Термодинамика адсорбции по гиббсу. Термодинамика процесса адсорбции Теория Штерна. Строение коллоидной мицеллы

Взаимодействие полимеров с жидкостями и газами

Процессы взаимодействия полимеров с низкомолекулярными жидкостями играют важную роль в процессах формирования готовых изделий (например волокна из раствора), модификации свойств (пластификация) материала, а также в условиях эксплуатации этих изделий в различных жидких средах. Взаимодействие выражается в поглощении полимером жидкости и называется сорбцией . Если сорбция протекает в объеме полимерного материала, ее называют абсорбцией . Если поглощение происходит в поверхностных слоях, то процесс называют адсорбцией .

Сорбция

Механизм адсорбции обусловлен наличием сил поверхностного натяжения на границах раздела сред (рис. 5.1) вследствие различия в них сил межмолекулярного взаимодействия. Эти приводит к накоплению избыточной энергии на поверхности вещества, стремящегося втянуть свои поверхностные молекулы (молекулы адсорбента ) и слабее взаимодействующие молекулы (молекулы адсорбтива ) внутрь объема. Величина адсорбции в значительной степени зависит от удельной поверхности адсорбента. Численно адсорбция выражается количеством молей адсорбированного вещества на единицу массы адсорбента - x/m .

Изучение сорбции позволяет получать ценную информацию о структуре полимера, степени упаковки его молекул.

Обычно процессы сорбции описываются с помощью кривых зависимости количества адсорбированного вещества от концентрации (или давления) его в газовой фазе при постоянной температуре (изотермы сорбции, рис. 5.2.). Здесь величина Р /Р s - отношение упругости пара адсорбтива к упругости его насыщенного пара при данной температуре.

В области малых давлений паров выполняется линейный закон Генри:

где а - количество адсорбированного вещества; a m - предельная адсорбция, пропорциональная активной поверхности адсорбента; p - давление сорбата; k - константа адсорбции. На рис. 5.2 завершение мономолекулярной адсорбции определяется выходом изотермы сорбции на полочку в интервале относительных давлений 0,4 ÷ 0,5.

При наличии полимолекулярной адсорбции и конденсации на поверхности пористого адсорбента (Р /Р s > 0,6 на рис. 5.2) используют универсальное уравнение

(5.3)

Термодинамика процесса адсорбции

Поскольку, как правило, межмолекулярное взаимодействие молекул адсорбтива менее интенсивно, чем адсорбента, адсорбция протекает с уменьшением свободной энергии поверхности (ΔF < 0) и выделением тепла (уменьшением энтальпии ΔН < 0). При равновесии процессов адсорбции и десорбции ΔF = 0. Величина, рассчитанная в процессе адсорбции, характеризует количество и активность групп на поверхности адсорбента, способных реагировать с абсорбтивом. При адсорбции уменьшается и энтропия системы (ΔS < 0), поскольку молекулы абсорбтива ограничивают подвижность молекул полимера, уменьшая возможное число конформаций: ΔS = k ln (W 2 / W 1), где - постоянная Больцмана, W 2 и W 1 - термодинамическая вероятность конечного и начального состояния системы.

Адсорбция имеет место на границе раздела фаз. Поэтому термодинамическое описание поверхностных явлений елесообразно рассматривать как частный случай термодинамики гетерогенных систем.

Рис. 3.4. Адсорбция по Гиббсу:1- двухфазная система сравнения, 2- реальная двухфазная система с неоднородной областью

В термодинамике гетерогенных систем используется принцип аддитивности , который заключается в следующем: все экстенсивные свойства гетерогенной системы равны сумме соответствующих экстенсивных свойств, которыми обладали бы фазы до того, как их привели в контакт. Обозначим фазы через α и β (рис.4). Тогда для идеальной системы, такой, что свойства фаз вблизи поверхности раздела совпадают с их объемными свойствами, для внутренней энергии U, объема V, массы (числа молей) n, энтропии S после установления равновесия в гетерогенной системе справедливы соотношения:

U = U α + U β , V = V α + V β , n = n α + n β , S = S α + S β

При этом подразумевается, что температура и давление в обеих фазах одинаковы.

Для реальных гетерогенных систем переходная область на границе двух фаз вносит дополнительный вклад в экстенсивные свойства системы. Если поверхностные явления имеют место, следует учитывать отличие экстенсивных свойств реальной гетерогенной системы от экстенсивных свойств модельной системы, в которой поверхностные явления отсутствуют. Такая система называется системой сравнения. Система сравнения обладает теми же интенсивными параметрами (T, P, C i …) и таким же объемом V, что и реальная система (рис. 4).

С термодинамической точки зрения под величиной адсорбции Г понимают избыточное количество вещества n s , выраженное в молях или граммах, которым обладает реальная гетерогенная система по сравнению с системой сравнения, отнесенное к площади поверхности раздела фаз или к площади поверхности адсорбента А. Принимается, что система сравнения обладает теми же интенсивными параметрами (T, P, C i), и таким же объемом (V = V α + V β), что и реальная система (рис.4).

Г = (n - n α - n β)/A = n s /A 3.11

Избыточные термодинамические функции переходной области реальной системы (обозначим их индексом s) можно записать как



U s = U - U α - U β , n s = n - n α - n β , S s = S - S α - S β и т.д.

Экспериментальные измерения адсорбции всегда дают адсорбцию именно как избыток компонента в реальной системе по сравнению с выбранной системой сравнения. Например, при адсорбции газа на твердом адсорбенте или при адсорбции компонентов на твердой фазе для нахождения величин адсорбции определяют изменение начальных концентраций адсорбата после соприкосновения фаз α и β

n i s = V(C i o - C i),

где C i o – исходные концентрация i –го компонента, C i – концентрация i – го компонента после установления равновесия между соприкасающимися фазами. При этом считается, что объем V не меняется. Однако, концентрация i -го компонента C i , полученная экспериментально, определяется в объеме V’ над поверхностью раздела фаз без учета объема неоднородной области переходного слоя V α у границы раздела, где концентрация составляет C i α . Таким образом, ввиду существования в реальной системе неоднородной области, общий объем системы можно представить как V = V’ + V α . Всё количество i –го компонента C i o распределится между этими двумя объемами:



V C i o = V’ C i + V α C i α ,

и число молей компонента i , адсорбированного на поверхности раздела фаз, будет равно

n i s = (V’C i + V α C i α) – (V’ + V α)C i = V α (C i α – C i) 3.12

Т.е. определяемая экспериментально адсорбция есть избыток i-го компонента в объеме V α по сравнению с количеством этого компонента в таком же объеме вдали от поверхности раздела фаз. Именно такая адсорбция называется адсорбцией по Гиббсу .

V α C i α называется полным содержанием i- го компонента в адсорбционном слое. В области очень малых концентрацийC i в объеме V’ поправкой V α C i уравнения (3.2) можно пренебречь и считать измеренную величину V α C i α полным содержанием i- го компонента в адсорбционном слое, например, при адсорбции газа на твердом адсорбенте при низких давлениях.

Кузнецова Е.С. и Буряк А.К. провели сопоставление термодинамических характеристик адсорбции аминокислот и их ассоциатов. В работе было исследовано влияние строения аминокислот, их димеров и ассоциатов с компонентами элюента на их адсорбцию на поверхности углеродных материалов. Проведен молекулярно-статистический расчет термодинамических характеристик адсорбции (ТХА) для ароматических аминокислот (фенилаланина, тирозина), гетероциклической аминокислоты (триптофана) и их димеров с трифторуксусной кислотой (ТФУ) на поверхности графитированной термической сажи (ГТС). Полученные данные сопоставлены с закономерностями удерживания аминокислот на пористом графитированном углероде Гиперкарбе в условиях обращенно-фазовой высокоэффективной жидкостной хроматографии (ОФ ВЭЖХ). Показано, что ТХА и величины удерживания аминокислот возрастают с увеличением углеродной цепи этих соединений.

Школиным А. В., и Фомкиным А. А. был проведен анализ поведения термодинамических функций (дифференциальной мольной изостерической теплоты адсорбции, энтропии, энтальпии и теплоемкости) адсорбционной системы метан-микропористый углеродный адсорбент АУК в зависимости от параметров адсорбционного равновесия в интервалах температур от 177.65 до 393 К и давлений от 1 Па до 6 МПа. Учет влияния неидеальности газовой фазы и неинертности адсорбента привел к появлению температурной зависимости изостерической теплоты адсорбции, особенно в области высоких давлений адсорбтива. Для исследованной системы основное влияние на термодинамические функции адсорбционной системы оказывает неидеальность газовой фазы. Поправка на неинертность адсорбента в данном интервале параметров адсорбционной системы составляет не более 2.5%.

В институте общей и неорганической химии Академии наук Республики Узбекистан Муминов С.З. в своей работе исследовал изменения поверхностных свойств и пористой структуры монтмориллонита при замещении обменных катионов минерала на полигидроксиалюминиевые. Предварительное термовакуумирование оказывает существенное влияние на адсорбционные свойства полигидроксиалюминиевого монтмориллонита по отношению к метиловому спирту. По данным серий изостер адсорбции СН3 на дегидратированных натриевом и модифицированном монтмориллонитах, измеренных в широком температурном интервале, установлены зависимости теплоты адсорбции от количества адсорбированного вещества.

Н.С. Казбанов, А.В. Матвеева и О.К. Красильникова проведели исследование адсорбции фенола из водных растворов активированными углями типа ФАС, ПАУ и углеродным войлоком при температурах 293, 313 и 343К в интервале концентраций 5 - 250 ммоль/л. Серию образцов последовательно активированного угля ФАС, отличающегося узким распределением пор по размерам, получали карбонизацией полимеров на основе фурфурола. ПАУ -это микропористый полимерный активированный уголь. Углеродный войлок представляет собой волокнистый материал на основе гидратцеллюлозных волокон. Параметры пористой структуры адсорбентов определяли по изотермам адсорбции паров азота при 77 К (ASAP-2020, Micromeritics, USA). Исследования адсорбции растворов проводили ампульным методом в термостате. Отобранные пробы анализировали методом спектрофотомерии. Анализ полученных изотерм жидкофазной адсорбции был проведен с помощью теории объёмного заполнения микропор (ТОЗМ) по уравнению Дубинина- Радушкевича (ДР).

Влияние температуры на сорбцию из жидких растворов неоднозначно. С одной стороны, для микропористых адсорбентов проникновение молекул в поры, сравнимые по размеру с этими молекулами, зависит от кинетической энергии и, соответственно, увеличивается с температурой. С другой стороны, физическая адсорбция представляет собой экзотермический процесс, и адсорбция уменьшается с температурой. Соотношением этих факторов для каждой системы и определяется ход температурной зависимости адсорбции.

Уникальность системы адсорбент - фенол состоит в том, что она имеет обратную температурную зависимость изотерм адсорбции т.к. при увеличении температуры от 293 до 313 К предельная величина адсорбции растёт, что по-видимому связано с молекулярно-ситовым эффектом: с увеличением температуры молекулы фенола способны проникать в более узкие поры углеродных материалов. Адсорбция происходит в основном в микропорах, поскольку адсорбенты обладают небольшим количеством мезопор. По мере увеличения размера микропор величины предельной адсорбции значительно увеличиваются, достигая 2,9 ммоль/г для ПАУ, 8,5 ммоль/г для ФАС и 12,7 ммоль/г для войлока. Полученные изотермы адсорбции хорошо описываются уравнением ДР с показателем степени, равным 2.