Роль неорганических веществ в жизни живых организмов. Химические элементы в организме человека

Химический состав клетки

Минеральные соли

вода .
хороший растворитель

Гидрофильными (от греч. гидро - вода и филео

Гидрофобными (от греч. гидро - вода и фобос

упругость

Вода. Вода-универсальный растворитель гидрофильными. 2- гидрофобными. .3- теплоемкостью. 4- Вода характеризуется 5- 6- Вода обеспечивает передвижение веществ 7- У растений вода определяет тургор опорные функции, 8- Вода - составная часть смазывающих жидкостей слизей

Минеральные соли. потенциала действия ,

Физико-химические свойства воды как основной среды в организме человека.

Из неорганических веществ, входящих в состав клетки, важнейшим является вода. Количество ее составляет от 60 до 95% общей массы клетки. Вода играет важнейшую роль в жизни клеток и живых организмов в целом. Помимо того что она входит в их состав, для многих организмов это еще и среда обитания. Роль воды в клетке определяется ее уникальными химическими и физическими свойствами, связанными главным образом с малыми размерами молекул, с полярностью ее молекул и с их способностью образовывать друг с другом водородные связи.

Липиды. Функции липидов в организме человека.

Липиды - большая группа веществ биологического происхождения, хорошо растворимых в органических растворителях, таких, как метанол, ацетон, хлороформ и бензол. В то же время эти вещества нерастворимы или мало растворимы в воде. Слабая растворимость связана с недостаточным содержанием в молекулах липидов атомов с поляризующейся электронной оболочкой, таких, как О, N, S или P.

Система гуморальной регуляции физиологических функций. Принципы гум..

Гуморальная физиологическая регуляция для передачи информации использует жидкие среды организма (кровь, лимфу, цереброспинальную жидкость и т.д.) Сигналы передаются посредством химических веществ: гормонов, медиаторов, биологически активных веществ (БАВ), электролитов и т.д.

Особенности гуморальной регуляции: не имеет точного адресата – с током биологических жидкостей вещества могут доставляться к любым клеткам организма; скорость доставки информации небольшая – определяется скоростью тока биологических жидкостей – 0,5-5 м/с; продолжительность действия.

Передача гуморальной регуляции осуществляется током крови, лимфы, путем диффузии, нервная - поступает нервными волокнами. Гуморальный сигнал распространяется медленнее (с током крови капилляром со скоростью 0,05 мм / с), чем нервный (скорость нервной передачи составляет 130 м / с). Гуморальный сигнал не имеет такого точного адресата (работает по принципу «всем, всем, всем»), как нервный (например, нервный импульс передается сокращающихся мышц пальца). Но эта разница не существенна, поскольку клетки имеют разную чувствительность к химическим веществам. Поэтому химические вещества действуют на строго определенные клетки, то есть на те, которые способны воспринимать эту информацию. Клетки, которые обладают такой высокой чувствительностью к любому гуморального фактора, называются клетками-мишенями.
Среди гуморальных факторов выделяют вещества с узким
спектром действия, то есть направленной действием на ограниченное количество клеток-мишеней (например, окситоцин), и шире (например, адреналин), для которых имеется значительное количество клеток-мишеней.
Гуморальная регуляция используется для обеспечения реакций, не требующих высокой скорости и точности исполнения.
Гуморальная регуляция, как и нервная, всегда выполняется
замкнутым контуром регуляции, в котором все элементы связаны между собой каналами.
Что касается элемента контура прибора, который следит (СП), то в контуре гуморальной регуляции как самостоятельная структура он отсутствует. Функцию этого звена выполняет, как правило, инкреторная
клетка.
Гуморальные вещества, которые попадают в кровь или лимфу, диффундируют в межклеточную жидкость и быстро разрушаются. В связи с этим действие их может распространяться только на близко расположенные клетки-органы, то есть их влияние имеет местный характер. В противовес местным действия дистантный влияние гуморальных веществ распространяется на клетки-мишени на расстоянии.

ГОРМОНЫ ГИПОТАЛАМУСА

гормон эффект

Кортиколиберин - Стимулирует образование кортикотропина и липотропина
Гонадолиберин - Стимулирует образование лютропина и фоллитропина
Пролактолиберин - Способствует выделению пролактина
Пролактостатин - Ингибирует выделение пролактина
Соматолиберин Стимулирует секрецию гормона роста
Соматостатин - Ингибирует секрецию гормона роста и тиреотропина
Тиролиберин - Стимулирует секрецию тиреотропина и пролактина
Меланолиберин - Стимулирует секрецию меланоцит-стимулирующего гормона
Меланостатин - Ингибирует секрецию меланоцит-стимулирующего гормона

ГОРМОНЫ АДЕНОГИПОФИЗА

СТГ (соматотропин, гормон роста) - Стимулирует рост организма, синтез белка в клетках, образование глюкозы и распад липидов
Пролактин - Регулирует лактацию у млекопитающих, инстинкт выхаживания потомства, дифференцировку различных тканей
ТТГ (тиреотропин) - Регулирует биосинтез и секрецию гормонов щитовидной железы
Кортикотропин - Регулирует секрецию гормонов коры надпочечников
ФСГ (фоллитропин) и ЛГ (лютеинизирующий гормон) - ЛГ регулирует синтез женских и мужских половых гормонов, стимулирует рост и созревание фолликулов, овуляцию, образование и функционирование желтого тела в яичниках ФСГ оказывает сенсибилизирующее действие на фолликулы и клетки Лейдига к действию ЛГ, стимулирует сперматогенез

ГОРМОНЫ ЩИТОВИДНОЙ ЖЕЛЕЗЫ Выделение гормонов щитовидной железы контролируется двумя «вышестоящими» эндокринными железами. Область головного мозга, связывающая воедино нервную и эндокринную систему, называется гипоталамус. Гипоталамус получает информацию об уровне гормонов щитовидной железы и выделяет вещества, влияющие на гипофиз.Гипофиз также расположен в головном мозге в области специального углубления - турецкого седла. Он выделяет несколько десятков сложных по строению и действию гормонов, но на щитовидную железу действует только один из них -тиреотропный гормон или ТТГ. Уровень гормонов щитовидной железы в крови и сигналы от гипоталамуса стимулируют или тормозят выделение ТТГ. Например, если количество тироксина в крови маленькое, тогда про это будут знать и гипофиз и гипоталамус. Гипофиз немедленно выделит ТТГ, что активирует выброс гормонов из щитовидной железы.

Гуморальная регуляция – это координация физиологических функций организма человека через кровь, лимфу, тканевую жидкость. Гуморальная регуляция осуществляется биологически активными веществами – гормонами, которые регулируют функции организма на субклеточном, клеточном, тканевом, органном и системном уровнях и медиаторами, которые передают нервные импульсы. Гормоны образуются железами внутренней секреции (эндокринные), а также железами внешней секреции (тканевые – стенками желудка, кишечника и другие). Гормоны влияют на обмен веществ и деятельность различных органов, поступая к ним через кровь. Гормоны имеют следующие свойства: Высокую биологическую активность; Специфичность – воздействие на определенные органы, ткани, клетки; Быстро разрушаются в тканях; Размеры молекул малы, проникновения через стенки капилляров в ткани осуществляется легко.

Надпо́чечники - парные эндокринные железыпозвоночных животных и человека . В клубочковой зоне образуются гормоны, называемые минералкортикоидами . К ним относятся:Альдостерон (основной минералокортикостероидныйгормонкоры надпочечников ) Кортикостерон (малозначимый и сравнительно малоактивный глюкокортикоидныйгормон ). Минералкортикоиды повышают реабсорбцию Na + и выделение K + в почках. В пучковой зоне образуются глюкокортикоиды , к которым относятся:Кортизол . Глюкокортикоиды оказывают важное действие почти на все процессы обмена веществ. Они стимулируют образование глюкозы из жиров и аминокислот (глюконеогенез ), угнетают воспалительные , иммунные и аллергические реакции, уменьшают разрастание соединительной ткани , а также повышают чувствительность органов чувств и возбудимостьнервной системы . В сетчатой зоне производятся половые гормоны (андрогены , являющиеся веществами - предшественниками эстрогенов ). Данные половые гормоны играют роль несколько иную, чем гормоны, выделяемые половыми железами . Клетки мозгового вещества надпочечников вырабатывают катехоламины - адреналин и норадреналин . Эти гормоны повышают артериальное давление, усиливают работу сердца, расширяют просветы бронхов, увеличивают уровень сахара в крови. В состоянии покоя они постоянно выделяют небольшие количества катехоламинов. Под влиянием стрессовой ситуации секреция адреналина и норадреналина клетками мозгового слоя надпочечников резко повышается.

Мембранный потенциал покоя - это дефицит положительных электрических зарядов внутри клетки, возникающий за счёт утечки из неё положительных ионов калия и электрогенного действия натрий-калиевого насоса.

Потенциал действия (ПД). Все раздражители, действующие на клетку, вызывают в первую очередь снижение ПП; когда оно достигает критического значения (порога), возникает активный распространяющийся ответ - ПД. Амплитуда ПД примерно = 110-120 мв. Характерной особенностью ПД, отличающей его от других форм ответа клетки на раздражение, является то, что он подчиняется правилу "всё или ничего", т. е. возникает только при достижении раздражителем некоторого порогового значения, и дальнейшее увеличение интенсивности раздражителя уже не сказывается ни на амплитуде, ни на продолжительности ПД. Потенциал действия - один из важнейших компонентов процесса возбуждения. В нервных волокнах он обеспечивает проведение возбуждения от чувствительных окончаний (рецепторов ) к телу нервной клетки и от неё - к синаптическим окончаниям, расположенным на различных нервных, мышечных или железистых клетках. Проведение ПД вдоль нервных и мышечных волокон осуществляется т. н. локальными токами, или токами действия, возникающими между возбуждённым (деполяризованным) и соседними с ним покоящимися участками мембраны.

Постсинаптические потенциалы (ПСП) возникают в участках мембраны нервных или мышечных клеток, непосредственно граничащих с синаптическими окончаниями. Они имеют амплитуду порядка несколькихмв и длительность 10-15 мсек . ПСП подразделяются на возбуждающие (ВПСП) и тормозные (ТПСП).

Генераторные потенциалы возникают в мембране чувствительных нервных окончаний - рецепторов. Их амплитуда порядка нескольких мв и зависит от силы приложенного к рецептору раздражения. Ионный механизм генераторных потенциалов ещё недостаточно изучен.

Потенциал действия

Потенциалом действия называют быстрое изменение мембранного потенциала, возникающее при возбуждении нервных, мышечных и некоторых железистых клеток. В основе его возникновения лежат изменения ионной проницаемости мембраны. В развитии потенциала действия выделяют четыре последовательных периода: локальный ответ, деполяризация, реполяризация и следовые потенциалы.

Раздражимость - способность живого организма реагировать на внешнее воздействие изменением своих физико-химических и физиологических свойств. Раздражимость проявляется в изменениях текущих значений физиологических параметров, превышающих их сдвиги при покое. Раздражимость является универсальным проявлением жизнедеятельности всех биосистем. Эти изменения окружающей среды, вызывающие реакцию организма, могут включать в себя широкий репертуар реакций, начиная с диффузных реакций протоплазмы у простейших и кончая сложными, высокоспециализованными реакциями у человека. В организме человека раздражимость часто связана со свойством нервной, мышечной и железистой тканей осуществлять ответную реакцию в виде выработки нервного импульса, мышечного сокращения или секреции веществ (слюны, гормонов и т. д.). У живых организмов, лишенных нервной системы, раздражимость может проявляться в движениях. Так, амебы и другие простейшие покидают неблагоприятные растворы с высокой концентрацией соли. А растения изменяют положение побегов для максимального поглощения света (тянутся к свету). Раздражимость - фундаментальное свойство живых систем: её наличие - классический критерий, по которому отличают живое от неживого. Минимальная величина раздражителя, достаточная для проявления раздражимости, называется порогом восприятия. Явления раздражимости у растений и животных имеют много общего, хотя их проявления у растений резко отличаются от привычных форм двигательной и нервной деятельности животных

Законы раздражения возбудимых тканей: 1) закон силы – возбудимость обратно-пропорциональна пороговой силе: чем больше пороговая сила, тем меньше возбудимость. Однако для возникновения возбуждения недостаточно только действия силы раздражения. Необходимо, чтобы это раздражение длилось какое-то время; 2) закон времени действия раздражителя. При действии одной и той же силы на разные ткани потребуется разная длительность раздражения, что зависит от способности данной ткани к проявлению своей специфической деятельности, то есть возбудимости: наименьшее время потребуется для ткани с высокой возбудимостью и наибольшее время - с низкой возбудимостью. Таким образом, возбудимость обратно-пропорциональна времени действия раздражителя: чем меньше время действия раздражителя, тем больше возбудимость. Возбудимость ткани определяется не только силой и длительностью раздражения, но и скоростью (быстротой) нарастания силы раздражения, что определяется третьим законом - законом скорости нарастания силы раздражения (отношения силы раздражителя ко времени его действия): чем больше скорость нарастания силы раздражения, тем меньше возбудимость. Для каждой ткани существует своя пороговая скорость нарастания силы раздражения.

Способность ткани изменять свою специфическую деятельность в ответ на раздражение (возбудимость) находится в обратной зависимости от величины пороговой силы, времени действия раздражителя и быстроты (скорости) нарастания силы раздражения.

Критический уровень деполяризации - величина мембранного потенциала, при достижении которой возникает потенциал действия. Критический уровень деполяризации (КУД) - это такой уровень электрического потенциала мембраны возбудимой клетки, от которого локальный потенциал переходит в потенциал действия.

Локальный ответ возникает на допороговые стимулы; распространяется на 1-2 мм с затуханием; возрастает с увеличением силы стимула, т.е. подчиняется закону «силы»; суммируется – возрастает при повторных частых допороговых раздражениях 10 – 40 мВ увеличивается.

Химический механизм синаптической передачи по сравнению с электрическим более эффективно обеспечивает основные функции синапса: 1) одностороннее проведение сигнала; 2) усиление сигнала; 3) конвергенцию многих сигналов на одной постсинаптической клетке, пластичность передачи сигналов.

Химические синапсы передают два вида сигналов – возбуждающий и тормозной. В возбуждающих синапсах нейромедиа-тор, освобождаемый из пресинаптических нервных окончаний, вызывает в постсинаптической мембране возбуждающий пост-синаптический потенциал – локальную деполяризацию, а в тормозных синапсах – тормозной постсинаптический потенциал, как правило, – гиперполяризацию. Снижение сопротивления мембраны, происходящее во время тормозного постсинаптического потенциала, ведет к короткому замыканию возбуждающего постсинаптического тока, тем самым ослабляя или блокируя передачу возбуждения.

Химический состав клетки

Организмы состоят из клеток. Клетки разных организмов обладают сходным химическим составом. В клетках живых организмов встречается около 90 элементов, причем примерно 25 из обнаружены практически во всех клетках. По содержанию в клетке химические элементы подразделяются на три большие группы: макроэлементы(99%), микроэлементы(1%), ультрамикроэлементы(менее 0,001%).

К макроэлементам относятся кислород, углерод, водород, фосфор, калий, сера, хлор, кальций, магний, натрий, железо.К микроэлеметам относятся марганец, медь, цинк, йод, фтор.К ультрамикроэлементам относятся серебро, золото, бром, селен.

Недостаток какого-либо элемента может привести к заболеванию, и даже гибели организма, так как каждый элемент играет определенную роль. Макроэлементы первой группы составляют основу биополимеров - белков, углеводов, нуклеиновых кислот, а также липидов, без которых жизнь невозможна. Сера входит в состав некоторых белков, фосфор - в состав нуклеиновых кислот, железо - в состав гемоглобина, а магний - в состав хлорофилла. Кальций играет важную роль в обмене веществ.Часть химических элементов, содержащихся в клетке, входит в состав неорганических веществ - минеральных солей и воды.

Минеральные соли находятся в клетке, как правило, в виде катионов (К + , Na + , Ca 2+ , Mg 2+) и анионов (HPO 2-/4 , H 2 PO -/4 , СI - , НСО 3), соотношение которых определяет важную для жизнедеятельности клеток кислотность среды.

Из неорганических веществ в живой природе огромную роль играет вода .
Она составляет значительную массу большинства клеток. Много воды содержится в клетках мозга и эмбрионов человека: воды более 80%; в клетках жировой ткани - всего 40.% К старости содержание воды в клетках снижается. Человек, потерявший 20% воды, погибает.Уникальные свойства воды определяют ее роль в организме. Она участвует в теплорегуляции, которая обусловлена высокой теплоемкостью воды - потреблением большого количества энергии при нагревании. Вода - хороший растворитель . Благодаря полярности ее молекулы взаимодействуют с положительно и отрицательно заряженными ионами, способствуя тем самым растворению вещества. По отношению к воде все вещества клетки делятся на гидрофильные и гидрофобные.

Гидрофильными (от греч. гидро - вода и филео - люблю) называют вещества, которые растворяются в воде. К ним относят ионные соединения (например, соли) и некоторые не ионные соединения (например, сахара).

Гидрофобными (от греч. гидро - вода и фобос - страх) называют вещества, нерастворимые в воде. К ним относят, например, липиды.

Вода играет большую роль в химических реакциях, протекающих в клетке в водных растворах. Она растворяет ненужные организму продукты обмена веществ и тем самым способствует выводу их из организма. Большое содержание воды в клетке придает ей упругость . Вода способствует перемещению различных веществ внутри клетки или из клетки в клетку.

Неорганические соединения в организме человека.

Вода. Из неорганических веществ, входящих в состав клетки, важнейшим является вода. Количество ее составляет от 60 до 95% общей массы клетки. Вода играет важнейшую роль в жизни клеток и живых организмов в целом. Помимо того что она входит в их состав, для многих организмов это еще и среда обитания. Роль воды в клетке определяется ее уникальными химическими и физическими свойствами, связанными главным образом с малыми размерами молекул, с полярностью ее молекул и с их способностью образовывать друг с другом водородные связи. Вода как компонент биологических систем выполняет следующие важнейшие функции: 1- Вода-универсальный растворитель для полярных веществ, например солей, Сахаров, спиртов, кислот и др. Вещества, хорошо растворимые в воде, называются гидрофильными. 2- Неполярные вещества вода не растворяет и не смешивается с ними, поскольку не может образовывать с ними водородные связи. Нерастворимые в воде вещества называются гидрофобными. Гидрофобные молекулы или их части отталкиваются водой, а в ее присутствии притягиваются друг к другу. Такие взаимодействия играют важную роль в обеспечении стабильности мембран, а также многих белковых молекул, нуклеинов вых кислот и ряда субклеточных структур.3- Вода обладает высокой удельной теплоемкостью. 4- Вода характеризуется высокой теплотой парообразования, т. е. способностью молекул уносить с собой значительное количество тепла при одновременном охлаждении организма. 5- Для воды характерно исключительно высокое поверхностное натяжение. 6- Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма.7- У растений вода определяет тургор клеток, а у некоторых животных выполняет опорные функции, являясь гидростатическим скелетом (круглые и кольчатые черви, иглокожие).8- Вода - составная часть смазывающих жидкостей (синовиальной - в суставах позвоночных, плевральной - в плевральной полости, перикардиальной - в околосердечной сумке) и слизей (облегчают передвижение веществ по кишечнику, создают влажную среду на слизистых оболочках дыхательных путей). Она входит в состав слюны, желчи, слез, спермы и др.

Минеральные соли. В составе живых организмов современными методами химического анализа обнаружено 80 элементов периодической системы. По количественному составу их разделяют на три основные группы. Макроэлементы составляют основную массу органических и неорганических соединений, концентрация их колеблется от 60% до 0.001% массы тела (кислород, водород, углерод, азот, сера, магний, калий, натрий, железо и др.). Микроэлементы - преимущественно ионы тяжёлых металлов. Содержатся в организмах в количестве 0.001% - 0.000001% (марганец, бор, медь, молибден, цинк, йод, бром). Концентрация ультрамикроэлементов не превышает 0.000001%. Физиологическая роль их в организмах полностью ещё не выяснена. К этой группе относятся уран, радий, золото, ртуть, цезий, селен и много других редких элементов. Существенным является не только содержание, но и соотношение ионов в клетке. Разность между количеством катионов и анионов на поверхности и внутри клетки обеспечивает возникновение потенциала действия , что лежит в основе возникновения нервного и мышечного возбуждения.

Основную массу тканей живых организмов, населяющих Землю составляют органогенные элементы: кислород, углерод, водород и азот, из которых преимущественно построены органические соединения - белки, жиры, углеводы.

Введение

Я выбрала достаточно сложную тему, так как в ней сочетаются множество наук, изучение которых очень важно в мире: биология, экология, химия и т.д. Моя тема значима в курсе школьной химии и биологии. Человек очень сложный живой организм, но его изучение показалось мне довольно интересным. Я считаю, что каждый человек должен знать из чего он состоит.

Цель : подробнее изучить химические элементы, входящие в состав человека и взаимодействие их в организме.

Для достижения указанной цели были поставлены следующие задачи :

  • 1) Изучить элементарный состав живых организмов;
  • 2) Выделить основные группы химических элементов: микро- и макроэлементы;
  • 3) Определить, какие химические элементы отвечают за рост, работу мышц, нервной системы и т.д.;
  • 4) Провести лабораторные опыты, подтверждающие наличие углерода, азота и железа в организме человека.

Методы и приемы: анализ научной литературы, сравнительный анализ, синтез, классификация и обобщение отобранного материала; метод наблюдения, эксперимент (физический и химический).

Химические элементы в организме человека

Все живые организмы на Земле, в том числе и человек, находятся в тесном контакте с окружающей средой. Пищевые продукты и питьевая вода способствуют поступлению в организм практически всех химических элементов. Они повседневно вводятся в организм и выводятся из него. Анализы показали, что количество отдельных химических элементов и их соотношение в здоровом организме различных людей примерно одинаковы.

Многие учёные считают, что в живом организме не только присутствуют все химические элементы, но каждый из них выполняет определённую биологическую функцию. Достоверно установлена роль около 30 химических элементов, без которых организм человека не может нормально существовать. Эти элементы называют жизненно необходимыми. Организм человека состоит на 60% из воды, 34% приходится на органические и 6% - на неорганические вещества.

Тело человека, весящего 70 кг, состоит из:

Углерода-12,6 кг Хлора-200 граммов

Кислорода-45,5 кг Фосфора-0,7 кг

Водорода-7 кг Серы-175 граммов

Азота-2,1 кг Железа-5 граммов

Кальция-1,4 кг Фтора-100 граммов

Натрия-150 граммов Кремния-3 грамма

Калия-100 граммов Йода- 0,1 грамма

Магния-200 граммов Мышьяка-0,0005 грамма

4 кита жизни

Углерод, кислород, азот и водород - это четыре химических элемента, которые химики называют "китами химии", и которые в то же время являются основными элементами жизни. Из молекул этих четырех элементов построены не только живые белки, но вся природа вокруг нас и в нас.

В отдельности углерод - это мертвый камень. Азот, как кислород, свободный газ. Азот ничем не связан. Водород, связанный с кислородом, образует воду, а все вместе они создают Вселенную.

В своих простых соединениях - это вода на Земле, облака в атмосфере и воздух. В более сложных соединениях - это углеводы, соли, кислоты, щелочи, спирты, сахара, жиры и белковые вещества. Усложняясь еще больше, они достигают высшей стадии развития - создают жизнь.

Углерод - основа жизни.

Все органические вещества, из которых построены живые организмы, отличаются от неорганических тем, что в их основе лежит химический элемент углерод. В состав органических веществ входят и другие элементы: водород, кислород, азот, сера и фосфор. Но все они группируются вокруг углерода, который является основным центральным элементом.

Академик Ферсман назвал его основой жизни, потому что без углерода жизнь невозможна. Нет другого химического элемента с таким своеобразными свойствами, как углерод.

Однако это вовсе не означает, что углерод составляет основную массу живого вещества. В любом организме углерода имеется всего 10%, воды-80%, а остальные десять процентов приходятся на другие химические элементы, входящие в состав организма.

Характерной особенностью углерода в органических соединениях является его безграничная способность связывать в разнообразнейших сочетаниях разные элементы в атомные группы.

Немного химии

Из 92 химических элементов, известных науке в настоящее время, 81 элемент обнаружен в организме человека. Среди них выделяют 4 основных: С (углерод), Н (водород), О (кислород), N (азот), а также 8 макро- и 69 микроэлементов .

Макроэлементы

Макроэлементы - это вещества, содержание которых превышает 0,005% массы тела. Это Ca (кальций), Cl (хлор), F (фтор). K (калий), Mg (магний), Na (натрий), P (фосфор) и S (сера). Они входят в состав основных тканей - костей, крови, мышц. В сумме основные и макроэлементы составляют 99% массы тела человека.

Микроэлементы

Микроэлементы - это вещества, содержание которых не превышает 0,005% для каждого отдельно взятого элемента, а их концентрация в тканях не превышает 0,000001%. Микроэлементы также очень важны для нормальной жизнедеятельности.

Особой подгруппой микроэлементов являются ультрамикроэлементы , содержащиеся в организме в исключительно малых количествах, это золото, уран, ртуть и др.

На 70-80% организм человека состоит из воды, остальную долю составляют органические и минеральные вещества.

Органические вещества

Органические вещества могут быть образованы (или синтезированы искусственным путем) из минеральных. Основным компонентом всех органических веществ является углерод (изучение структуры, химических свойств, способов получения и практического использования различных соединений углерода составляет предмет органической химии). Углерод является единственным химическим элементом, способным образовывать огромное количество различных соединений (число этих соединений превышает 10 миллионов!). Он присутствует в составе белков, жиров и углеводов, определяющих питательную ценность нашей пищи; входит в состав всех животных организмов и растений.

Помимо углерода органические соединения часто содержат кислород, азот, иногда - фосфор, серу и другие элементы, однако многие из таких соединений обладают свойствами неорганических. Резкой грани между органическими и неорганическими веществами не существует. Основными признаками органических соединений обладают углеводороды - различные соединения углерода с водородом и их производные. Молекулы любых органических веществ содержат углеводородные фрагменты.

Изучением различных типов органических соединений, обнаруженных в живых организмах, их структуры и свойств занимается специальная наука - биохимия .

В зависимости от своей структуры органические соединения подразделяются на простые - аминокислоты, сахара и жирные кислоты, более сложные - пигменты, а также витамины и коферменты (небелковые компоненты ферментов), и самые сложные - белки и нуклеиновые кислоты.

Свойства органических веществ определяются не только строением их молекул, но и числом и характером их взаимодействий с соседними молекулами, а также взаимным пространственным расположением. Наиболее ярко эти факторы проявляются в различии свойств веществ, находящихся в разных агрегатных состояниях .

Процесс превращения веществ, сопровождающийся изменением их состава и (или) строения, называется химической реакцией . Суть этого процесса заключается в разрыве химических связей в исходных веществах и образовании новых связей в продуктах реакции. Реакция считается законченной, если вещественный состав реакционной смеси больше не изменяется.

Реакции органических соединений (органические реакции ) подчиняются общим закономерностям протекания химических реакций. Однако их ход часто более сложен, чем в случае взаимодействия неорганических соединений. Поэтому в органической химии большое внимание уделяется изучению механизмов реакций.

Минеральные вещества

Минеральных веществ в организме человека меньше, чем органических, но они также жизненно необходимы. К таким веществам относятся железо, йод, медь, цинк, кобальт, хром, молибден, никель, ванадий, селен, кремний, литий и др. Несмотря на малую потребность в количественном отношении, качественно они оказывают влияние на активность и скорость всех биохимических процессов. Без них невозможны нормальное усвоение пищи и синтез гормонов. При дефиците указанных веществ в организме человека возникают специфические нарушения, приводящие к характерным заболеваниям. Особенно важны микроэлементы детям в период интенсивного роста костей, мышц и внутренних органов. С возрастом потребность человека в минеральных веществах несколько уменьшается.

Как известно, все вещества могут быть поделены на две большие категории - минеральные и органические. Можно привести большое количество примеров неорганических, или минеральных, веществ: соль, сода, калий. Но какие типы соединений попадают во вторую категорию? Органические вещества представлены в любом живом организме.

Белки

Важнейшим примером органических веществ являются белки. В их состав входит азот, водород и кислород. Помимо них, иногда в некоторых белках также можно обнаружить атомы серы.

Белки являются одними из важнейших органических соединений, и они наиболее часто встречаются в природе. В отличие от других соединений, белкам свойственны некоторые характерные черты. Главное их свойство - это огромная молекулярная масса. Например, молекулярный вес атома спирта составляет 46, бензола - 78, а гемоглобина - 152 000. По сравнению с молекулами других веществ, белки являются настоящими великанами, содержащими в себе тысячи атомов. Иногда биологи называют их макромолекулами.

Белки являются самыми сложными из всех органических строений. Они относятся к классу полимеров. Если рассмотреть молекулу полимера под микроскопом, то можно увидеть, что она представляет собой цепь, состоящую из более простых структур. Они носят название мономеров и повторяются в полимерах множество раз.

Помимо белков существует большое количество полимеров - каучук, целлюлоза, а также обычный крахмал. Также немало полимеров создано и руками человека - капрон, лавсан, полиэтилен.

Образование белка

Как же образуются белки? Они представляют собой пример органических веществ, состав которых в живых организмах определяется генетическим кодом. При их синтезе в подавляющем большинстве случаев используются различные комбинации

Также новые аминокислоты могут образовываться уже когда белок начинает функционировать в клетке. При этом в нем встречаются только альфа-аминокислоты. Первичная структура описываемого вещества определяется последовательностью остатков аминокислотных соединений. И в большинстве случаев полипептидная цепь при образовании белка закручивается в спираль, витки которой располагаются тесно друг к другу. В результате образования водородных соединений она имеет достаточно прочную структуру.

Жиры

Другим примером органических веществ могут послужить жиры. Человеку известно немало видов жиров: сливочное масло, говяжий и рыбий жир, растительные масла. В больших количествах жиры образуются в семенах растений. Если очищенную семечку подсолнечника положить на лист бумаги и придавить, то на листе останется маслянистое пятно.

Углеводы

Не менее важными в живой природе являются углеводы. Они содержатся во всех органах растений. К классу углеводов относится сахар, крахмал, а также клетчатка. Богаты ими клубни картофеля, плоды банана. Очень легко обнаружить крахмал в картофеле. При реакции с йодом этот углевод окрашивается в синий цвет. В этом можно убедиться, если капнуть на срез картофелины немного йода.

Также несложно обнаружить и сахара - они все имеют сладкий вкус. Много углеводов этого класса содержится в плодах винограда, арбузов, дыни, яблони. Они представляют собой примеры органических веществ, которые также производятся в искусственных условиях. Например, из сахарного тростника добывается сахар.

А как образуются углеводы в природе? Самым простым примером является процесс фотосинтеза. Углеводы представляют собой органические вещества, в которых содержится цепь из нескольких углеродных атомов. Также в их состав входит несколько гидроксильных групп. В процессе фотосинтеза сахар неорганических веществ образуется из оксида углерода и серы.

Клетчатка

Еще одним примером органических веществ является клетчатка. Больше всего ее содержится в семенах хлопка, а также стеблях растений и их листьях. Клетчатка состоит их линейных полимеров, ее молекулярная масса составляет от 500 тысяч до 2 млн.

В чистом виде она представляет собой вещество, у которого отсутствует запах, вкус и цвет. Применяется оно при изготовлении фотопленки, целлофана, взрывчатки. В организме человека клетчатка не усваивается, однако является необходимой частью рациона, поскольку стимулирует работу желудка и кишечника.

Вещества органические и неорганические

Можно привести немало примеров образования органических и Вторые всегда происходят из минералов - неживых которые образуются в глубинах земли. Они входят и в состав различных горных пород.

В естественных условиях неорганические вещества образуются в процессе разрушения минералов либо органических веществ. С другой стороны, из минералов постоянно образуются вещества органические. Например, растения поглощают воду с растворенными в ней соединениями, которые в дальнейшем переходят из одной категории в другую. Живые организмы используют для питания главным образом органические вещества.

Причины разнообразия

Нередко школьникам или студентам нужно ответить на вопрос о том, в чем заключаются причины многообразия органических веществ. Главный фактор состоит в том, что атомы углерода соединяются между собой при помощи двух типов связей - простых и кратных. Также они могут образовывать цепи. Еще одной причиной является разнообразие различных химических элементов, которые входят в органические вещества. Кроме того, многообразие обусловлено и аллотропией - явлением существования одного и того же элемента в различных соединениях.

А как образуются неорганические вещества? Природные и синтетические органические вещества и их примеры изучаются как в старших классах школы, так и в профилированных высших учебных заведениях. Образование неорганических веществ - это не такой сложный процесс, как образование белков или углеводов. Например, соду с незапамятных времен люди добывали из содовых озер. В 1791 году ученый-химик Николя Леблан предложил синтезировать ее в лабораторных условиях с использованием мела, соли, а также серной кислоты. Когда-то всем привычная сегодня сода была достаточно недешевым продуктом. Для проведения опыта было необходимо прокалить поваренную соль вместе с кислотой, а затем образовавшийся сульфат прокалить вместе с известняком и древесным углем.

Другим является марганцовка, или перманганат калия. Это вещество получают в промышленных условиях. Процесс образования заключается в электролизе раствора гидроксида калия и марганцевого анода. При этом анод постепенно растворяется с образованием раствора фиолетового цвета - это и есть всем известная марганцовка.

ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ В ОРГАНИЗМЕ ЧЕЛОВЕКА (КУКУШКИН Ю. Н. , 1998), ХИМИЯ

Для организма человека определенно установлена роль около 30 химических элементов, без которых он не может нормально существовать. Эти элементы называют жизненно необходимыми. Кроме них, имеются элементы, которые в малых количествах не сказываются на функционировании организма, но при определенном содержании являются ядами.

ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ В ОРГАНИЗМЕ ЧЕЛОВЕКА

Ю. Н. КУКУШКИН

Санкт-Петербургский государственный технологический институт

ВВЕДЕНИЕ

Многим химикам известны крылатые слова, сказанные в 40-х годах текущего столетия немецкими учеными Вальтером и Идой Ноддак, что в каждом булыжнике на мостовой присутствуют все элементы Периодической системы. Вначале эти слова были встречены далеко не с единодушным одобрением. Однако, по мере того как разрабатывались все более точные методы аналитического определения химических элементов, ученые все больше убеждались в справедливости этих слов.

Если согласиться с тем, что в каждом булыжнике содержатся все элементы, то это должно быть справедливо и для живого организма. Все живые организмы на Земле, в том числе и человек, находятся в тесном контакте с окружающей средой. Жизнь требует постоянного обмена веществ в организме. Поступлению в организм химических элементов способствуют питание и потребляемая вода. В соответствии с рекомендацией диетологической комиссии Национальной академии США ежедневное поступление химических элементов с пищей должно находиться на определенном уровне (табл. 1). Столько же химических элементов должно ежесуточно выводиться из организма, поскольку их содержания находятся в относительном постоянстве.

Предположения некоторых ученых идут дальше. Они считают, что в живом организме не только присутствуют все химические элементы, но каждый из них выполняет определенную биологическую функцию. Вполне возможно, что эта гипотеза не подтвердится. Однако, по мере того как развиваются исследования в данном направлении, выявляется биологическая роль все большего числа химических элементов.

Организм человека состоит на 60% из воды, 34% приходится на органические вещества и 6% - на неорганические. Основными компонентами органических веществ являются углерод, водород, кислород, в их состав входят также азот, фосфор и сера. В неорганических веществах организма человека обязательно присутствуют 22 химических элемента: Ca, P, O, Na, Mg, S, B, Cl, K, V, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cr, Si, I, F, Se. Например, если вес человека составляет 70 кг, то в нем содержится (в граммах): кальция - 1700, калия - 250, натрия - 70, магния - 42, железа - 5, цинка - 3.

Ученые договорились, что если массовая доля элемента в организме превышает 10 -2 %, то его следует считать макроэлементом. Доля микроэлементов в организме составляет 10 -3 -10 -5 %. Если содержание элемента ниже 10 -5 %, его считаютультрамикроэлементом . Конечно, такая градация условна. По ней магний попадает в промежуточную область между макро- и микроэлементами.

Таблица 1. Суточное поступление химических элементов в организм человека

Химический элемент

Суточное поступление, мг

взрослые

Около 0,2 (витамин В 12)

ЖИЗНЕННО НЕОБХОДИМЫЕ ЭЛЕМЕНТЫ

Несомненно, время внесет коррективы в современные представления о числе и биологической роли определенных химических элементов в организме человека. В данной статье мы будем исходить из того, что уже достоверно известно. Роль макроэлементов, входящих в состав неорганических веществ, очевидна. Например, основное количество кальция и фосфора входит в кости (гидроксофосфат кальция Ca 10 (PO 4) 6 (OH) 2), а хлор в виде соляной кислоты содержится в желудочном соке.

Микроэлементы вошли в отмеченный выше ряд 22 элементов, обязательно присутствующих в организме человека. Заметим, что большинство из них - металлы, а из металлов больше половины являются d -элементами. Последние в организме образуют координационные соединения со сложными органическими молекулами. Так, установлено, что многие биологические катализаторы - ферменты содержат ионы переходных металлов (d -элементов). Например, известно, что марганец входит в состав 12 различных ферментов, железо - в 70, медь - в 30, а цинк - более чем в 100. Микроэлементы называют жизненно необходимыми, если при их отсутствии или недостатке нарушается нормальная жизнедеятельность организма. Характерным признаком необходимого элемента является колоколообразный вид кривой доза (n ) - ответная реакция (R , эффект) (рис. 1).

Рис. 1. Зависимость ответной реакции (R ) от дозы (n ) для жизненно необходимых элементов

При малом поступлении данного элемента организму наносится существенный ущерб. Он функционирует на грани выживания. В основном это объясняется снижением активности ферментов, в состав которых входит данный элемент. При повышении дозы элемента ответная реакция возрастает и достигает нормы (плато). При дальнейшем увеличении дозы проявляется токсическое действие избытка данного элемента, в результате чего не исключается и летальный исход. Кривую на рис. 1 можно трактовать так: все должно быть в меру и очень мало и очень много вредно. Например, недостаток в организме железа приводит к анемии, так как оно входит в состав гемоглобина крови, а точнее, его составной части - гема. У взрослого человека в крови содержится около 2,6 г железа. В процессе жизнедеятельности в организме происходят постоянный распад и синтез гемоглобина. Для восполнения железа, потерянного с распадом гемоглобина, человеку необходимо суточное поступление в организм с пищей в среднем около 12 мг этого элемента. Связь анемии с недостатком железа была известна врачам давно, так как еще в XVII веке в некоторых европейских странах при малокровии прописывали настой железных опилок в красном вине. Однако избыток железа в организме тоже вреден. С ним связан сидероз глаз и легких - заболевания, вызываемые отложением соединений железа в тканях этих органов. Главный регулятор содержания железа в крови - печень.

Недостаток в организме меди приводит к деструкции кровеносных сосудов, патологическому росту костей, дефектам в соединительных тканях. Кроме того, считают, что дефицит меди служит одной из причин раковых заболеваний. В некоторых случаях поражение легких раком у людей пожилого возраста врачи связывают с возрастным снижением содержания меди в организме. Однако избыток меди в организме приводит к нарушению психики и параличу некоторых органов (болезнь Вильсона). Человеку причиняют вред лишь относительно большие количества соединений меди. В малых дозах их используют в медицине как вяжущее и бактериостазное (задерживающее рост и размножение бактерий) средство. Так, например, сульфат меди (II) применяют при лечении конъюктивитов в виде глазных капель (25%-ный раствор), а также для прижиганий при трахоме в виде глазных карандашей (сплав сульфата меди(II), нитрата калия, квасцов и камфоры). При ожогах кожи фосфором проводят ее обильное смачивание 5%-ным раствором сульфата меди (II).

Таблица 2. Характерные симптомы дефицита химических элементов в организме человека

Дефицит элемента

Типичный симптом

Замедление роста скелета

Мускульные судороги

Анемия, нарушение иммунной системы

Повреждение кожи, замедление роста, замедление полового созревания

Слабость артерий, нарушение деятельности печени, вторичная анемия

Бесплодие, ухудшение роста скелета

Замедление клеточного роста, склонность к кариесу

Злокачественная анемия

Учащение депрессий, дерматиты

Симптомы диабета

Нарушение роста скелета

Кариес зубов

Нарушение работы щитовидной железы, замедление метаболизма

Мускульная (в частности, сердечная) слабость

Биологическая функция других щелочных металлов в здоровом организме пока неясна. Однако имеются указания, что введением в организм ионов лития удается лечить одну из форм маниакально-депрессивного психоза. Приведем табл. 2, из которой видна важная роль других жизненно необходимых элементов.

ПРИМЕСНЫЕ ЭЛЕМЕНТЫ

Имеется большое число химических элементов, особенно среди тяжелых, являющихся ядами для живых организмов, - они оказывают неблагоприятное биологическое воздействие. В табл. 3 приведены эти элементы в соответствии с Периодической системой Д.И. Менделеева.

Таблица 3.

Период

Группа

За исключением бериллия и бария, эти элементы образуют прочные сульфидные соединения. Существует мнение, что причина действия ядов связана с блокированием определенных функциональных групп (в частности, сульфгидрильных) протеина или же с вытеснением из некоторых ферментов ионов металлов, например меди и цинка. Элементы, представленные в табл. 3, называют примесными. Их диаграмма доза - эффект имеет другую форму по сравнению с жизненно необходимыми (рис. 2).

Рис. 2. Зависимость ответной реакции (R ) от дозы (n ) для примесных химических элементов До определенного содержания этих элементов организм не испытывает вредного воздействия, но при значительном увеличении концентрации они становятся ядовитыми.

Встречаются элементы, которые в относительно больших количествах являются ядами, а в низких концентрациях оказывают полезное влияние. Например, мышьяк - сильный яд, нарушающий сердечно-сосудистую систему и поражающий почки и печень, в небольших дозах полезен, и врачи прописывают его для улучшения аппетита. Кислород, необходимый человеку для дыхания, в высокой концентрации (особенно под давлением) оказывает ядовитое действие.

Из этих примеров видно, что концентрация элемента в организме играет весьма существенную, а порой и катастрофическую роль. Среди примесных элементов имеются и такие, которые в малых дозах обладают эффективными лечащими свойствами. Так, давно было замечено бактерицидное (вызывающее гибель различных бактерий) свойство серебра и его солей. Например, в медицине раствор коллоидного серебра (колларгол) применяют для промывания гнойных ран, мочевого пузыря, при хронических циститах и уретитах, а также в виде глазных капель при гнойных конъюктивитах и бленнорее. Карандаши из нитрата серебра применяют для прижигания бородавок, грануляций. В разбавленных растворах (0,1-0,25%) нитрат серебра используют как вяжущее и противомикробное средство для примочек, а также в качестве глазных капель. Ученые считают, что прижигающее действие нитрата серебра связано с его взаимодействием с белками тканей, что приводит к образованию белковых солей серебра - альбуминатов. Серебро пока не относят к жизненно необходимым элементам, однако уже экспериментально установлено его повышенное содержание в мозгу человека, в железах внутренней секреции, печени. В организм серебро поступает с растительной пищей, например с огурцами и капустой.

В статье приведена Периодическая система, в которой охарактеризована биоактивность отдельных элементов . Оценка основана на проявлении симптомов дефицита или избытка определенного элемента. Она учитывает следующие симптомы (в порядке возрастания эффекта): 1 - снижение аппетита; 2 - потребность в изменении диеты; 3 - значительные изменения состава тканей; 4 - повышенная повреждаемость одной или нескольких биохимических систем, проявляющаяся в специальных условиях; 5 - недееспособность этих систем в специальных условиях; 6 - субклинические признаки недееспособности; 7 - клинические симптомы недееспособности и повышенная повреждаемость; 8 - заторможенный рост; 9 - отсутствие репродуктивной функции. Крайней формой проявления дефицита или избытка элемента в организме является смертельный исход. Оценка биоактивности элемента сделана по девятибальной шкале в зависимости от характера симптома, для которого выявлена специфичность.

При такой оценке наиболее высоким баллом характеризуются жизненно необходимые элементы. Например, элементы водород, углерод, азот, кислород, натрий, магний, фосфор, сера, хлор, калий, кальций, марганец, железо и др. характеризуются суммой балов, равной 9.

ЗАКЛЮЧЕНИЕ

Выявление биологической роли отдельных химических элементов в функционировании живых организмов (человека, животных, растений) - важная и увлекательная задача. Минеральные вещества, как и витамины, часто действуют как коферменты при катализе химических реакций, происходящих все время в организме.

Усилия специалистов направлены на раскрытие механизмов проявления биоактивности отдельных элементов на молекулярном уровне (см. статьи Н.А. Улахновича "Комплексы металлов в живых организмах": Соросовский Образовательный Журнал. 1997. № 8. С. 27-32; Д.А. Леменовского "Соединения металлов в живой природе": Там же. № 9. С. 48-53). Нет сомнения, что в живых организмах ионы металлов находятся в основном в виде координационных соединений с "биологическими" молекулами, которые выполняют роль лигандов. В статье из-за ограниченности объема приведен материал, относящийся главным образом к организму человека. Выяснение роли металлов в жизнедеятельности растений, несомненно, окажется полезным для сельского хозяйства. Работы в этом направлении широко ведутся в лабораториях различных стран.

Весьма интересен вопрос о принципах отбора природой химических элементов для функционирования живых организмов. Не вызывает сомнения, что их распространенность не является решающим фактором. Здоровый организм сам способен регулировать содержание отдельных элементов. При наличии выбора (пищи и воды) животные инстинктивно могут вносить лепту в это регулирование. Возможности растений в данном процессе ограничены. Сознательное регулирование человеком содержания микроэлементов в почве сельскохозяйственных угодий также одна из важных задач, стоящих перед исследователями. Знания, полученные учеными в этом направлении, уже оформились в новую отрасль химической науки - бионеорганическую химию. Поэтому уместно напомнить слова выдающегося ученого XIX века А. Ампера: "Счастливы те, кто развивает науку в годы, когда она не завершена, но когда в ней уже назрел решительный поворот". Эти слова могут быть особенно полезны тем, кто стоит перед выбором профессии.

1. Ершов Ю.А., Плетенева Т.В. Механизмы токсического действия неорганических соединений. М.: Медицина, 1989.

2. Кукушкин Ю.Н. Соединения высшего порядка. Л.: Химия, 1991.

3. Кукушкин Ю.Н. Химия вокруг нас. М.: Высш. шк., 1992.

4. Лазарев Н.В. Эволюция фармакологии. Л.: Изд-во Воен.-мед. акад., 1947.

5. Неорганическая биохимия. М.: Мир, 1978. Т. 1, 2 / Под ред. Г. Эйхгорна.

6. Химия окружающей среды / Под ред. Дж.О. Бокриса. М.: Химия, 1982.

7. Яцимирский К.Б. Введение в бионеорганическую химию. Киев: Наук. думка, 1973.

8. Kaim W., Schwederski B. Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life. Chichester: John Wile and Sons, 1994. 401 p.

Юрий Николаевич Кукушкин, доктор химических наук, профессор, зав. кафедрой неорганической химии Санкт-Петербургского государственного технологического института, заслуженный деятель науки РФ, лауреат премии им. Л.А. Чугаева АН СССР, академик РАЕН. Область научных интересов - координационная химия и химия платиновых металлов. Автор и соавтор более 600 научных статей, 14 монографий, учебников и научно-популярных книг, 49 изобретений.