किसी जटिल फलन का व्युत्पन्न ज्ञात कीजिए। एक जटिल फ़ंक्शन का व्युत्पन्न

"पुरानी" पाठ्यपुस्तकों में इसे "श्रृंखला" नियम भी कहा जाता है। तो यदि y = f (u), और u = φ (x), वह है

y = f (φ (x))

    जटिल - समग्र कार्य (कार्यों की संरचना) तो

कहाँ , गणना के बाद पर विचार किया जाता है यू = φ (एक्स).



ध्यान दें कि यहां हमने समान कार्यों से "अलग-अलग" रचनाएं लीं, और भेदभाव का परिणाम स्वाभाविक रूप से "मिश्रण" के क्रम पर निर्भर हो गया।

श्रृंखला नियम स्वाभाविक रूप से तीन या अधिक कार्यों की रचनाओं तक विस्तारित होता है। इस मामले में, "श्रृंखला" में तीन या अधिक "लिंक" होंगे जो व्युत्पन्न बनाते हैं। यहाँ गुणन के साथ एक सादृश्य है: "हमारे पास" डेरिवेटिव की एक तालिका है; "वहाँ" - गुणन तालिका; "हमारे साथ" श्रृंखला नियम है और "वहाँ" "स्तंभ" गुणन नियम है। ऐसे "जटिल" डेरिवेटिव की गणना करते समय, कोई सहायक तर्क (यूवी, आदि) पेश नहीं किया जाता है, लेकिन, संरचना में शामिल कार्यों की संख्या और अनुक्रम को ध्यान में रखते हुए, संबंधित लिंक "स्ट्रंग" होते हैं। संकेतित क्रम में.

. यहां, "x" के साथ "y" का मान प्राप्त करने के लिए, पांच ऑपरेशन किए जाते हैं, यानी, पांच कार्यों की एक संरचना होती है: "बाहरी" (उनमें से अंतिम) - घातांक - ई  ; फिर उल्टे क्रम में, शक्ति। (♦) 2 ; त्रिकोणमितीय पाप(); बेहोश करना. ()3 और अंत में लघुगणकीय ln.(). इसीलिए

निम्नलिखित उदाहरणों के साथ हम "एक पत्थर से कुछ पक्षियों को मार डालेंगे": हम जटिल कार्यों को अलग करने का अभ्यास करेंगे और प्राथमिक कार्यों के डेरिवेटिव की तालिका में जोड़ देंगे। इसलिए:

4. एक पावर फ़ंक्शन के लिए - y = x α - प्रसिद्ध "बुनियादी लघुगणकीय पहचान" का उपयोग करके इसे फिर से लिखना - b=e ln b - x α = x α ln x के रूप में हम प्राप्त करते हैं

5. एक मनमाना घातांकीय फलन के लिए, हम उसी तकनीक का उपयोग करेंगे

6. एक मनमाना लघुगणकीय फ़ंक्शन के लिए, एक नए आधार पर संक्रमण के लिए प्रसिद्ध सूत्र का उपयोग करके, हम लगातार प्राप्त करते हैं

.

7. स्पर्शरेखा (कोटैंजेंट) को अलग करने के लिए, हम भागफल को अलग करने के नियम का उपयोग करते हैं:

व्युत्क्रम त्रिकोणमितीय फलनों के व्युत्पन्न प्राप्त करने के लिए, हम उस संबंध का उपयोग करते हैं जो दो परस्पर व्युत्क्रम फलनों के व्युत्पन्नों से संतुष्ट होता है, अर्थात्, संबंधों से संबंधित फलन (x) और f (x):

यह अनुपात है

परस्पर व्युत्क्रम फलनों के लिए यह इसी सूत्र से है

और
,

अंत में, आइए इन्हें और कुछ अन्य डेरिवेटिव को संक्षेप में प्रस्तुत करें जिन्हें निम्नलिखित तालिका में आसानी से प्राप्त किया जा सकता है।

प्रारंभिक तोपखाने की तैयारी के बाद, कार्यों के 3-4-5 नेस्टिंग वाले उदाहरण कम डरावने होंगे। निम्नलिखित दो उदाहरण कुछ लोगों को जटिल लग सकते हैं, लेकिन यदि आप उन्हें समझते हैं (किसी को कष्ट होगा), तो अंतर कलन में लगभग बाकी सब कुछ बच्चों के मजाक जैसा लगेगा।

उदाहरण 2

किसी फ़ंक्शन का व्युत्पन्न खोजें

जैसा कि पहले ही उल्लेख किया गया है, किसी जटिल फलन का व्युत्पन्न ज्ञात करते समय, सबसे पहले, यह आवश्यक है सहीअपने निवेश को समझें. ऐसे मामलों में जहां संदेह हैं, मैं आपको एक उपयोगी तकनीक की याद दिलाता हूं: उदाहरण के लिए, हम "x" का प्रयोगात्मक मान लेते हैं, और इस मान को "भयानक अभिव्यक्ति" में प्रतिस्थापित करने का प्रयास करते हैं (मानसिक रूप से या ड्राफ्ट में)।

1) सबसे पहले हमें अभिव्यक्ति की गणना करने की आवश्यकता है, जिसका अर्थ है कि योग सबसे गहरा एम्बेडिंग है।

2) फिर आपको लघुगणक की गणना करने की आवश्यकता है:

4) फिर कोज्या का घन करें:

5) पांचवें चरण में अंतर:

6) और अंत में, सबसे बाहरी कार्य वर्गमूल है:

किसी जटिल फ़ंक्शन को विभेदित करने का सूत्र बाहरीतम कार्य से लेकर अंतरतम तक उल्टे क्रम में लागू किया जाता है। हमने निर्णय किया:

ऐसा लगता है कि कोई त्रुटि नहीं है:

1) वर्गमूल का अवकलज लीजिए।

2) नियम का उपयोग करके अंतर का व्युत्पन्न लें

3) त्रिक का व्युत्पन्न शून्य है। दूसरे पद में हम घात (घन) का अवकलज लेते हैं।

4) कोसाइन का व्युत्पन्न लें।

6) और अंत में, हम सबसे गहरे एम्बेडिंग का व्युत्पन्न लेते हैं।

यह बहुत कठिन लग सकता है, लेकिन यह सबसे क्रूर उदाहरण नहीं है। उदाहरण के लिए, कुज़नेत्सोव के संग्रह को लें और आप विश्लेषण किए गए व्युत्पन्न की सभी सुंदरता और सादगी की सराहना करेंगे। मैंने देखा कि वे परीक्षा में इसी तरह की चीज़ देना पसंद करते हैं ताकि यह जांचा जा सके कि क्या कोई छात्र किसी जटिल फ़ंक्शन का व्युत्पन्न ढूंढना समझता है या नहीं समझता है।

निम्नलिखित उदाहरण आपके लिए स्वयं हल करने के लिए है।

उदाहरण 3

किसी फ़ंक्शन का व्युत्पन्न खोजें

संकेत: सबसे पहले हम रैखिकता नियम और उत्पाद विभेदन नियम लागू करते हैं

पाठ के अंत में पूर्ण समाधान और उत्तर।

अब कुछ छोटी और अच्छी चीज़ की ओर बढ़ने का समय आ गया है।
किसी उदाहरण में दो नहीं, बल्कि तीन कार्यों का गुणनफल दिखाना कोई असामान्य बात नहीं है। तीन कारकों के उत्पाद का व्युत्पन्न कैसे खोजें?

उदाहरण 4

किसी फ़ंक्शन का व्युत्पन्न खोजें

पहले हम देखते हैं, क्या तीन कार्यों के उत्पाद को दो कार्यों के उत्पाद में बदलना संभव है? उदाहरण के लिए, यदि हमारे उत्पाद में दो बहुपद हैं, तो हम कोष्ठक खोल सकते हैं। लेकिन विचाराधीन उदाहरण में, सभी फ़ंक्शन अलग-अलग हैं: डिग्री, घातांक और लघुगणक।

ऐसे में यह जरूरी है क्रमिक रूप सेउत्पाद विभेदन नियम लागू करें दो बार

चाल यह है कि "y" से हम दो कार्यों के उत्पाद को दर्शाते हैं:, और "ve" से हम लघुगणक को दर्शाते हैं:। ऐसा क्यों किया जा सकता है? क्या ऐसा संभव है - यह दो कारकों का उत्पाद नहीं है और नियम काम नहीं करता?! इसमें कुछ भी जटिल नहीं है:


अब नियम को दूसरी बार लागू करना बाकी है ब्रैकेट में:

आप घुमा भी सकते हैं और कोष्ठक से बाहर भी कुछ डाल सकते हैं, लेकिन इस मामले में उत्तर को बिल्कुल इसी रूप में छोड़ना बेहतर है - इसे जांचना आसान होगा।

विचारित उदाहरण को दूसरे तरीके से हल किया जा सकता है:

दोनों समाधान बिल्कुल समतुल्य हैं.

उदाहरण 5

किसी फ़ंक्शन का व्युत्पन्न खोजें

यह एक स्वतंत्र समाधान के लिए एक उदाहरण है; नमूने में इसे पहली विधि का उपयोग करके हल किया गया है।

आइए भिन्नों वाले समान उदाहरण देखें।

उदाहरण 6

किसी फ़ंक्शन का व्युत्पन्न खोजें

आप यहां कई तरीकों से जा सकते हैं:

या इस तरह:

लेकिन यदि हम पहले भागफल के विभेदन के नियम का उपयोग करें तो समाधान अधिक सघनता से लिखा जाएगा , संपूर्ण अंश के लिए लेते हुए:

सिद्धांत रूप में, उदाहरण हल हो गया है, और यदि इसे वैसे ही छोड़ दिया जाए, तो कोई त्रुटि नहीं होगी। लेकिन यदि आपके पास समय है, तो यह हमेशा सलाह दी जाती है कि ड्राफ्ट पर जांच कर लें कि क्या उत्तर को सरल बनाया जा सकता है?

आइए अंश की अभिव्यक्ति को एक सामान्य हर तक कम करें और भिन्न की तीन मंजिला संरचना से छुटकारा पाएं:

अतिरिक्त सरलीकरण का नुकसान यह है कि व्युत्पन्न खोजते समय गलती करने का जोखिम नहीं होता है, बल्कि सामान्य स्कूल परिवर्तनों के दौरान गलती होने का जोखिम होता है। दूसरी ओर, शिक्षक अक्सर असाइनमेंट को अस्वीकार कर देते हैं और व्युत्पन्न को "दिमाग में लाने" के लिए कहते हैं।

स्वयं हल करने के लिए एक सरल उदाहरण:

उदाहरण 7

किसी फ़ंक्शन का व्युत्पन्न खोजें

हम व्युत्पन्न खोजने के तरीकों में महारत हासिल करना जारी रखते हैं, और अब हम एक विशिष्ट मामले पर विचार करेंगे जब विभेदन के लिए "भयानक" लघुगणक प्रस्तावित किया जाता है

इस पाठ में हम सीखेंगे कि कैसे खोजना है एक जटिल फ़ंक्शन का व्युत्पन्न. पाठ पाठ की तार्किक निरंतरता है व्युत्पन्न कैसे खोजें?, जिसमें हमने सबसे सरल डेरिवेटिव की जांच की, और विभेदीकरण के नियमों और डेरिवेटिव खोजने के लिए कुछ तकनीकी तकनीकों से भी परिचित हुए। इस प्रकार, यदि आप फ़ंक्शंस के डेरिवेटिव के साथ बहुत अच्छे नहीं हैं या यदि इस लेख में कुछ बिंदु पूरी तरह से स्पष्ट नहीं हैं, तो पहले उपरोक्त पाठ पढ़ें। कृपया गंभीर मूड में आएँ - सामग्री सरल नहीं है, लेकिन फिर भी मैं इसे सरल और स्पष्ट रूप से प्रस्तुत करने का प्रयास करूँगा।

व्यवहार में, आपको अक्सर एक जटिल फ़ंक्शन के व्युत्पन्न से निपटना पड़ता है, मैं यहां तक ​​​​कहूंगा, लगभग हमेशा, जब आपको व्युत्पन्न खोजने के लिए कार्य दिए जाते हैं।

हम एक जटिल फ़ंक्शन को अलग करने के लिए नियम (संख्या 5) की तालिका को देखते हैं:

आइए इसका पता लगाएं। सबसे पहले, आइए प्रवेश पर ध्यान दें। यहां हमारे पास दो फ़ंक्शन हैं - और, और फ़ंक्शन, लाक्षणिक रूप से बोलते हुए, फ़ंक्शन के भीतर निहित है। इस प्रकार का एक फ़ंक्शन (जब एक फ़ंक्शन दूसरे में निहित होता है) को जटिल फ़ंक्शन कहा जाता है।

मैं फ़ंक्शन को कॉल करूंगा बाह्य कार्य, और फ़ंक्शन - आंतरिक (या नेस्टेड) ​​फ़ंक्शन.

! ये परिभाषाएँ सैद्धांतिक नहीं हैं और इन्हें असाइनमेंट के अंतिम डिज़ाइन में प्रदर्शित नहीं किया जाना चाहिए। मैं अनौपचारिक अभिव्यक्तियों "बाहरी कार्य", "आंतरिक" कार्य का उपयोग केवल आपके लिए सामग्री को समझना आसान बनाने के लिए करता हूं।

स्थिति स्पष्ट करने के लिए, विचार करें:

उदाहरण 1

किसी फ़ंक्शन का व्युत्पन्न खोजें

साइन के अंतर्गत हमारे पास केवल अक्षर "X" नहीं है, बल्कि एक संपूर्ण अभिव्यक्ति है, इसलिए तालिका से तुरंत व्युत्पन्न ढूँढना काम नहीं करेगा। हमने यह भी देखा कि पहले चार नियमों को यहां लागू करना असंभव है, इसमें अंतर प्रतीत होता है, लेकिन तथ्य यह है कि साइन को "टुकड़ों में नहीं तोड़ा जा सकता":

इस उदाहरण में, मेरे स्पष्टीकरणों से यह पहले से ही सहज रूप से स्पष्ट है कि एक फ़ंक्शन एक जटिल फ़ंक्शन है, और बहुपद एक आंतरिक फ़ंक्शन (एम्बेडिंग) और एक बाहरी फ़ंक्शन है।

पहला कदमकिसी जटिल फ़ंक्शन का व्युत्पन्न ज्ञात करते समय आपको क्या करने की आवश्यकता है समझें कि कौन सा कार्य आंतरिक है और कौन सा बाह्य है.

सरल उदाहरणों के मामले में, यह स्पष्ट प्रतीत होता है कि ज्या के नीचे एक बहुपद अंतर्निहित है। लेकिन क्या होगा अगर सब कुछ स्पष्ट नहीं है? सटीक रूप से कैसे निर्धारित करें कि कौन सा कार्य बाहरी है और कौन सा आंतरिक है? ऐसा करने के लिए, मैं निम्नलिखित तकनीक का उपयोग करने का सुझाव देता हूं, जिसे मानसिक रूप से या ड्राफ्ट में किया जा सकता है।

आइए कल्पना करें कि हमें कैलकुलेटर पर अभिव्यक्ति के मूल्य की गणना करने की आवश्यकता है (एक के बजाय कोई भी संख्या हो सकती है)।

हम पहले क्या गणना करेंगे? सबसे पहलेआपको निम्नलिखित क्रिया करने की आवश्यकता होगी: इसलिए बहुपद एक आंतरिक कार्य होगा:

दूसरेखोजने की आवश्यकता होगी, इसलिए साइन - एक बाहरी कार्य होगा:

हमारे बाद बिक गयाआंतरिक और बाह्य कार्यों के साथ, जटिल कार्यों के विभेदन के नियम को लागू करने का समय आ गया है।

आइए निर्णय लेना शुरू करें. कक्षा से व्युत्पन्न कैसे खोजें?हमें याद है कि किसी भी व्युत्पन्न के समाधान का डिज़ाइन हमेशा इस तरह से शुरू होता है - हम अभिव्यक्ति को कोष्ठक में संलग्न करते हैं और शीर्ष दाईं ओर एक स्ट्रोक लगाते हैं:

सर्वप्रथमहम बाहरी फ़ंक्शन (साइन) का व्युत्पन्न ढूंढते हैं, प्राथमिक कार्यों के व्युत्पन्न की तालिका को देखते हैं और ध्यान देते हैं कि। यदि "x" को एक जटिल अभिव्यक्ति से बदल दिया जाए तो सभी तालिका सूत्र भी लागू होते हैं, इस मामले में:

कृपया ध्यान दें कि आंतरिक कार्य नहीं बदला है, हम इसे नहीं छूते.

ख़ैर, यह बिल्कुल स्पष्ट है कि

सूत्र को लागू करने का अंतिम परिणाम इस प्रकार दिखता है:

स्थिरांक कारक आमतौर पर अभिव्यक्ति की शुरुआत में रखा जाता है:

यदि कोई ग़लतफ़हमी है, तो समाधान को कागज़ पर लिखें और स्पष्टीकरणों को दोबारा पढ़ें।

उदाहरण 2

किसी फ़ंक्शन का व्युत्पन्न खोजें

उदाहरण 3

किसी फ़ंक्शन का व्युत्पन्न खोजें

हमेशा की तरह, हम लिखते हैं:

आइए जानें कि कहां हमारा बाहरी कार्य है और कहां हमारा आंतरिक कार्य है। ऐसा करने के लिए, हम पर अभिव्यक्ति के मूल्य की गणना करने के लिए (मानसिक रूप से या ड्राफ्ट में) प्रयास करते हैं। आपको पहले क्या करना चाहिए? सबसे पहले, आपको यह गणना करने की आवश्यकता है कि आधार किसके बराबर है: इसलिए, बहुपद आंतरिक कार्य है:

और केवल तभी घातांक निष्पादित किया जाता है, इसलिए, पावर फ़ंक्शन एक बाहरी फ़ंक्शन है:

सूत्र के अनुसार, आपको सबसे पहले बाहरी फ़ंक्शन का व्युत्पन्न ढूंढना होगा, इस मामले में, डिग्री। हम तालिका में आवश्यक सूत्र की तलाश करते हैं:। हम फिर दोहराते हैं: कोई भी सारणीबद्ध सूत्र न केवल "एक्स" के लिए मान्य है, बल्कि एक जटिल अभिव्यक्ति के लिए भी मान्य है. इस प्रकार, एक जटिल फलन को विभेदित करने के नियम को लागू करने का परिणाम इस प्रकार है:

मैं फिर से इस बात पर जोर देता हूं कि जब हम बाहरी फ़ंक्शन का व्युत्पन्न लेते हैं, तो हमारा आंतरिक फ़ंक्शन नहीं बदलता है:

अब जो कुछ बचा है वह आंतरिक फ़ंक्शन का एक बहुत ही सरल व्युत्पन्न ढूंढना है और परिणाम को थोड़ा बदलना है:

उदाहरण 4

किसी फ़ंक्शन का व्युत्पन्न खोजें

यह आपके लिए स्वयं हल करने के लिए एक उदाहरण है (पाठ के अंत में उत्तर दें)।

एक जटिल फ़ंक्शन के व्युत्पन्न के बारे में आपकी समझ को मजबूत करने के लिए, मैं बिना किसी टिप्पणी के एक उदाहरण दूंगा, इसे स्वयं समझने का प्रयास करूंगा, कारण बताऊंगा कि बाहरी फ़ंक्शन कहां है और आंतरिक फ़ंक्शन कहां है, कार्यों को इस तरह से क्यों हल किया जाता है?

उदाहरण 5

ए) फ़ंक्शन का व्युत्पन्न खोजें

बी) फ़ंक्शन का व्युत्पन्न खोजें

उदाहरण 6

किसी फ़ंक्शन का व्युत्पन्न खोजें

यहां हमारे पास एक जड़ है, और जड़ को अलग करने के लिए, इसे एक शक्ति के रूप में दर्शाया जाना चाहिए। इस प्रकार, सबसे पहले हम फ़ंक्शन को विभेदन के लिए उपयुक्त रूप में लाते हैं:

फ़ंक्शन का विश्लेषण करते हुए, हम इस निष्कर्ष पर पहुंचते हैं कि तीन पदों का योग एक आंतरिक फ़ंक्शन है, और एक घात तक बढ़ाना एक बाहरी फ़ंक्शन है। हम जटिल कार्यों के विभेदन का नियम लागू करते हैं:

हम फिर से डिग्री को एक रेडिकल (मूल) के रूप में दर्शाते हैं, और आंतरिक फ़ंक्शन के व्युत्पन्न के लिए हम योग को अलग करने के लिए एक सरल नियम लागू करते हैं:

तैयार। आप अभिव्यक्ति को कोष्ठक में एक सामान्य हर में भी छोटा कर सकते हैं और सब कुछ एक भिन्न के रूप में लिख सकते हैं। बेशक, यह सुंदर है, लेकिन जब आपको बोझिल लंबे डेरिवेटिव मिलते हैं, तो ऐसा न करना बेहतर है (भ्रमित होना आसान है, अनावश्यक गलती करना, और शिक्षक के लिए इसे जांचना असुविधाजनक होगा)।

उदाहरण 7

किसी फ़ंक्शन का व्युत्पन्न खोजें

यह आपके लिए स्वयं हल करने के लिए एक उदाहरण है (पाठ के अंत में उत्तर दें)।

यह ध्यान रखना दिलचस्प है कि कभी-कभी किसी जटिल फ़ंक्शन को अलग करने के नियम के बजाय, आप भागफल को अलग करने के लिए नियम का उपयोग कर सकते हैं , लेकिन ऐसा समाधान एक अजीब विकृति जैसा लगेगा। यहाँ एक विशिष्ट उदाहरण है:

उदाहरण 8

किसी फ़ंक्शन का व्युत्पन्न खोजें

यहां आप भागफल के विभेदन के नियम का उपयोग कर सकते हैं , लेकिन किसी जटिल फलन के विभेदन के नियम के माध्यम से व्युत्पन्न ज्ञात करना अधिक लाभदायक है:

हम विभेदन के लिए फ़ंक्शन तैयार करते हैं - हम व्युत्पन्न चिह्न से ऋण को हटाते हैं, और कोसाइन को अंश में बढ़ाते हैं:

कोसाइन एक आंतरिक कार्य है, घातांक एक बाहरी कार्य है।
आइए हमारे नियम का उपयोग करें:

हम आंतरिक फ़ंक्शन का व्युत्पन्न ढूंढते हैं और कोसाइन को वापस नीचे रीसेट करते हैं:

तैयार। विचार किए गए उदाहरण में, यह महत्वपूर्ण है कि संकेतों में भ्रमित न हों। वैसे, नियम का उपयोग करके इसे हल करने का प्रयास करें , उत्तर मेल खाने चाहिए।

उदाहरण 9

किसी फ़ंक्शन का व्युत्पन्न खोजें

यह आपके लिए स्वयं हल करने के लिए एक उदाहरण है (पाठ के अंत में उत्तर दें)।

अब तक हमने ऐसे मामलों को देखा है जहां हमारे पास एक जटिल फ़ंक्शन में केवल एक नेस्टिंग थी। व्यावहारिक कार्यों में, आप अक्सर व्युत्पन्न पा सकते हैं, जहां, नेस्टिंग गुड़िया की तरह, एक दूसरे के अंदर, 3 या यहां तक ​​कि 4-5 फ़ंक्शन एक साथ निहित होते हैं।

उदाहरण 10

किसी फ़ंक्शन का व्युत्पन्न खोजें

आइए इस फ़ंक्शन के अनुलग्नकों को समझें। आइए प्रयोगात्मक मान का उपयोग करके अभिव्यक्ति की गणना करने का प्रयास करें। हम कैलकुलेटर पर कैसे भरोसा करेंगे?

सबसे पहले आपको खोजने की आवश्यकता है, जिसका अर्थ है कि आर्क्साइन सबसे गहरी एम्बेडिंग है:

किसी के इस आर्कसाइन को तब चुकता किया जाना चाहिए:

और अंत में, हम सात को एक घात तक बढ़ाते हैं:

अर्थात्, इस उदाहरण में हमारे पास तीन अलग-अलग फ़ंक्शन और दो एम्बेडिंग हैं, जबकि सबसे भीतरी फ़ंक्शन आर्कसाइन है, और सबसे बाहरी फ़ंक्शन घातीय फ़ंक्शन है।

आइए निर्णय लेना शुरू करें

नियम के अनुसार, आपको सबसे पहले बाहरी फ़ंक्शन का व्युत्पन्न लेना होगा। हम डेरिवेटिव की तालिका को देखते हैं और घातीय फ़ंक्शन के व्युत्पन्न को ढूंढते हैं: एकमात्र अंतर यह है कि "x" के बजाय हमारे पास एक जटिल अभिव्यक्ति है, जो इस सूत्र की वैधता को अस्वीकार नहीं करती है। तो, एक जटिल फ़ंक्शन को विभेदित करने के लिए नियम लागू करने का परिणाम इस प्रकार है:

स्ट्रोक के तहत हमारे पास फिर से एक जटिल कार्य है! लेकिन यह पहले से आसान है. यह सत्यापित करना आसान है कि आंतरिक कार्य आर्क्साइन है, बाहरी कार्य डिग्री है। किसी जटिल फलन को विभेदित करने के नियम के अनुसार, आपको सबसे पहले घात का अवकलज लेना होगा।

याद रखना बहुत आसान है.

ठीक है, आइए ज्यादा दूर न जाएं, आइए तुरंत व्युत्क्रम फलन पर विचार करें। कौन सा फलन घातांकीय फलन का व्युत्क्रम है? लघुगणक:

हमारे मामले में, आधार संख्या है:

ऐसे लघुगणक (अर्थात, आधार वाला लघुगणक) को "प्राकृतिक" कहा जाता है, और हम इसके लिए एक विशेष संकेतन का उपयोग करते हैं: हम इसके बजाय लिखते हैं।

यह किसके बराबर है? बिल्कुल, ।

प्राकृतिक लघुगणक का व्युत्पन्न भी बहुत सरल है:

उदाहरण:

  1. फ़ंक्शन का व्युत्पन्न खोजें।
  2. फ़ंक्शन का व्युत्पन्न क्या है?

उत्तर: व्युत्पन्न परिप्रेक्ष्य से घातांकीय और प्राकृतिक लघुगणक विशिष्ट रूप से सरल कार्य हैं। किसी भी अन्य आधार के साथ घातांकीय और लघुगणकीय कार्यों का एक अलग व्युत्पन्न होगा, जिसका विश्लेषण हम बाद में, विभेदन के नियमों से गुजरने के बाद करेंगे।

विभेदीकरण के नियम

किस चीज़ के नियम? फिर से एक नया शब्द, फिर?!...

भेदभावव्युत्पन्न खोजने की प्रक्रिया है।

बस इतना ही। इस प्रक्रिया को एक शब्द में आप और क्या कह सकते हैं? व्युत्पन्न नहीं... गणितज्ञ अंतर को किसी फ़ंक्शन की समान वृद्धि कहते हैं। यह शब्द लैटिन के डिफरेंशिया - अंतर से आया है। यहाँ।

इन सभी नियमों को प्राप्त करते समय, हम दो फ़ंक्शन का उपयोग करेंगे, उदाहरण के लिए, और। हमें उनकी वेतन वृद्धि के लिए सूत्रों की भी आवश्यकता होगी:

कुल मिलाकर 5 नियम हैं.

स्थिरांक को व्युत्पन्न चिन्ह से हटा दिया जाता है।

यदि - कोई अचर संख्या (स्थिर), तो.

जाहिर है, यह नियम अंतर के लिए भी काम करता है:।

आइए इसे साबित करें. इसे रहने दो, या सरल।

उदाहरण।

फ़ंक्शंस के व्युत्पन्न खोजें:

  1. एक बिंदु पर;
  2. एक बिंदु पर;
  3. एक बिंदु पर;
  4. बिंदु पर।

समाधान:

  1. (व्युत्पन्न सभी बिंदुओं पर समान है, क्योंकि यह एक रैखिक कार्य है, याद रखें?);

उत्पाद का व्युत्पन्न

यहां सब कुछ समान है: आइए एक नया फ़ंक्शन पेश करें और इसकी वृद्धि ढूंढें:

व्युत्पन्न:

उदाहरण:

  1. कार्यों के व्युत्पन्न खोजें और;
  2. किसी बिंदु पर फ़ंक्शन का व्युत्पन्न खोजें।

समाधान:

एक घातीय फलन का व्युत्पन्न

अब आपका ज्ञान यह सीखने के लिए पर्याप्त है कि केवल घातांक ही नहीं, बल्कि किसी भी घातीय फलन का व्युत्पन्न कैसे खोजा जाए (क्या आप अभी तक भूल गए हैं कि वह क्या है?)।

तो, कुछ संख्या कहां है.

हम पहले से ही फ़ंक्शन के व्युत्पन्न को जानते हैं, तो आइए अपने फ़ंक्शन को एक नए आधार पर कम करने का प्रयास करें:

ऐसा करने के लिए, हम एक सरल नियम का उपयोग करेंगे:। तब:

ख़ैर, यह काम कर गया। अब व्युत्पन्न खोजने का प्रयास करें, और यह न भूलें कि यह फ़ंक्शन जटिल है।

घटित?

यहां, स्वयं जांचें:

सूत्र एक घातांक के व्युत्पन्न के समान निकला: जैसा था, वैसा ही रहता है, केवल एक कारक दिखाई देता है, जो सिर्फ एक संख्या है, लेकिन चर नहीं।

उदाहरण:
फ़ंक्शंस के व्युत्पन्न खोजें:

उत्तर:

यह मात्र एक संख्या है जिसकी गणना बिना कैलकुलेटर के नहीं की जा सकती अर्थात इसे सरल रूप में नहीं लिखा जा सकता। इसलिए, हम इसे उत्तर में इसी रूप में छोड़ते हैं।

    ध्यान दें कि यहां दो कार्यों का भागफल है, इसलिए हम संबंधित विभेदन नियम लागू करते हैं:

    इस उदाहरण में, दो कार्यों का उत्पाद:

लघुगणकीय फलन का व्युत्पन्न

यह यहाँ समान है: आप पहले से ही प्राकृतिक लघुगणक के व्युत्पन्न को जानते हैं:

इसलिए, एक अलग आधार के साथ एक मनमाना लघुगणक खोजने के लिए, उदाहरण के लिए:

हमें इस लघुगणक को आधार तक कम करने की आवश्यकता है। आप लघुगणक का आधार कैसे बदलते हैं? मुझे आशा है कि आपको यह सूत्र याद होगा:

केवल अब हम इसके बजाय लिखेंगे:

हर केवल एक अचर है (एक अचर संख्या, बिना किसी चर के)। व्युत्पन्न बहुत सरलता से प्राप्त किया जाता है:

यूनिफाइड स्टेट परीक्षा में घातीय और लघुगणकीय कार्यों के व्युत्पन्न लगभग कभी नहीं पाए जाते हैं, लेकिन उन्हें जानने में कोई दिक्कत नहीं होगी।

एक जटिल फ़ंक्शन का व्युत्पन्न.

"जटिल कार्य" क्या है? नहीं, यह लघुगणक नहीं है, और चापस्पर्शज्या भी नहीं है। इन फ़ंक्शंस को समझना मुश्किल हो सकता है (हालाँकि यदि आपको लघुगणक कठिन लगता है, तो "लघुगणक" विषय पढ़ें और आप ठीक हो जाएंगे), लेकिन गणितीय दृष्टिकोण से, "जटिल" शब्द का अर्थ "कठिन" नहीं है।

एक छोटे कन्वेयर बेल्ट की कल्पना करें: दो लोग बैठे हैं और कुछ वस्तुओं के साथ कुछ क्रियाएं कर रहे हैं। उदाहरण के लिए, पहला चॉकलेट बार को रैपर में लपेटता है, और दूसरा उसे रिबन से बांधता है। परिणाम एक मिश्रित वस्तु है: एक चॉकलेट बार लपेटा हुआ और रिबन से बंधा हुआ। चॉकलेट बार खाने के लिए, आपको उल्टे क्रम में उल्टे कदम उठाने होंगे।

आइए एक समान गणितीय पाइपलाइन बनाएं: पहले हम किसी संख्या की कोज्या ज्ञात करेंगे, और फिर परिणामी संख्या का वर्ग करेंगे। तो, हमें एक नंबर (चॉकलेट) दिया जाता है, मैं उसका कोसाइन (रैपर) ढूंढता हूं, और फिर जो मुझे मिला उसका आप वर्ग कर देते हैं (इसे रिबन से बांध देते हैं)। क्या हुआ? समारोह। यह एक जटिल फ़ंक्शन का एक उदाहरण है: जब, इसका मान ज्ञात करने के लिए, हम सीधे वेरिएबल के साथ पहली क्रिया करते हैं, और फिर पहले के परिणाम के साथ दूसरी क्रिया करते हैं।

दूसरे शब्दों में, एक जटिल फ़ंक्शन एक ऐसा फ़ंक्शन है जिसका तर्क एक अन्य फ़ंक्शन है: .

हमारे उदाहरण के लिए, .

हम समान चरणों को उल्टे क्रम में आसानी से कर सकते हैं: पहले आप इसका वर्ग करें, और फिर मैं परिणामी संख्या की कोज्या ढूंढता हूं:। यह अनुमान लगाना आसान है कि परिणाम लगभग हमेशा अलग होगा। जटिल कार्यों की एक महत्वपूर्ण विशेषता: जब क्रियाओं का क्रम बदलता है, तो फ़ंक्शन भी बदल जाता है।

दूसरा उदाहरण: (वही बात)। .

जो क्रिया हम अंतिम बार करेंगे वही कहलाएगी "बाहरी" फ़ंक्शन, और कार्रवाई पहले की गई - तदनुसार "आंतरिक" कार्य(ये अनौपचारिक नाम हैं, मैं इनका उपयोग केवल सामग्री को सरल भाषा में समझाने के लिए करता हूँ)।

स्वयं यह निर्धारित करने का प्रयास करें कि कौन सा कार्य बाहरी है और कौन सा आंतरिक:

उत्तर:आंतरिक और बाहरी कार्यों को अलग करना चर बदलने के समान है: उदाहरण के लिए, किसी फ़ंक्शन में

  1. हम पहले कौन सा कार्य करेंगे? सबसे पहले, आइए साइन की गणना करें, और उसके बाद ही इसे घन करें। इसका मतलब यह है कि यह एक आंतरिक कार्य है, लेकिन एक बाहरी कार्य है।
    और मूल कार्य उनकी रचना है: .
  2. आंतरिक: ; बाहरी: ।
    इंतिहान: ।
  3. आंतरिक: ; बाहरी: ।
    इंतिहान: ।
  4. आंतरिक: ; बाहरी: ।
    इंतिहान: ।
  5. आंतरिक: ; बाहरी: ।
    इंतिहान: ।

हम वेरिएबल बदलते हैं और एक फ़ंक्शन प्राप्त करते हैं।

खैर, अब हम अपना चॉकलेट बार निकालेंगे और व्युत्पन्न की तलाश करेंगे। प्रक्रिया हमेशा उलटी होती है: पहले हम बाहरी फ़ंक्शन के व्युत्पन्न की तलाश करते हैं, फिर हम परिणाम को आंतरिक फ़ंक्शन के व्युत्पन्न से गुणा करते हैं। मूल उदाहरण के संबंध में, यह इस तरह दिखता है:

एक और उदाहरण:

तो, आइए अंततः आधिकारिक नियम बनाएं:

किसी जटिल फ़ंक्शन का व्युत्पन्न खोजने के लिए एल्गोरिदम:

यह सरल लगता है, है ना?

आइए उदाहरणों से जांचें:

समाधान:

1) आंतरिक: ;

बाहरी: ;

2) आंतरिक: ;

(अभी तक इसे काटने की कोशिश मत करो! कोसाइन के नीचे से कुछ भी नहीं निकलता है, याद है?)

3) आंतरिक: ;

बाहरी: ;

यह तुरंत स्पष्ट है कि यह एक तीन-स्तरीय जटिल कार्य है: आखिरकार, यह पहले से ही अपने आप में एक जटिल कार्य है, और हम इसमें से जड़ भी निकालते हैं, यानी हम तीसरी क्रिया करते हैं (चॉकलेट को एक आवरण में रखें) और ब्रीफकेस में एक रिबन के साथ)। लेकिन डरने का कोई कारण नहीं है: हम अभी भी इस फ़ंक्शन को हमेशा की तरह उसी क्रम में "अनपैक" करेंगे: अंत से।

अर्थात्, पहले हम मूल में अंतर करते हैं, फिर कोज्या में, और उसके बाद ही कोष्ठक में व्यंजक में। और फिर हम इसे सब गुणा करते हैं।

ऐसे मामलों में, कार्यों को क्रमांकित करना सुविधाजनक होता है। अर्थात्, आइए कल्पना करें कि हम क्या जानते हैं। इस अभिव्यक्ति के मूल्य की गणना करने के लिए हम किस क्रम में क्रियाएं करेंगे? आइए एक उदाहरण देखें:

कार्रवाई जितनी देर से की जाएगी, संबंधित कार्य उतना ही अधिक "बाहरी" होगा। क्रियाओं का क्रम पहले जैसा ही है:

यहां घोंसला बनाना आम तौर पर 4-स्तरीय होता है। आइए कार्रवाई का क्रम निर्धारित करें।

1. उग्र अभिव्यक्ति. .

2. जड़. .

3. ज्या. .

4. चौकोर. .

5. यह सब एक साथ रखना:

व्युत्पन्न. संक्षेप में मुख्य बातों के बारे में

किसी फ़ंक्शन का व्युत्पन्न- तर्क की एक अतिसूक्ष्म वृद्धि के लिए फ़ंक्शन की वृद्धि और तर्क की वृद्धि का अनुपात:

मूल व्युत्पन्न:

विभेदीकरण के नियम:

स्थिरांक को व्युत्पन्न चिन्ह से हटा दिया जाता है:

योग का व्युत्पन्न:

उत्पाद का व्युत्पन्न:

भागफल का व्युत्पन्न:

एक जटिल फ़ंक्शन का व्युत्पन्न:

किसी जटिल फ़ंक्शन का व्युत्पन्न खोजने के लिए एल्गोरिदम:

  1. हम "आंतरिक" फ़ंक्शन को परिभाषित करते हैं और इसका व्युत्पन्न ढूंढते हैं।
  2. हम "बाहरी" फ़ंक्शन को परिभाषित करते हैं और इसका व्युत्पन्न ढूंढते हैं।
  3. हम पहले और दूसरे बिंदु के परिणामों को गुणा करते हैं।

यदि आप परिभाषा का पालन करते हैं, तो किसी बिंदु पर किसी फ़ंक्शन का व्युत्पन्न फ़ंक्शन की वृद्धि के अनुपात की सीमा है Δ तर्क वृद्धि के लिए Δ एक्स:

सब कुछ साफ नजर आ रहा है. लेकिन फ़ंक्शन के व्युत्पन्न की गणना करने के लिए इस सूत्र का उपयोग करने का प्रयास करें एफ(एक्स) = एक्स 2 + (2एक्स+3) · एक्सपाप एक्स. यदि आप सब कुछ परिभाषा के अनुसार करते हैं, तो गणना के कुछ पृष्ठों के बाद आप बस सो जाएंगे। इसलिए, सरल और अधिक प्रभावी तरीके हैं।

आरंभ करने के लिए, हम ध्यान दें कि कार्यों की संपूर्ण विविधता से हम तथाकथित प्राथमिक कार्यों को अलग कर सकते हैं। ये अपेक्षाकृत सरल अभिव्यक्तियाँ हैं, जिनके व्युत्पन्नों की गणना और सारणीबद्धता लंबे समय से की गई है। ऐसे कार्यों को याद रखना काफी आसान है - उनके डेरिवेटिव के साथ।

प्राथमिक कार्यों के व्युत्पन्न

प्राथमिक कार्य नीचे सूचीबद्ध सभी हैं। इन कार्यों के व्युत्पन्नों को हृदय से जानना चाहिए। इसके अलावा, उन्हें याद रखना बिल्कुल भी मुश्किल नहीं है - यही कारण है कि वे प्राथमिक हैं।

तो, प्राथमिक कार्यों के व्युत्पन्न:

नाम समारोह यौगिक
स्थिर एफ(एक्स) = सी, सीआर 0 (हाँ, शून्य!)
तर्कसंगत प्रतिपादक के साथ शक्ति एफ(एक्स) = एक्स एन एन · एक्स एन − 1
साइनस एफ(एक्स) = पाप एक्स ओल एक्स
कोज्या एफ(एक्स) = क्योंकि एक्स −पाप एक्स(शून्य से साइन)
स्पर्शरेखा एफ(एक्स) = टीजी एक्स 1/cos 2 एक्स
कोटैंजेंट एफ(एक्स) = सीटीजी एक्स − 1/पाप 2 एक्स
प्राकृतिक एफ(एक्स) = लॉग एक्स 1/एक्स
मनमाना लघुगणक एफ(एक्स) = लॉग एक्स 1/(एक्सएल.एन )
घातांक प्रकार्य एफ(एक्स) = एक्स एक्स(कुछ भी नहीं बदला)

यदि किसी प्राथमिक फ़ंक्शन को एक मनमाना स्थिरांक से गुणा किया जाता है, तो नए फ़ंक्शन के व्युत्पन्न की गणना भी आसानी से की जाती है:

(सी · एफ)’ = सी · एफ ’.

सामान्य तौर पर, स्थिरांक को व्युत्पन्न के चिह्न से बाहर निकाला जा सकता है। उदाहरण के लिए:

(2एक्स 3)' = 2 · ( एक्स 3)' = 2 3 एक्स 2 = 6एक्स 2 .

जाहिर है, प्राथमिक कार्यों को एक-दूसरे से जोड़ा जा सकता है, गुणा किया जा सकता है, विभाजित किया जा सकता है - और भी बहुत कुछ। इस प्रकार नए कार्य प्रकट होंगे, जो अब विशेष रूप से प्राथमिक नहीं होंगे, बल्कि कुछ नियमों के अनुसार विभेदित भी होंगे। इन नियमों पर नीचे चर्चा की गई है।

योग और अंतर का व्युत्पन्न

फ़ंक्शंस दिए जाएं एफ(एक्स) और जी(एक्स), जिसके व्युत्पन्न हमें ज्ञात हैं। उदाहरण के लिए, आप ऊपर चर्चा किए गए प्राथमिक कार्यों को ले सकते हैं। फिर आप इन कार्यों के योग और अंतर का व्युत्पन्न पा सकते हैं:

  1. (एफ + जी)’ = एफ ’ + जी
  2. (एफजी)’ = एफ ’ − जी

तो, दो कार्यों के योग (अंतर) का व्युत्पन्न, व्युत्पन्नों के योग (अंतर) के बराबर है। और भी शर्तें हो सकती हैं. उदाहरण के लिए, ( एफ + जी + एच)’ = एफ ’ + जी ’ + एच ’.

कड़ाई से कहें तो, बीजगणित में "घटाव" की कोई अवधारणा नहीं है। "नकारात्मक तत्व" की एक अवधारणा है। इसलिए अंतर है एफजीयोग के रूप में पुनः लिखा जा सकता है एफ+ (−1) जी, और तब केवल एक सूत्र बचता है - योग का व्युत्पन्न।

एफ(एक्स) = एक्स 2 + पाप एक्स; जी(एक्स) = एक्स 4 + 2एक्स 2 − 3.

समारोह एफ(एक्स) दो प्राथमिक कार्यों का योग है, इसलिए:

एफ ’(एक्स) = (एक्स 2 + पाप एक्स)’ = (एक्स 2)' + (पाप) एक्स)’ = 2एक्स+ क्योंकि x;

हम फ़ंक्शन के लिए इसी तरह तर्क करते हैं जी(एक्स). केवल पहले से ही तीन पद हैं (बीजगणित के दृष्टिकोण से):

जी ’(एक्स) = (एक्स 4 + 2एक्स 2 − 3)’ = (एक्स 4 + 2एक्स 2 + (−3))’ = (एक्स 4)’ + (2एक्स 2)’ + (−3)’ = 4एक्स 3 + 4एक्स + 0 = 4एक्स · ( एक्स 2 + 1).

उत्तर:
एफ ’(एक्स) = 2एक्स+ क्योंकि x;
जी ’(एक्स) = 4एक्स · ( एक्स 2 + 1).

उत्पाद का व्युत्पन्न

गणित एक तार्किक विज्ञान है, इसलिए बहुत से लोग मानते हैं कि यदि किसी योग का व्युत्पन्न, व्युत्पन्नों के योग के बराबर है, तो उत्पाद का व्युत्पन्न हड़ताल">डेरिवेटिव के उत्पाद के बराबर। लेकिन भाड़ में जाओ! किसी उत्पाद के व्युत्पन्न की गणना पूरी तरह से अलग सूत्र का उपयोग करके की जाती है। अर्थात्:

(एफ · जी) ’ = एफ ’ · जी + एफ · जी

सूत्र सरल है, लेकिन इसे अक्सर भुला दिया जाता है। और न केवल स्कूली बच्चे, बल्कि छात्र भी। परिणाम गलत तरीके से हल की गई समस्याएं हैं।

काम। कार्यों के व्युत्पन्न खोजें: एफ(एक्स) = एक्स 3 क्योंकि x; जी(एक्स) = (एक्स 2 + 7एक्स− 7) · एक्स .

समारोह एफ(एक्स) दो प्राथमिक कार्यों का उत्पाद है, इसलिए सब कुछ सरल है:

एफ ’(एक्स) = (एक्स 3 कोस एक्स)’ = (एक्स 3)' क्योंकि एक्स + एक्स 3 (को एक्स)’ = 3एक्स 2 कोस एक्स + एक्स 3 (−पाप) एक्स) = एक्स 2 (3cos एक्सएक्सपाप एक्स)

समारोह जी(एक्स) पहला गुणक थोड़ा अधिक जटिल है, लेकिन सामान्य योजना नहीं बदलती है। जाहिर है, फ़ंक्शन का पहला कारक जी(एक्स) एक बहुपद है और इसका व्युत्पन्न योग का व्युत्पन्न है। हमारे पास है:

जी ’(एक्स) = ((एक्स 2 + 7एक्स− 7) · एक्स)’ = (एक्स 2 + 7एक्स− 7)' · एक्स + (एक्स 2 + 7एक्स− 7) ( एक्स)’ = (2एक्स+7) · एक्स + (एक्स 2 + 7एक्स− 7) · एक्स = एक्स· (2 एक्स + 7 + एक्स 2 + 7एक्स −7) = (एक्स 2 + 9एक्स) · एक्स = एक्स(एक्स+9) · एक्स .

उत्तर:
एफ ’(एक्स) = एक्स 2 (3cos एक्सएक्सपाप एक्स);
जी ’(एक्स) = एक्स(एक्स+9) · एक्स .

कृपया ध्यान दें कि अंतिम चरण में व्युत्पन्न को गुणनखंडित किया जाता है। औपचारिक रूप से, ऐसा करने की आवश्यकता नहीं है, लेकिन अधिकांश डेरिवेटिव की गणना स्वयं नहीं की जाती है, बल्कि फ़ंक्शन की जांच करने के लिए की जाती है। इसका मतलब यह है कि आगे व्युत्पन्न को शून्य के बराबर किया जाएगा, इसके संकेत निर्धारित किए जाएंगे, इत्यादि। ऐसे मामले के लिए, अभिव्यक्ति को गुणनखंडित करना बेहतर है।

यदि दो कार्य हैं एफ(एक्स) और जी(एक्स), और जी(एक्स) ≠ 0 जिस सेट में हमारी रुचि है, हम एक नया फ़ंक्शन परिभाषित कर सकते हैं एच(एक्स) = एफ(एक्स)/जी(एक्स). ऐसे फ़ंक्शन के लिए आप व्युत्पन्न भी पा सकते हैं:

कमज़ोर नहीं, है ना? माइनस कहां से आया? क्यों जी 2? और इस तरह! यह सबसे जटिल फ़ार्मुलों में से एक है - आप इसे बोतल के बिना नहीं समझ सकते। इसलिए, विशिष्ट उदाहरणों के साथ इसका अध्ययन करना बेहतर है।

काम। कार्यों के व्युत्पन्न खोजें:

प्रत्येक भिन्न के अंश और हर में प्रारंभिक कार्य होते हैं, इसलिए हमें भागफल के व्युत्पन्न के लिए केवल सूत्र की आवश्यकता होती है:


परंपरा के अनुसार, आइए अंश का गुणनखंड करें - इससे उत्तर बहुत सरल हो जाएगा:

एक जटिल फ़ंक्शन आवश्यक रूप से आधा किलोमीटर लंबा सूत्र नहीं है। उदाहरण के लिए, यह फ़ंक्शन लेने के लिए पर्याप्त है एफ(एक्स) = पाप एक्सऔर वेरिएबल को बदलें एक्स, कहो, पर एक्स 2 + एल.एन एक्स. हो जाएगा एफ(एक्स) = पाप ( एक्स 2 + एल.एन एक्स) - यह एक जटिल कार्य है। इसका एक व्युत्पन्न भी है, लेकिन ऊपर चर्चा किए गए नियमों का उपयोग करके इसे ढूंढना संभव नहीं होगा।

मुझे क्या करना चाहिए? ऐसे मामलों में, किसी जटिल फ़ंक्शन के व्युत्पन्न के लिए एक चर और सूत्र को बदलने से मदद मिलती है:

एफ ’(एक्स) = एफ ’(टी) · टी', अगर एक्सद्वारा प्रतिस्थापित किया जाता है टी(एक्स).

एक नियम के रूप में, इस सूत्र को समझने की स्थिति भागफल के व्युत्पन्न से भी अधिक दुखद है। इसलिए, प्रत्येक चरण के विस्तृत विवरण के साथ, विशिष्ट उदाहरणों का उपयोग करके इसे समझाना भी बेहतर है।

काम। कार्यों के व्युत्पन्न खोजें: एफ(एक्स) = 2एक्स + 3 ; जी(एक्स) = पाप ( एक्स 2 + एल.एन एक्स)

ध्यान दें कि यदि फ़ंक्शन में एफ(एक्स) अभिव्यक्ति 2 के स्थान पर एक्स+3 आसान होगा एक्स, तो हमें एक प्राथमिक कार्य मिलता है एफ(एक्स) = एक्स. इसलिए, हम एक प्रतिस्थापन करते हैं: चलो 2 एक्स + 3 = टी, एफ(एक्स) = एफ(टी) = टी. हम सूत्र का उपयोग करके एक जटिल फ़ंक्शन के व्युत्पन्न की तलाश करते हैं:

एफ ’(एक्स) = एफ ’(टी) · टी ’ = ( टी)’ · टी ’ = टी · टी

और अब - ध्यान! हम उलटा प्रतिस्थापन करते हैं: टी = 2एक्स+3. हमें मिलता है:

एफ ’(एक्स) = टी · टी ’ = 2एक्स+3(2 एक्स + 3)’ = 2एक्स+ 3 2 = 2 2एक्स + 3

अब आइए फ़ंक्शन पर नजर डालें जी(एक्स). जाहिर है इसे बदलने की जरूरत है एक्स 2 + एल.एन एक्स = टी. हमारे पास है:

जी ’(एक्स) = जी ’(टी) · टी'= (पाप टी)’ · टी' = क्योंकि टी · टी

उलटा प्रतिस्थापन: टी = एक्स 2 + एल.एन एक्स. तब:

जी ’(एक्स) = क्योंकि ( एक्स 2 + एल.एन एक्स) · ( एक्स 2 + एल.एन एक्स)' = क्योंकि ( एक्स 2 + एल.एन एक्स) · (2 एक्स + 1/एक्स).

बस इतना ही! जैसा कि अंतिम अभिव्यक्ति से देखा जा सकता है, पूरी समस्या व्युत्पन्न योग की गणना करने के लिए कम हो गई है।

उत्तर:
एफ ’(एक्स) = 2· 2एक्स + 3 ;
जी ’(एक्स) = (2एक्स + 1/एक्स) क्योंकि ( एक्स 2 + एल.एन एक्स).

मैं अक्सर अपने पाठों में "व्युत्पन्न" शब्द के बजाय "प्राइम" शब्द का उपयोग करता हूँ। उदाहरण के लिए, योग का स्ट्रोक स्ट्रोक के योग के बराबर होता है। क्या यह अधिक स्पष्ट है? अच्छा, यह तो अच्छी बात है।

इस प्रकार, ऊपर चर्चा किए गए नियमों के अनुसार व्युत्पन्न की गणना इन्हीं स्ट्रोक से छुटकारा पाने के लिए आती है। अंतिम उदाहरण के रूप में, आइए एक तर्कसंगत घातांक के साथ व्युत्पन्न शक्ति पर वापस लौटें:

(एक्स एन)’ = एन · एक्स एन − 1

इस भूमिका के बारे में कम ही लोग जानते हैं एनयह एक भिन्नात्मक संख्या भी हो सकती है। उदाहरण के लिए, जड़ है एक्स 0.5. अगर जड़ के नीचे कुछ फैंसी हो तो क्या होगा? फिर, परिणाम एक जटिल कार्य होगा - वे परीक्षणों और परीक्षाओं में ऐसे निर्माण देना पसंद करते हैं।

काम। फ़ंक्शन का व्युत्पन्न खोजें:

सबसे पहले, आइए मूल को एक तर्कसंगत घातांक के साथ एक घात के रूप में फिर से लिखें:

एफ(एक्स) = (एक्स 2 + 8एक्स − 7) 0,5 .

अब हम एक प्रतिस्थापन करते हैं: चलो एक्स 2 + 8एक्स − 7 = टी. हम सूत्र का उपयोग करके व्युत्पन्न पाते हैं:

एफ ’(एक्स) = एफ ’(टी) · टी ’ = (टी 0.5)' · टी' = 0.5 · टी−0.5 · टी ’.

आइए उलटा प्रतिस्थापन करें: टी = एक्स 2 + 8एक्स− 7. हमारे पास है:

एफ ’(एक्स) = 0.5 · ( एक्स 2 + 8एक्स− 7) −0.5 · ( एक्स 2 + 8एक्स− 7)' = 0.5 (2 एक्स+8)( एक्स 2 + 8एक्स − 7) −0,5 .

अंत में, जड़ों की ओर वापस जाएँ: