десятичная дробь, которая получается, когда при делении столбиком один и тот же набор цифр повторется. Анализа тут нет и в помине.

И вот тут-то возникает вопрос: откуда вообще мы взяли число 0,(9)? Что на что мы делим столбиком, чтобы его получить? Действительно, нет таких чисел, при делении которых друг на друга столбиком мы бы имели бесконечно появляющиеся девятки. Но нам же удалось получить это число, умножая столбиком 0,(3) на 3? Не совсем. Ведь умножать нужно справа налево, чтобы корректно учитывать переносы разрядов, а мы это делали слева направо, хитро воспользовавшись тем, что переносов нигде всё равно не возникает. Поэтому правомерность записи 0,(9) зависит от того, признаём ли мы правомерность такого умножения столбиком или нет.

Следовательно, можно вообще сказать, что запись 0,(9) некорректна - и в определённой степени быть правым. Однако, поскольку нотация a ,(b ) принята, то просто некрасиво отказываться от неё при b = 9; лучше определиться с тем, что такая запись означает. Так что, если мы вообще принимаем запись 0,(9), то эта запись, конечно, означает число один.

Осталось лишь добавить, что если бы мы использовали, скажем, троичную систему счисления, то при делении столбиком единицы (1 3) на тройку (10 3) получилось бы 0,1 3 (читается «ноль целых одна третья»), а при делении единицы на двойку получилось бы 0,(1) 3 .

Так что периодичность дроби-записи - это не объективная какая-то характеристика дроби-числа, а всего лишь побочный эффект использования той или иной системы счисления.

Известно, что если знаменатель п несократимой дроби в своем каноническом разложении имеет простой множитель не равный 2 и 5, то эта дробь не представима в виде конечной десятичной дроби. Если мы попытаемся в этом случае записать исходную несократимую дробь в виде десятичной, производя деление числителя на знаменатель, то процесс деления закончиться не может, т.к. в случае его завершения через конечное число шагов, мы получили бы в частном конечную десятичную дробь, что противоречит ранее доказанной теореме. Так что в этом случае десятичная запись положительного рационального числа а = представляется бесконечной дробью.

Например, дробь = 0,3636... . Легко заметить, что остатки при делении 4 на 11 периодически повторяются, следовательно, и десятичные знаки будут периодически повторяться, т.е. получается бесконечная периодическая десятичная дробь , которую можно записать так 0,(36).

Периодически повторяющиеся цифры 3 и 6 образуют период. Может оказаться, что между запятой и началом первого периода стоит несколько цифр. Эти цифры образуют предпериод. Например,

0,1931818... Процесс деления 17 на 88 бесконечен. Цифры 1, 9, 3 образуют предпериод; 1, 8 – период. Рассмотренные нами примеры отражают закономерность, т.е. любое положительное рациональное число представимо либо конечной, либо бесконечной периодической десятичной дробью.

Теорема 1. Пусть обыкновенная дробь несократима и в каноническом разложении знаменателя n есть простой множитель отличный от 2 и 5. Тогда обыкновенная дробь представима бесконечной периодической десятичной дробью.

Доказательство. Мы уже знаем, что процесс деления натурального числа m на натуральное число n будет бесконечным. Покажем, что он будет периодическим. В самом деле, при делении m на n будут получаться остатки, меньшие n, т.е. числа вида 1, 2, ..., (n – 1), откуда видно, что количество различных остатков конечно и потому, начиная с некоторого шага какой-то остаток повторится, что повлечет за собой повторение десятичных знаков частного, и бесконечная десятичная дробь становится периодической.

Имеют место еще две теоремы.

Теорема 2. Если в разложение знаменателя несократимой дроби на простые множители не входят цифры 2 и 5, то при обращении этой дроби в бесконечную десятичную дробь получится чистая периодическая дробь, т.е. дробь, период которой начинается сразу же после запятой.

Теорема 3. Если же в разложение знаменателя входят множители 2 (или 5) или тот и другой, то бесконечная периодическая дробь будет смешанной, т.е. между запятой и началом периода будет несколько цифр (предпериод), а именно столько, каков больший из показателей степеней множителей 2 и 5.

Теоремы 2 и 3 предлагается доказать читателю самостоятельно.

28. Способы перехода от бесконечных периодических
десятичных дробей к дробям обыкновенным

Пусть дана периодическая дробь а = 0,(4), т.е. 0,4444... .

Умножим а на 10, получим

10а = 4,444…4…Þ 10а = 4 + 0,444….

Т.е. 10а = 4 + а , получили уравнение относительно а , решив его, получим: 9а = 4 Þ а = .

Замечаем, что 4 – одновременно и числитель полученной дроби и период дроби 0,(4).

Правило обращения в обыкновенную дробь чистой периодической дроби формулируется так: числитель дроби равен периоду, а знаменатель состоит из такого числа девяток, сколько цифр в периоде дроби.

Докажем теперь это правило для дроби, период которой состоит из п

а = . Умножим а на 10 n , получим:

10 n × а = = + 0, ;

10 n × а = + a ;

(10 n – 1) а = Þ a = = .

Итак, сформулированное ранее правило, доказано для любой чистой периодической дроби.

Пусть теперь дана дробь а = 0,605(43) – смешанная периодическая. Умножим а на 10 с таким показателем, сколько цифр в предпериоде, т.е. на 10 3 , получим

10 3 × а = 605 + 0,(43) Þ 10 3 × а = 605 + = 605 + = = ,

т.е. 10 3 × а = .

Правило обращения в обыкновенную дробь смешанной периодической дроби формулируется так: числитель дроби равен разности между числом, записанным цифрами, стоящими до начала второго периода, и числом, записанным цифрами стоящими до начала первого периода, знаменатель состоит из такого числа девяток, сколько цифр в периоде и такого числа нулей сколько цифр стоит до начала первого периода.

Докажем теперь это правило для дроби, предпериод которой состоит из п цифр, а период из к цифр. Пусть дана периодическая дробь

Обозначим в = ; r = ,

с = ; тогда с = в × 10 к + r .

Умножим а на 10 с таким показателем степени сколько цифр в предпериоде, т.е. на 10 n , получим:

а ×10 n = + .

Учитывая введенные выше обозначения запишем:

а× 10 n = в + .

Итак, сформулированное выше правило доказано для любой смешанной периодической дроби.

Всякая бесконечная периодическая десятичная дробь является формой записи некоторого рационального числа.

В целях однообразия иногда конечную десятичную дробь также считают бесконечной периодической десятичной дробью с периодом «нуль». Например, 0,27 = 0,27000...; 10,567 = 10,567000...; 3 = 3,000... .

Теперь становится справедливым такое утверждение: всякое рациональное число можно (и притом единственным образом) выразить бесконечной десятичной периодической дробью и всякая бесконечная периодическая десятичная дробь выражает ровно одно рациональное число (периодические десятичные дроби с периодом 9 при этом не рассматриваются).

Тот факт, что многие квадратные корни являются иррациональными числами , нисколько не умаляет их значения, в частности, число $\sqrt2$ очень часто используется в различных инженерных и научных расчетах. Это число можно вычислить с той точностью, которая необходима в каждом конкретном случае. Вы можете получить это число с таким количеством знаков после запятой, на которое у вас хватит терпения.

Например, число $\sqrt2$ можно определить с точностью до шести десятичных знаков: $\sqrt2=1,414214$. Эта величина не очень сильно отличается от истинного значения, поскольку $1,414214 \times 1,414214=2,000001237796$. Этот ответ отличается от 2 на величину, едва превышающую одну миллионную. Поэтому значение $\sqrt2$, равное $1,414214$, считается вполне приемлемым для решения большинства практических задач. В том случае, когда требуется большая точность, нетрудно получить столько значащих цифр после запятой, сколько необходимо в данном случае.

Однако если вы проявите редкостное упрямство и попробуете извлекать квадратный корень из числа $\sqrt2$ до тех пор, пока не добьетесь точного результата, вы никогда не закончите своей работы. Это бесконечный процесс. Сколько бы десятичных знаков после запятой вы ни получили, всегда останется еще несколько.

Этот факт может поразить вас так же сильно, как и превращение $\frac13$ в бесконечную десятичную дробь $0,333333333…$ и так бесконечно или превращение $\frac17$ в $0,142857142857142857…$ и так далее бесконечно. На первый взгляд может показаться, что эти бесконечные и иррациональные квадратные корни - это явления одного порядка, но это совсем не так. Ведь у этих бесконечных дробей есть дробный эквивалент, в то время как у $\sqrt2$ такого эквивалента нет. А почему, собственно? Дело в том, что десятичным эквивалентом $\frac13$ и $\frac17$, а также бесконечного числа других дробей являются периодические бесконечные дроби.

В то же время десятичный эквивалент $\sqrt2$ является непериодической дробью. Это утверждение справедливо также для любого иррационального числа.

Проблема заключается в том, что любая десятичная дробь, которая является приближенным значением корня квадратного из 2, представляет собой непериодическую дробь . Как далеко мы ни продвинемся в расчетах, любая дробь, которую мы получим, будет непериодической.

Представьте себе дробь с огромным количеством непериодических цифр после запятой. Если вдруг после миллионной цифры вся последовательность десятичных знаков повторится, значит, десятичная дробь - периодическая и для нее существует эквивалент в виде отношения целых чисел. Если у дроби с огромным количеством (миллиарды или миллионы) непериодических десятичных знаков в какой-то момент появляется бесконечная серия повторяющихся цифр, например $…55555555555…$, это также означает, что данная дробь - периодическая и для нее существует эквивалент в виде отношения целых чисел.

Однако в случае их десятичные эквиваленты полностью непериодические и не могут превратиться в периодические.

Разумеется, вы можете задать следующий вопрос: «А кто может знать и сказать наверняка, что происходит с дробью, скажем, после триллионного знака? Кто может гарантировать, что дробь не станет периодической?» Существуют способы неопровержимо доказать, что иррациональные числа являются непериодическими, но такие доказательства требуют сложного математического аппарата. Но если бы вдруг оказалось, что иррациональное число становится периодической дробью , это означало бы полный крах основ математических наук. И на самом деле это вряд ли возможно. Это вам не просто на костяшки перекидывать со стороны на сторону, здесь сложная математическая теория.

Помните, как в самом первом уроке про десятичные дроби я говорил, что существуют числовые дроби, не представимые в виде десятичных (см. урок «Десятичные дроби »)? Мы еще учились раскладывать знаменатели дробей на множители, чтобы проверить, нет ли там чисел, отличных от 2 и 5.

Так вот: я наврал. И сегодня мы научимся переводить абсолютно любую числовую дробь в десятичную. Заодно познакомимся с целым классом дробей с бесконечной значащей частью.

Периодическая десятичная дробь - это любая десятичная дробь, у которой:

  1. Значащая часть состоит из бесконечного количества цифр;
  2. Через определенные интервалы цифры в значащей части повторяются.

Набор повторяющихся цифр, из которых состоит значащая часть, называется периодической частью дроби, а количество цифр в этом наборе - периодом дроби. Остальной отрезок значащей части, который не повторяется, называется непериодической частью.

Поскольку определений много, стоит подробно рассмотреть несколько таких дробей:

Эта дробь встречается в задачах чаще всего. Непериодическая часть: 0; периодическая часть: 3; длина периода: 1.

Непериодическая часть: 0,58; периодическая часть: 3; длина периода: снова 1.

Непериодическая часть: 1; периодическая часть: 54; длина периода: 2.

Непериодическая часть: 0; периодическая часть: 641025; длина периода: 6. Для удобства повторяющиеся части отделены друг от друга пробелом - в настоящем решении так делать не обязательно.

Непериодическая часть: 3066; периодическая часть: 6; длина периода: 1.

Как видите, определение периодической дроби основано на понятии значащей части числа . Поэтому если вы забыли что это такое, рекомендую повторить - см. урок « ».

Переход к периодической десятичной дроби

Рассмотрим обыкновенную дробь вида a /b . Разложим ее знаменатель на простые множители. Возможны два варианта:

  1. В разложении присутствуют только множители 2 и 5. Эти дроби легко приводятся к десятичным - см. урок «Десятичные дроби ». Такие нас не интересуют;
  2. В разложении присутствует что-то еще, кроме 2 и 5. В этом случае дробь непредставима в виде десятичной, зато из нее можно сделать периодическую десятичную дробь.

Чтобы задать периодическую десятичную дробь, надо найти ее периодическую и непериодическую часть. Как? Переведите дробь в неправильную, а затем разделите числитель на знаменатель «уголком».

При этом будет происходить следующее:

  1. Сначала разделится целая часть , если она есть;
  2. Возможно, будет несколько чисел после десятичной точки;
  3. Через некоторое время цифры начнут повторяться .

Вот и все! Повторяющиеся цифры после десятичной точки обозначаем периодической частью, а то, что стоит спереди - непериодической.

Задача. Переведите обыкновенные дроби в периодические десятичные:

Все дроби без целой части, поэтому просто делим числитель на знаменатель «уголком»:

Как видим, остатки повторяются. Запишем дробь в «правильном» виде: 1,733 ... = 1,7(3).

В итоге получается дробь: 0,5833 ... = 0,58(3).

Записываем в нормальном виде: 4,0909 ... = 4,(09).

Получаем дробь: 0,4141 ... = 0,(41).

Переход от периодической десятичной дроби к обыкновенной

Рассмотрим периодическую десятичную дробь X = abc (a 1 b 1 c 1). Требуется перевести ее в классическую «двухэтажную». Для этого выполним четыре простых шага:

  1. Найдите период дроби, т.е. подсчитайте, сколько цифр находится в периодической части. Пусть это будет число k ;
  2. Найдите значение выражения X · 10 k . Это равносильно сдвигу десятичной точки на полный период вправо - см. урок «Умножение и деление десятичных дробей »;
  3. Из полученного числа надо вычесть исходное выражение. При этом периодическая часть «сжигается», и остается обычная дробь ;
  4. В полученном уравнении найти X . Все десятичные дроби переводим в обыкновенные.

Задача. Приведите к обыкновенной неправильной дроби числа:

  • 9,(6);
  • 32,(39);
  • 0,30(5);
  • 0,(2475).

Работаем с первой дробью: X = 9,(6) = 9,666 ...

В скобках содержится лишь одна цифра, поэтому период k = 1. Далее умножаем эту дробь на 10 k = 10 1 = 10. Имеем:

10X = 10 · 9,6666 ... = 96,666 ...

Вычитаем исходную дробь и решаем уравнение:

10X − X = 96,666 ... − 9,666 ... = 96 − 9 = 87;
9X = 87;
X = 87/9 = 29/3.

Теперь разберемся со второй дробью. Итак, X = 32,(39) = 32,393939 ...

Период k = 2, поэтому умножаем все на 10 k = 10 2 = 100:

100X = 100 · 32,393939 ... = 3239,3939 ...

Снова вычитаем исходную дробь и решаем уравнение:

100X − X = 3239,3939 ... − 32,3939 ... = 3239 − 32 = 3207;
99X = 3207;
X = 3207/99 = 1069/33.

Приступаем к третьей дроби: X = 0,30(5) = 0,30555 ... Схема та же самая, поэтому я просто приведу выкладки:

Период k = 1 ⇒ умножаем все на 10 k = 10 1 = 10;

10X = 10 · 0,30555 ... = 3,05555 ...
10X − X = 3,0555 ... − 0,305555 ... = 2,75 = 11/4;
9X = 11/4;
X = (11/4) : 9 = 11/36.

Наконец, последняя дробь: X = 0,(2475) = 0,2475 2475 ... Опять же, для удобства периодические части отделены друг от друга пробелами. Имеем:

k = 4 ⇒ 10 k = 10 4 = 10 000;
10 000X = 10 000 · 0,2475 2475 = 2475,2475 ...
10 000X − X = 2475,2475 ... − 0,2475 2475 ... = 2475;
9999X = 2475;
X = 2475: 9999 = 25/101.


Эта статья про десятичные дроби . Здесь мы разберемся с десятичной записью дробных чисел, введем понятие десятичной дроби и приведем примеры десятичных дробей. Дальше поговорим о разрядах десятичных дробей, дадим названия разрядов. После этого остановимся на бесконечных десятичных дробях, скажем о периодических и непериодических дробях. Дальше перечислим основные действия с десятичными дробями. В заключение установим положение десятичных дробей на координатном луче.

Навигация по странице.

Десятичная запись дробного числа

Чтение десятичных дробей

Скажем пару слов о правилах чтения десятичных дробей.

Десятичные дроби, которым соответствуют правильные обыкновенные дроби, читаются также как и эти обыкновенные дроби, только еще предварительно добавляется «ноль целых». Например, десятичной дроби 0,12 отвечает обыкновенная дробь 12/100 (читается «двенадцать сотых»), поэтому, 0,12 читается как «нуль целых двенадцать сотых».

Десятичные дроби, которым соответствуют смешанные числа, читаются абсолютно также как эти смешанные числа. Например, десятичной дроби 56,002 соответствует смешанное число , поэтому, десятичная дробь 56,002 читается как «пятьдесят шесть целых две тысячных».

Разряды в десятичных дробях

В записи десятичных дробей, также как и в записи натуральных чисел, значение каждой цифры зависит от ее позиции. Действительно, цифра 3 в десятичной дроби 0,3 означает три десятых, в десятичной дроби 0,0003 – три десяти тысячных, а в десятичной дроби 30 000,152 – три десятка тысяч. Таким образом, мы можем говорить о разрядах в десятичных дробях , так же как и о разрядах в натуральных числах .

Названия разрядов в десятичной дроби до десятичной запятой полностью совпадают с названиями разрядов в натуральных числах. А названия разрядов в десятичной дроби после запятой видны из следующей таблицы.

Например, в десятичной дроби 37,051 цифра 3 находится в разряде десятков, 7 – в разряде единиц, 0 стоит в разряде десятых, 5 – в разряде сотых, 1 – в разряде тысячных.

Разряды в десятичной дроби также различаются по старшинству. Если в записи десятичной дроби двигаться от цифры к цифре слева на право, то мы будем перемещаться от старших к младшим разрядам . Например, разряд сотен старше разряда десятых, а разряд миллионных младше разряда сотых. В данной конечной десятичной дроби можно говорить о старшем и младшем разряде. К примеру, в десятичной дроби 604,9387 старшим (высшим) разрядом является разряд сотен, а младшим (низшим) - разряд десятитысячных.

Для десятичных дробей имеет место разложение по разрядам. Оно аналогично разложению по разрядам натуральных чисел . Например, разложение по разрядам десятичной дроби 45,6072 таково: 45,6072=40+5+0,6+0,007+0,0002 . А свойства сложения от разложения десятичной дроби по разрядам позволяют перейти к другим представлениям этой десятичной дроби, например, 45,6072=45+0,6072 , или 45,6072=40,6+5,007+0,0002 , или 45,6072=45,0072+0,6 .

Конечные десятичные дроби

До этого момента мы говорили лишь о десятичных дробях, в записи которых после десятичной запятой находится конечное число цифр. Такие дроби называют конечными десятичными дробями.

Определение.

Конечные десятичные дроби – это десятичные дроби, в записях которых содержится конечное число знаков (цифр).

Приведем несколько примеров конечных десятичных дробей: 0,317 , 3,5 , 51,1020304958 , 230 032,45 .

Однако не всякая обыкновенная дробь может быть представлена в виде конечной десятичной дроби. К примеру, дробь 5/13 не может быть заменена равной ей дробью с одним из знаменателей 10, 100, … , следовательно, не может быть переведена в конечную десятичную дробь. Подробнее об этом мы поговорим в разделе теории перевод обыкновенных дробей в десятичные дроби .

Бесконечные десятичные дроби: периодические дроби и непериодические дроби

В записи десятичной дроби после запятой можно допустить возможность наличия бесконечного количества цифр. В этом случае мы придем к рассмотрению так называемых бесконечных десятичных дробей.

Определение.

Бесконечные десятичные дроби – это десятичные дроби, в записи которых находится бесконечное множество цифр.

Понятно, что бесконечные десятичные дроби мы не можем записать в полном виде, поэтому в их записи ограничиваются лишь некоторым конечным числом цифр после запятой и ставят многоточие, указывающее на бесконечно продолжающуюся последовательность цифр. Приведем несколько примеров бесконечных десятичных дробей: 0,143940932… , 3,1415935432… , 153,02003004005… , 2,111111111… , 69,74152152152… .

Если внимательно посмотреть на две последние бесконечные десятичные дроби, то в дроби 2,111111111… хорошо видна бесконечно повторяющаяся цифра 1 , а в дроби 69,74152152152… , начиная с третьего знака после запятой, отчетливо видна повторяющаяся группа цифр 1 , 5 и 2 . Такие бесконечные десятичные дроби называют периодическими.

Определение.

Периодические десятичные дроби (или просто периодические дроби ) – это бесконечные десятичные дроби, в записи которых, начиная с некоторого знака после запятой, бесконечно повторяется какая-нибудь цифра или группа цифр, которую называют периодом дроби .

Например, периодом периодической дроби 2,111111111… является цифра 1 , а периодом дроби 69,74152152152… является группа цифр вида 152 .

Для бесконечных периодических десятичных дробей принята особая форма записи. Для краткости условились период записывать один раз, заключая его в круглые скобки. Например, периодическая дробь 2,111111111… записывается как 2,(1) , а периодическая дробь 69,74152152152… записывается как 69,74(152) .

Стоит отметить, что для одной и той же периодической десятичной дроби можно указать различные периоды. Например, периодическую десятичную дробь 0,73333… можно рассматривать как дробь 0,7(3) с периодом 3 , а также как дробь 0,7(33) с периодом 33 , и так далее 0,7(333), 0,7(3333), … Также на периодическую дробь 0,73333… можно посмотреть и так: 0,733(3) , или так 0,73(333) и т.п. Здесь, чтобы избежать многозначности и разночтений, условимся рассматривать в качестве периода десятичной дроби самую короткую из всех возможных последовательностей повторяющихся цифр, и начинающуюся с самой близкой позиции к десятичной запятой. То есть, периодом десятичной дроби 0,73333… будем считать последовательность из одной цифры 3 , и периодичность начинается со второй позиции после запятой, то есть, 0,73333…=0,7(3) . Еще пример: периодическая дробь 4,7412121212… имеет период 12 , периодичность начинается с третьей цифры после запятой, то есть, 4,7412121212…=4,74(12) .

Бесконечные десятичные периодические дроби получаются при переводе в десятичные дроби обыкновенных дробей, знаменатели которых содержат простые множители, отличные от 2 и 5 .

Здесь же стоит сказать о периодических дробях с периодом 9 . Приведем примеры таких дробей: 6,43(9) , 27,(9) . Эти дроби являются другой записью периодических дробей с периодом 0 , и их принято заменять периодическими дробями с периодом 0 . Для этого период 9 заменяют периодом 0 , а значение следующего по старшинству разряда увеличивают на единицу. Например, дробь с периодом 9 вида 7,24(9) заменяется периодической дробью с периодом 0 вида 7,25(0) или равной ей конечной десятичной дробью 7,25 . Еще пример: 4,(9)=5,(0)=5 . Равенство дроби с периодом 9 и соответствующей ей дроби с периодом 0 легко устанавливается, после замены этих десятичных дробей равными им обыкновенными дробями.

Наконец, повнимательнее рассмотрим бесконечные десятичные дроби, в записи которых отсутствует бесконечно повторяющаяся последовательность цифр. Их называют непериодическими.

Определение.

Непериодические десятичные дроби (или просто непериодические дроби ) – это бесконечные десятичные дроби, не имеющие периода.

Иногда непериодические дроби имеют вид, схожий с видом периодических дробей, например, 8,02002000200002… - непериодическая дробь. В этих случаях следует быть особо внимательными, чтобы заметить разницу.

Отметим, что непериодические дроби не переводятся в обыкновенные дроби, бесконечные непериодические десятичные дроби представляют иррациональные числа .

Действия с десятичными дробями

Одним из действий с десятичными дробями является сравнение, также определены четыре основных арифметических действия с десятичными дробями : сложение, вычитание, умножение и деление. Рассмотрим отдельно каждое из действий с десятичными дробями.

Сравнение десятичных дробей по сути базируется на сравнении обыкновенных дробей , отвечающих сравниваемым десятичным дробям. Однако перевод десятичных дробей в обыкновенные является достаточно трудоемким действием, да и бесконечные непериодические дроби не могут быть представлены в виде обыкновенной дроби, поэтому удобно использовать поразрядное сравнение десятичных дробей. Поразрядное сравнение десятичных дробей аналогично сравнению натуральных чисел . Для получения более детальной информации рекомендуем изучить материал статьи сравнение десятичных дробей, правила, примеры, решения .

Переходим к следующему действию - умножению десятичных дробей . Умножение конечных десятичных дробей проводится аналогично вычитание десятичных дробей, правила, примеры, решения умножению столбиком натуральных чисел. В случае периодических дробей умножение можно свести к умножению обыкновенных дробей . В свою очередь умножение бесконечных непериодических десятичных дробей после их округления сводится к умножению конечных десятичных дробей. Рекомендуем к дальнейшему изучению материал статьи умножение десятичных дробей, правила, примеры, решения .

Десятичные дроби на координатном луче

Между точками и десятичными дробями существует взаимно однозначное соответствие.

Разберемся, как строятся точки на координатном луче, соответствующие данной десятичной дроби.

Конечные десятичные дроби и бесконечные периодические десятичные дроби мы можем заменить равными им обыкновенными дробями, после чего построить соответствующие обыкновенные дроби на координатном луче . Например, десятичной дроби 1,4 отвечает обыкновенная дробь 14/10 , поэтому точка с координатой 1,4 удалена от начала отсчета в положительном направлении на 14 отрезков, равных десятой доле единичного отрезка.

Десятичные дроби можно отмечать на координатном луче, отталкиваясь от разложения данной десятичной дроби по разрядам. Например, пусть нам нужно построить точку с координатой 16,3007 , так как 16,3007=16+0,3+0,0007 , то в данную точку можно попасть, последовательно откладывая от начала координат 16 единичных отрезков, 3 отрезка, длина которых равна десятой доле единичного, и 7 отрезков, длина которого равна десятитысячной доле единичного отрезка.

Такой способ построения десятичных чисел на координатном луче позволяет сколь угодно близко приблизиться к точке, отвечающей бесконечной десятичной дроби.

Иногда возможно точно построить точку, соответствующую бесконечной десятичной дроби. Например, , тогда этой бесконечной десятичной дроби 1,41421… соответствует точка координатного луча, удаленная от начала координат на длину диагонали квадрата со стороной 1 единичный отрезок.

Обратный процесс получения десятичной дроби, соответствующей данной точке на координатном луче, представляет собой так называемое десятичное измерение отрезка . Разберемся, как оно проводится.

Пусть наша задача заключается в том, чтобы попасть из начала отсчета в данную точку координатной прямой (или бесконечно приблизиться к ней, если попасть в нее не получается). При десятичном измерении отрезка мы можем последовательно откладывать от начала отсчета любое количество единичных отрезков, далее отрезков, длина которых равна десятой доле единичного, затем отрезков, длина которых равна сотой доле единичного, и т.д. Записывая количество отложенных отрезков каждой длины, мы получим десятичную дробь, соответствующую данной точке на координатном луче.

К примеру, чтобы попасть в точку М на приведенном выше рисунке, нужно отложить 1 единичный отрезок и 4 отрезка, длина которых равна десятой доле единичного. Таким образом, точке М соответствует десятичная дробь 1,4 .

Понятно, что точкам координатного луча, в которые невозможно попасть в процессе десятичного измерения, соответствуют бесконечные десятичные дроби.

Список литературы.

  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.